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ABSTRACT In the field of bioinformatics, the prediction of protein secondary structure is a challenging
task, and it is extremely important for determining the structure and function of proteins. In this paper,
the generation of adversarial network and convolutional neural network model are combined for protein
secondary structure prediction. Firstly, generate a confrontation network to extract protein features, and then
combine the extracted features with the original PSSM data as the input of the convolutional neural network
to obtain prediction results. Testsets CASP9, CASP10, CASP11, CASP12, CB513 and PDB25 obtained
87.06%, 87.24%, 87.31%, 87.39%, 88.13% and 88.93%, which are 3.88%, 4.6%, 7.97%,5.85%, 5.78%,
4.25% higher than one using the convolutional neural network alone. The experimental results show that the
feature extraction ability of generating adversarial networks is very significant.

INDEX TERMS Bioinformatics, generative adversarial network, convolutional neural network, protein
secondary structure prediction.

I. INTRODUCTION
Protein is one of the important biological macromolecules,
which is indispensable to almost all life activities. With the
completion of the Human Genome Project, scientists never
stopped to study the structure of proteins. The classification
information of protein structure should be solved in the field
of protein research, and it is also very important in the field
of bioinformatics [1]. Protein secondary structure prediction
is a key step in tertiary structure prediction and it is a prereq-
uisite for understanding and predicting tertiary structure. The
improved accuracy of protein secondary structure prediction
not only enables us to understand the complex relationship
between protein sequence and protein structure, but also
helps to analyze protein functions and manufacture drugs [2],
so protein secondary structure prediction is a challenging
task and of great significance. Using biological methods to
determine the structure of proteins is expensive and time-
consuming, therefore, we can predict the secondary structure
of proteins with the help of computers.
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In the field of bioinformatics, many computational meth-
ods have been used to predict the secondary structure of
proteins. such as common machine learning algorithms
including support vector machine [3], nearest neighbor algo-
rithm [4] and Bayesian algorithm [5] etc. However, the fea-
ture extraction of machine learning depends on experience,
which makes the feature extraction of data difficult. With
the development of science and technology and the enhance-
ment of computing power, people gradually pay attention
to deep learning models [6]–[9]. It can learn features from
original data without relying on expert experience. Pro-
tein secondary structure prediction was applied to convo-
lutional neural networks (CNN) [10] and recurrent neural
networks (RNN) [11] to improve prediction accuracy. The
SPIDER3 [12] method utilized long-term and short-term
memory bidirectional recurrent neural networks to capture
longer amino acid sequence information, resulting in an
accuracy rate of more than 80%. The SPOT-1D [13] method
is the newer protein secondary structure prediction method at
present, and it is an improvement of SPIDER3.On the basis of
the SPIDER3 method, a residual convolutional network was
combined to obtain better results. Ma et al. [14] proposed
a method based on data segmentation and semi-random
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FIGURE 1. Model structure(GAN extracts features and combines with PSSM to form new features, and then uses CNN to predict Q3 and SOV accuracy).

subspace. The accuracy of testing the 3-state on the
25PDB and CB513 datasets was 86.38% and 84.53%. The
MUFOLD [15] method used a network namedDeep3I, which
is composed of two nested initial modules that can perform
convolution operations, convolution and a fully connected
dense layer, and effectively processing the local and global
between amino acid residues interaction. Guo et al. [16]
fused asymmetric convolutional neural networks and
BiLSTM models, and performed eight class of protein sec-
ondary structure predictions. DeepCNF [17] combines deep
neural networks and conditional neural fields to predict for
3- and 8-state secondary structure.

In recent years, generative adversarial network [18], [19],
as a newer deep learning model, has significant effects in fea-
ture extraction and image denoising. Based on the above rea-
sons, this paper integrates GAN and CNN neural networks,
and proposes protein secondary structure prediction based
on generative adversarial networks and convolutional neu-
ral networks. The generate adversarial network can extract
the characteristics of amino acid residues through the game
between the generator and discriminator, and the extracted
features are fused with the original protein features and then
send them to the convolutional neural network to predict
protein secondary structure.

II. MODEL AND DATA
A. MODEL STRUCTURE
Protein secondary structure is based on protein sequence
to predict the type of structure corresponding to amino
acid residues, PSI-BLAST’s position-specific scoring matrix
(PSSM) [20] is used to represent protein sequences and
contains abundant biological evolution information. The
PSI-BLAST parameter is set to a threshold of 0.001 and
3 iterations to obtain a 20∗M PSSM matrix, where M is
the length of the amino acid sequence and 20 represents
the number of amino acid types. The definition of protein
structure DSSP [21] contains eight structural types, namely
H (α helix), B (β turn), E (fold), G (3-helix), I (5-helix),
T (Corner), S (curl) and L (ring). In the experiment of this
paper, G, H and I are replaced by H, B and E are replaced by
E, and replace other structures with C.

TABLE 1. Number of proteins in the test dataset.

In this paper, generative confrontation network and convo-
lutional neural network were used to predict the secondary
structure of proteins. Firstly, the data was preprocessed, and
the PSSM matrix was divided according to the sliding win-
dows of 13 and 19 to obtain the input data of the network. Its
prediction model is shown in Figure 1.

B. DATASETS
In this paper, the ASTRAL [22] and CullPDB [23] datasets
were used as the training set of the model. The CullPDB
dataset was selected based on the percentage identity cutoff
of 25%, the resolution cutoff of 3 angstroms, and the R-factor
cutoff of 0.25. ASTRAL dataset had 6,892 proteins, with less
than 25% sequence identity. We removed the protein with the
same protein name in ASTRAL and CullPDB. There are a
total of 15696 proteins. The test set used CASP [24]–[26]
data set, including CASP9, CASP10, CASP11 and CASP12.
In addition, the CB513 [27] and PDB25 [28] data sets are also
used as the test set of the model, and the number of protein
sequences of test sets is shown in Table 1.

III. MODEL PRINCIPLE AND RESULT EVALUATION
A. GENERATIVE ADVERSARIAL NETWORK
In 2014 Ian Goodfellow proposed Generative Adversarial
Network [29], papers [18], [19] use generative adversarial
networks for image denoising and feature extraction, which
proves that generative adversarial networks have good char-
acteristics. Generative adversarial network consists of two
parts: generator and discriminator. The generator can learn
the distribution characteristics of real data, in order to gener-
ate data similar to real protein data, while the discriminator is
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FIGURE 2. Generative adversarial network model.

to judge whether the data is generated by the generator or the
real data, which is actually a binary classification problem.
From the perspective of game theory, in order to improve
the generating ability of the generator and the discriminating
ability of the discriminator, they need to be optimized contin-
uously, but eventually they reach the Nash equilibrium. The
generator and discriminator can be represented by G and D
respectively, and the generative adversarial network model is
shown in Figure 2.

The learning process of GAN is the process of confronta-
tion between D and G, D classifies the input protein matrix
PSSM, D can discriminate the generated data from the real
data, if the generated data is false, then D(G(z))=0, and if the
real data is true, then D(x) = 1.When such a situation occurs,
G needs to constantly adjust and optimize its parameters,
so that the generated data is closer to the real data and D
cannot judge whether the data is real or generated by G,
namely D(G(z))=1. The process of confrontation between G
and D is called a minimax game, its loss function is defined
as follows.

min
G

max
D

V (D,G) = Ex∼pdata(x)
[
logD (x)

]
+ Ez∼pz(z)

[
log (1− D (G (z)))

]
(1)

In the formula, x represents the real protein data, z repre-
sents the random data input to G, G (z) represents the fake
data generated by the G network, and D(x) represents the
probability that the D network judges whether the real data
is true. For D, the closer this value is to 1, the better. And
D(G(z)) is the probability that the D network judges whether
the protein data generated by G is true, the generator wants
its own data to be closer to the real data, so G wants D(G(z))
to be as large as possible, at this time V(D,G) will become
smaller, thus we see that the first symbol of equation (1) is
min. The stronger the discriminator is, the bigger D(x) should
be, the smaller D(G(x)) should be, and then V(D,G) should
be larger, so equation (1) is to find the maximum value for D.

In the generated confrontation model in this paper, the con-
volutional network is introduced into the G and D networks in
order to improve the feature extraction capability of the gen-
erated confrontation network and to improve the prediction
accuracy of protein secondary structure. The G network uses
deconvolution for upsampling, and the activation function
uses ReLU function. The D network uses a convolutional
layer with a step size of 1, and the activation function uses

a ReLU function. The features extracted from the generated
adversarial network are combined with the PSSM matrix and
the deep convolutional neural network is used to predict the
secondary structure of the protein. The generator model is
shown in Figure 3.

B. CONVOLUTIONAL NEURAL NETWORK
In recent years, as a popular deep learning algorithm, convo-
lutional neural network has been applied to image process-
ing [30], computer vision [31] and other fields. The method
based on convolutional neural network [8], [9], [31] has been
applied to protein secondary structure prediction, and has
achieved remarkable results. Compared with the traditional
neural network, it has the characteristics of weight sharing
and local perception, which can reduce the network param-
eters and speed up the calculation. The structure diagram of
the convolutional neural network model is shown in Figure 4.
The convolution layer performs feature extraction on the

input protein data through the convolution kernel. The pro-
cess of convolution is to perform an operation on the input
protein matrix according to the size of the convolution kernel
to generate a feature map with the same number of convolu-
tion kernels. The feature map is obtained by multiplying the
input matrix and the weight and adding the offset, so that:

F ik = f

(∑
h

Pi−1h ∗W
i
k + b

)
(2)

In the formula, f is the activation function ReLU, Pi−1h
represents the feature map obtained by the convolution kernel
of the input data and the previous layer, W i

k is a convolution
kernel of the i-th layer, k represents the number of convolu-
tion kernels, i represents the number of convolution layers,
b represents the offset parameter.

The pooling layer does not perform any learning and is
often referred to as a nonlinear down-sampling form. The
result of the pooling layer processing is to reduce the feature
dimension and parameters to reduce the amount of calcu-
lation, increase the calculation speed, and also effectively
reduce the overfitting. In addition, it has the characteristics
of unchanged translation, which increases the robustness.
In order to adjust the weights for training, the paper uses a
back propagation algorithm using gradient descent algorithm.

The fully connected layer and the softmax layer are used
as the output layer of the convolutional neural network. Each
neuron of the fully connected layer must be connected to the
neuron of the previous layer to output three types of protein
secondary structures. The Softmax function layer uses the
activation function to solve the classification problem of three
types of protein structures. Its functions are defined as:

P (tr/x) =
P (x/tr )P (tr )
D∑
j=1

P
(
x/tj

)
P
(
tj
) = eor

D∑
j=1

eoj
(3)

where, P(x/tr) is the conditional probability of a given class
sample, P(tr) is the prior probability of the protein structure
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FIGURE 3. Generating an adversarial network generator model structure(The generator extracts features through a series of convolution operations.)

FIGURE 4. Convolutional neural network model(Input is a combination of GAN features and PSSM.)

class. The Softmax function is regarded as a multi-class
extension of the logistic Sigmoid function [28].

C. RESULT EVALUATION
Generally, accuracy (Q3) and segment overlap measure
(SOV) [32] are widely used to evaluate the performance of
protein secondary structure prediction.

According to DSSP [21] regulations, we convert G, H,
I into H, E, B into E, and other structures into C. Then Q3 rep-
resents the ratio of the number of correctly predicted amino
acids in the three states to the entire amino acid sequence. The
following formula is the definition of Q3:

Q3 =
SC + SE + SH

S
× 100% (4)

where SC represents the number of accurately predicted pro-
tein structures of class C,SE represents the number of accu-
rately predicted protein structures of class E,SH represents the
number of accurately predicted protein structures of class H,
S represents the total number of amino acids. The accuracy
of each secondary structure can be calculated as:

Qi =
Si
S
, i ∈ {C,H ,E} (5)

where Qi idenotes the total number of the amino acid residues
which are observed in the state i.

Sov is a measure based on the ratio of overlapping frag-
ments. It is assumed that all observed structural fragments
are marked as Sab, and all predicted fragments are marked

as Spr, and Sa is a fragment with the same state of Sab
and Spr. The length of any observed residue is defined as
length(Sab), for any pair of fragments in Sa, the actual length
is minov (Sab, Spr), and the total length of at least one residue
is maxov(Sab, Spr). Based on the above definition, the Sov
calculation formula is as follows:

Sov=
100
nSov

∑
Sa

[
min ov

(
Sab, Spr

)
+σ

(
Sab, Spr

)
max ov

(
Sab, Spr

) length (Sab)

]
(6)

Among them, the factor σ (Sab, Spr) is added, which allows
the changes at the boundary of the observed fragment in the
protein structure, which is defined as:

σ
(
Sab, Spr

)
=min


(
max ov

(
Sab, Spr

)
−min

(
Sab, Spr

))
min ov

(
Sab, Spr

)
int [len (Sab)] /2
int
[
len

(
Spr
)]
/2

(7)

NSov is the sum of the number of residues observed in all
overlapping fragments in Sa plus the Sab fragment that does
not have the same predicted state.

IV. EXPERIMENTAL RESULTS
The experimental environment parameters of this paper are
as follows: processor Intel(R) Xeon(R) Glod 5118 CPU
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TABLE 2. Influence of the number of iterations on the accuracy using the length ofwindow 13.

TABLE 3. Influence of the number of iterations on the accuracy using the length ofwindow 19.

2.30GHz, graphics accelerator card RTX 2080Ti, operating
system Linux, using Keras 2.3 version to build the model.

In order to evaluate the accuracy of themodel in this article,
six public test sets were used: CASP9, CASP10, CASP11,
CASP12, CB513 and PDB25. In order to verify the effective-
ness of generating adversarial networks, two different exper-
iments were conducted to predict the secondary structure of
three types of proteins. The first experiment is to use the
convolutional neural network model for protein secondary
structure prediction. The second experiment is to use the gen-
erated confrontation network to perform feature extraction on
the protein data and then use the convolutional neural network
to predict the protein secondary structure. In this paper, the
length of sliding windows are 13 and 19, respectively, and
the size and dimensions of the convolution kernel of the
convolution layer are 11∗11∗270, 11∗11∗160 for the window
length of 13 and 19∗19∗290, 16∗16∗170 for the window
length of 19.

In order to verify the influence of the number of iterations
on the feature extraction generated by the confrontation net-
work, the unit of iteration times is ten thousand times. In this
paper, the protein data under the 13 and 19 windows are ver-
ified, and the experimental results are shown in Table 2 and
Table 3.

It can be seen from Table 2 and Table 3 that the accuracy
rate is higher when the length of sliding window is 19,
because more protein feature information can be contained
using the window, length of 19 and with the increase of the
number of iterations between the generator and the discrim-
inator in the generation confrontation network, the accuracy
rate shows a downward trend, and a better result is obtained
when the number of iterations is 100,000. In theGAN training
process, with the increase in the number of iterations, the
discriminator can’t distinguish the quality of the generated
data, making the generated data and the original data very

different. Therefore, the greater the number of iterations,
the lower the Q3 accuracy. In the generative confrontation
network, in order to verify the effect of the number of layers,
size and number of convolutions in the G network on the
generated features, we adjust the hyperparameters. We test on
the CASP10 data set, and the experimental results are shown
in Table 4 Table 5 and Table 6. We use convolution kernel
sizes of 3, 5, and 7, respectively, the number of convolution
kernels are 128, 256, 512, and the number of convolution
layers are 1, 2, and 3. For example, when the number of
convolutional layers is 2, filter size is 3, the network structure
is 3∗3, 3∗3.

In convolutional neural networks, in order to get the best
network structure, we adjust the number of convolutional
layers to get the best Q3 accuracy. Such as, when the number
of convolutional layers is 2, the network structure is 19∗19,
19∗19, 16∗16, 16∗16. As can be seen in Table 2, when the
number of network layers is 1, the Q3 accuracy is the highest.

We use convolutional neural network to predict protein
structure, and the results are shown in Table 8.

By comparing Table 2, Table 3 and Table 8, it can be found
that the features extracted from the generated adversarial net-
work are fused with the PSSMmatrix to predict the secondary
structure of three types of proteins, and the Q3 accuracy
is greatly improved compared with the convolution neural
network alone. It can be seen from the experiments in this
paper that the feature extraction of the generated confronta-
tion network is very effective, as shown in Table 9, which is
improved by 3.88%, 4.6%, 7.97%, 5.85%,5.78% and 4.25%
on the CASP9, CASP10, CASP11, CASP12, CB513, and
PDB25 data sets, respectively. It proves the superiority of the
feature extraction ability of generating adversarial networks.

The model in this paper is compared PSIPRED [33],
RaptorX-SS8 [34] and DeepCNF [17], PSRM [14],
MUFOLD-SS [15] models. As shown in Table 10, the
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TABLE 4. The effect of the size and number of convolution kernels on the accuracy of Q3.

TABLE 5. The effect of the size and number of convolution kernels on the accuracy of Q3.

TABLE 6. The effect of the size and number of convolution kernels on the accuracy of Q3.

TABLE 7. The influence of the number of convolutional layers on the accuracy of Q3.

TABLE 8. Convolutional neural network prediction accuracy.

accuracy of predicting the secondary structure of three types
of proteins was used as an index to evaluate the model
in this paper. PSIPRED uses a two-layer feedforward neu-

ral network, RaptorX-SS8 uses a conditional neural field,
and DeepCNF is a combination of a deep neural network
and a conditional neural field. The results of PSIPRED,
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TABLE 9. Q3 and SOV accuracy in the datasets.

TABLE 10. Q3 accuracy of the tested methods on 4 datasets.

FIGURE 5. Q3 Accuracy of our model and other 5 methods.

RaptorX-SS8, and DeepCNF on the test set are all taken from
the literature [17].

V. CONCLUSION
As shown in Figure 5, compared with PSIPRED,
RaptorX-SS8, DeepCNF, PSRM andMUFOLD-SSmethods,
our model has achieved better results on the CASP10 and
CASP11 datasets. Experimental results show that our model
is an effective method for predicting secondary structure.

Protein secondary structure prediction is a work of great
significance in the field of bioinformatics, and is necessary to
fully understand the function and structure of proteins. In this
paper, the generative adversarial network and convolutional
neural network model are combined to predict protein sec-
ondary structure. The generative adversarial network extracts
the protein sequence features, and then uses the PSSMmatrix
as the input of the convolutional neural network to predict
the protein secondary structure. Compared with the predic-
tion results of only convolutional neural network, the feature

extraction ability of the generated adversarial network is
relatively strong, which can achieve very significant effects
and has good scalability.
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