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ABSTRACT Machine learning is used for extraction of valuable information from data thus helping in
exploration of hidden patterns, leading to learning models that can be used for prediction. In the domain
of autonomous vehicles machine learning techniques have been applied in several areas, vehicle platooning
being one of them. Vehicle platooning is a vital feature of automated highways which provides the key
benefits of fuel economy, road safety and environmental protection coupled with safe road transportation.
However, high computational cost associated with the numerical simulation of vehicle aerodynamics makes
the Computational Fluid Dynamics (CFD) study of vehicle platoon prohibitively expensive and complex.
Machine learning, with its high predictive power, has emerged as a promising compliment to CFD studies of
external aerodynamics. This paper presents estimation error based performance comparison of five different
supervised learning algorithms: Support Vector Regression, Polynomial Regression, Linear Regression and
two different models of Neural Networks for prediction of aerodynamic drag coefficient corresponding to
each vehicle in a two, three and four vehicle platoon configurations based on the drag coefficients provided
by experimental study at different inter-vehicle distances. Predicted drag coefficients are then juxtaposed
with CFD data from numerical simulations to evaluate closeness to experimental drag coefficients. Results
reveal that polynomial regression model best fits the aerodynamics with 0.0223 estimation error. To the best
of our knowledge no machine learning based methods have been applied before for modeling aerodynamic
drag on vehicle platoon.

INDEX TERMS Aerodynamics, computational fluid dynamics, machine learning, vehicle platooning.

I. INTRODUCTION
Extracting valuable information from raw data can be used
for modeling physical relationship between system param-
eters. Need of exploring useful information from data can
help in modeling very intricate relations between physical
parameters. Machine learning techniques play vital role in
accurately extracting information from data. Such techniques
are replacing the traditional physical modeling methods by
learning from the data and letting the algorithms itself learn
the model.

Transportation plays a vital role in daily life. Human safety
and fuel economy have always been the goals of develop-
ment in the said field. Self-driving vehicles will constitute
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the future transport systems providing the benefits of human
comfort, fewer accidents and fuel and time economy. Sub-
stantial research has been going on in autonomous driving
area in a multitude of dimensions including vision [1], con-
trol [2], tracking [3] and navigation [4].

The advent of automated highways, as an alternative
to conventional highways, is a future vision of intelligent
transportation that offers road safety [5] and smooth traffic
flow [6] at high speeds [7], [8]. One of the most prominent
features of the automated highways is autonomous vehicle
platooning [9], [10] that makes an appreciable four-facet
contribution [11], [12] in this modern transportation tech-
nology:fuel economy, environmental protection [13], road
safety and smooth traffic flow. In fact, studies have been
conducted to elicit maximum advantage from vehicle pla-
tooning in terms of these benefits through an optimum switch
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control strategy [14] as well as distributed model predictive
control [15]. The phenomenon of slip-stream effect allows the
leader-follower configurations of the vehicles in minimizing
the aerodynamic drag on each vehicle in the road train thereby
resulting in reduced fuel consumption [16], [17] against
subsequently decreased aerodynamic drag. As a matter of
fact, 20% of all energy losses on modern vehicles are due
to aerodynamic drag, flow separation being the primary
reason [18]. The recent advances in internet of things and up-
gradation in autonomous vehicles has provided tremendous
opportunity in establishing autonomous vehicle platooning
as a viable means of road transportation [19], [20]. Fuel
economy is one of the aspects of road transport which is
directly related to the aerodynamic drag faced by the vehi-
cle [21]. Experimental methods for drag measurement deploy
wind tunnel using scaled down models of cars to characterize
aerodynamic coefficients [22]. On-road experiments were
employed by Bruneau et al. [23] to derive a formula to
predict drag coefficient using power law approach based
on wake analysis of vehicle in platoon configuration. More
recently, research trends have shifted from experimental
to computational approach for estimating drag on vehicle
platoons. Kaluva et al. [24] used numerical simulations to
estimate drag on tractor trailer vehicles in platoons while
Tadakuma et al. [25] studied autonomous electric vehicles,
both studies highlight the computational cost of for larger
more complex aerodynamic studies of vehicle platoons.

Owing to wind tunnel constraints in experimental work
and computational expense in numerical simulations, pre-
dictive power of machine learning algorithms can be used
to learn from experimental data leading to an aerodynamic
model which predicts drag coefficients given inter-vehicular
distance and vehicle tag number in the vehicle platoon. This
paper assesses the performance of five machine learning
models to predict drag coefficients in comparison with those
numerically computed through Computational Fluid Dynam-
ics (CFD). As discussed later in detail, the results reveal that
the machine learning models perform better than CFD in
terms of both time and computational expense. This study,
thus, achieves a two-fold contribution. It, first, provides a way
forward for coupling machine learning with vehicle aerody-
namics as a viable conjunction to advance the development of
vehicle platooning in the inter-disciplinary paradigm of auto-
mated highways. Secondly, in view of the associated benefits
of relative cost and time saving pertaining to the data-driven
approach of machine learning, this study serves to open up
avenues for exploringmachine learning as a promising partial
alternative to wind tunnel testing as well as CFD simulation
for the aerodynamic performance study of vehicle platoons.

This paper is organized into a total of five sections. Follow-
ing the introduction in SECTION I, we discuss the literature
review pertaining to the CFD study of the aerodynamics
of vehicle platoon in SECTION II. we also highlight the
background and the related works in the domain of artificial
intelligence for employing machine learning algorithms to
the drag coefficient data obtained from the CFD study of

vehicle platoon aerodynamics, for data prediction. Accord-
ingly, SECTION III elucidates the methodology of this study:
outline of the machine learning regression evaluation param-
eters, machine learning training framework, data processing
for training, explication of the CFD study for obtaining drag
coefficient data, training and testing procedures along with
loss functions of the machine learning algorithms, and,, a dis-
cussion of the mathematical formulations of these machine
learning algorithms. In the SECTION IV, we evaluate the
machine learning predictions compared to the CFD data and
experimental data while assessing the performance of the
machine learning algorithms in terms of prediction estimation
error. In addition, we also discuss the results of the CFD study
of the vehicle platoon aerodynamics. Finally, in SECTION
V, we summarize our findings from this study and present
future recommendations.

II. RELATED WORK
A. AERODYNAMIC STUDY OF VEHICLE PLATOON
Aerodynamic study of the vehicle platoon through CFD [26]
is usually employed to study the drag characteristics of each
vehicle in the platoon since experimental testing abounds
considerable risk and cost. In particular, the experimental
study of drag on platoons using wind tunnel testing is not
feasible for platoons greater than 4 cars given the space
restriction within a wind tunnel as opposed to greater length
platoons for scaled-down vehicle size, let alone the original
size of the vehicles. On the other hand, although there has
been appreciable development in high performance comput-
ing but the CFD numerical solution are exorbitantly expen-
sive for a multitude of practical engineering applications
especially capturing flow physics in large computational
domains at highly turbulent flows. The driving cause for
the high computational cost of CFD is the requirement
of a fine grid for a reliable simulation of the fluid flow
phenomenon through a grid-independent solution. Hence,
this fine grid requirement reduces the computational time
step thereby translating into uneconomical usage of compu-
tational resources [27]. The associated cost of doing high
fidelity CFD study of vehicle platoons that captures the
very fine aerodynamics over minute details of vehicles, like
flow around side-mirrors, front grill, tires and other complex
geometric features, is prohibitively expensive. To quantify the
budget requirement for such a study, we estimated the cost of
replicating the experimental work of Calif. Pathway [28] on
commercially available CFD resources likeAnsys Fluent [29]
via cloud computing services offered at Amazon Web Ser-
vices [30] to be approximately 2 million USD. This estimate
is bound to increase exponentially with the increase in the
platoon size coupled with a fine grid of around 200 million
elements to adequately capture the flow physics for each
vehicle in the platoon.

This experimentally and computationally demanding out-
look of the investigation of vehicle aerodynamics prevents an
extensive study of the drag characteristics of a large vehicle
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platoon covering its diverse parameters, including vehicle
permutations, speeds and inter-vehicle distances. Hence, it is
not economically feasible, and therefore research conducive,
to conduct further experimental and computational studies
on platoon aerodynamics to collect more data for data-driven
predictions.

In the previous decade, plenty of research has been done
to explore the potential of employing Artificial Intelligence
in supplementing CFD [31]–[33]. One application of Arti-
ficial Intelligence in augmenting the Computational Fluid
Dynamics is the use of a data-driven approach of aerody-
namic performance evaluation where machine learning algo-
rithms are used for the prediction of the drag coefficients
for a wide range of real-world geometries and/or scenarios.
He, et al. [34] conducted an extensive inquiry into the mod-
eling of the drag forces that are vital to the dynamics of dense
fluid-particle systems. The results of the study establish the
reliability of the supervised machine learning approach espe-
cially artificial neural network (ANN)for the estimation of
the drag force. Given the high computational cost of the CFD
coupled with wind tunnel testing for estimating the drag coef-
ficient of the car side silhouette design, Gunipar et al. [35]
also resorted to the utilization of machine learning regression
and neural-network methods for obtaining a mathematical
model which is trained on the available drag coefficient
dataset obtained from CFD simulation. This trained mathe-
matical model, in turn, reliably predicts the coefficient of drag
of a given silhouette. Similarly, Dube and Hiravennavar [36]
employed data driven drag prediction for studying the aero-
dynamic performance of the underhood and underbody drag
enablers by using linear regression, neural network, and ran-
dom forest approaches to generatemodels for a fairly accurate
prediction of the associated aerodynamic drag coefficients.

Based on these studies an alternative approach to
experimental or computational studies is to employMachine-
Learning (ML) algorithms to use its high predictive power
for estimating the aerodynamic drag characteristics of each
vehicle in the platoon in comparison with the CFD approach
that computes the numerical solution (aerodynamic drag
coefficients) by solving complex Navier Strokes equations.
The drag coefficients of each vehicle platoon obtained from
the experimental wind-tunnel tests at various inter-vehicle
distances at a speed of 23 m/s serves as the input database
with known drag coefficient formachine learningmodels. For
most aerodynamic objects the drag coefficient remains nearly
constant across a broad range of speeds, we therefore focus
on 23 m/s speed which is comparable to urban speed limits
across the world. Given the greater engine power required
to overcome air drag than tire and mechanical resistance
at a speed of approximately 23 m/s [37], it is imperative
to minimize the energy loss in aerodynamic resistance and,
therefore, reduce fuel consumption. In this regard, it was
observed that at spacings lesser than 0.25 times the car
length, corresponding decrease in the aerodynamic drag coef-
ficient is diminutive [28], [38]. Thus, in this study the min-
imum inter-vehicle distance was chosen to be 0.25 times

the car length. In order to address the risk of collision at
such small inter-vehicle distances, Murthy and Masrur [39]
present an experimentally validated approach to optimize the
braking system of autonomous vehicle platoon considering
the vehicle loading condition for executing a collision free
braking maneuver. Moreover, the close/narrow inter-vehicle
distance, used in vehicle platoon studies [28], [38] and in this
study, have been substantiated by the recent advancements in
autonomous vehicle ecological cooperative control [40], [41]
coupled with IoT [42], [43] to ensure passenger safety. Mod-
els deployed for drag coefficient prediction include Artificial
Neural Networks, Regression models and Support Vector
Regression. Once the training of these models is completed,
they are applied to unseen vehicle platoon data for predicting
drag coefficient. This estimated data and the one obtained
from CFD simulations [44] is then compared with corre-
sponding drag coefficient data acquired from experimenta-
tion. The analogy of this general approach of reproducing
the complex computational model in terms of high predic-
tive capability, has been used to achieve remarkable cur-
tailment in high computational demands relative to original
model [45], [46].

Keeping this in perspective, this study aims at investigat-
ing the feasibility of complementing Computational Fluid
Dynamics (CFD) solutions with Machine Learning in the
study of aerodynamics of vehicle platoons. In particular,
the aerodynamic drag coefficient of each vehicle in a two,
three and four vehicle-platoon for eleven different inter-
vehicle distances, ranging from 1L to 2L, will be computed
through the combination of the robust yet costly numerical
approach of CFD and then will be predicted by the high pre-
dictive capabilities coupled with cost-effectiveness offered
by machine learning algorithms via training on experimental
data from California PATH project [28].

B. MACHINE LEARNING
The study and construction of computer algorithms that can
learn from the input data is the domain of machine learning.
Machine learning is a branch of artificial intelligence that
enables computers to create knowledge and draw inferences
from data, it can learn hidden patterns inside data and rep-
resent it in the form of a model. Machine learning algo-
rithms are being used in various applications in science and
technology these days, since they are capable of detecting
meaningful patterns in the data provided and apply them to
new data [47]. This approach is an alternative to conventional
approach for devising algorithmic solution [48]. While con-
ventional design flow begins from data acquisition followed
by mathematical modeling from fundamental physics princi-
ples, machine learning approach replaces domain knowledge
with data acquisition, thereby using that data for training by
using a learning algorithm to produce a trained machine. Two
approaches to machine learning are supervised learning and
unsupervised learning.

In supervised learning, the training dataset has pairs of
inputs and ground truth labels and the algorithm learns a
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TABLE 1. Prevalent evaluation metrics for regression.

mapping from input to the output [48]. Applications of super-
vised learning include regression and classification. In unsu-
pervised learning inputs have no labels. Idea of unsupervised
learning is to discover the inherent properties of mechanism
generating data. In this study, the problem statement of aero-
dynamic drag coefficient prediction falls under the category
of supervised machine learning through regression. Studies
pertaining to regression problems have highlighted the differ-
ence in performance of various machine learning algorithms
especially epidemic regression models and artificial neural
networks [49], [50]. These studies employed a selection cri-
terion based on the performance of the machine algorithms
in terms of estimation error and computation time. However,
an extensive literature review reveals that there are no sub-
stantial research endeavors that aim at the application of these
fivemachine learning algorithms to aerodynamics of vehicles
and, especially, the vehicle platoons. Therefore, it can be
reasoned that for a small data set, as in this study, the regres-
sion models may perform better than neural network-based
approaches. Hence, we present a comparison of neural net-
work and regression models for the prediction of drag force
on vehicles in a platoon configuration. Accordingly, the pro-
cedure for conducting machine learning training and testing
was carried out using common machine learning modeling
and training best practices. Five supervised machine learning
algorithms have been employed in this study to provide an
efficient and effective alternative to both wind tunnel tests
as well as CFD studies for predicting the aerodynamic per-
formance of vehicle platoons thereby helping to advance
the development of vehicle platoon through the supplemen-
tation of the domain of vehicle aerodynamics by machine
learning in the interdisciplinary context of automated
highways.

III. METHODOLOGY
Proposed methodology is to compare five regression mod-
els:Support Vector Regression (SVR), Linear Regression
(LR), Polynomial Regression (PR) and two neural network
models namely ANN-I and ANN-II to predict the drag
coefficient considering the experimental data as the true
values.

A. EVALUATION PARAMETER
Popular metrics used in regression problems are shown
in Table 1:

Here, m is total number of examples, ŷ is prediction
and y is true label. It is important to note that MSE is
used as the evaluation metric because it punishes the larger
values.

B. TRAINING PROCESS
Fig. 1 shows the training procedure. Red boxes indicate
experimentally calculated drag coefficients [28] and CFD
calculated drag coefficients. Fig. 2 shows the vehicle tags
and configuration within the platoon of 2; 3 and 4. This
is the same configuration as was employed in the pathway
experiment [28] and in the simulations. Brief overview of the
training procedure is presented belowwhile details follow the
current section:

• Taking the experimental data as the true labels, data set
has been prepared with vehicle tag and inter-vehicular
distance being two features, since these two parameters
along with speed (which is constant in this case) influ-
ence drag coefficient.

• Same feature parameters have been used to calculate
drag using numerical simulations (CFD).

• Data set has been used to train five models namely: Lin-
ear Regression, Polynomial Regression, Support Vector
Regression and two models of Neural Networks with
MSE loss and Huber Loss.

• After the training is complete, test data is used for pre-
diction of drag coefficients.

• Predicted values are compared with experimental values
and error has been calculated as shown inTable 1.

• Model showingminimum estimation error is taken as the
finalized model.

C. DATASET
The dataset comprises two columns of features namely: Inter-
vehicular distance and Vehicle tag. The vehicle tags num-
bers have been chosen as separate features because their
position in platoon influences the drag faced by the vehicle.
Front-most vehicle (SUV-1) will experience the greatest drag
(and hence the greatest drag coefficient) which will subse-
quently be lessened for later vehicles, hence, making vehicle
tag a salient feature. Furthermore, as the vehicles move in
a platoon, they maintain a specific spacing, so this inter-
vehicular distance can greatly affect the drag. Thus, it is
logical to consider these two attributes and make a dataset
of which Inter-vehicular distance and Vehicle tag are two
columns. Vehicle tags corresponding to two, three and four
vehicle platoons are SUV1, SUV2; SUV1, SUV2, SUV3;
and SUV1,SUV2, SUV3 SUV4, as shown in Fig. 2. The
data-points give values of drag at following inter-vehicular
distances:0.06m, 0.1m, 0.13m, 0.15m, 0.19m, 0.25m, 0.3m,
0.33m,0.4m, 0.5m, 0.63m, 0.75m, 1m.

Fig. 3 shows dataset structure. It is important to note here
that the experimental data is extracted from the results of
pathway [28] experiment. There are 28, 42 and 56 data-points
for platoon comprising 2, 3 and 4 vehicles.

D. COMPUTATIONAL ESTIMATION OF DRAG
The computational domain employed for the CFD study
of 4-vehicle platoon is formulated on the basis of the
Ahmed Body CFD results [51]. The layout of the configu-
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FIGURE 1. Process flow chart of the machine learning implementation.

FIGURE 2. Vehicle tags corresponding to two, three and four vehicles in a
platoon.

ration of 4-vehicle platoon for CFD simulation is illustrated
in Fig. 2. The meshing of the computational domain for
each of the inter-vehicle spacing ranging from 0.25L to 1L
is carried out on consistent parameters. The values of these
mesh parameters are dictated by the best practices in the com-
putational study of external aerodynamics [52] such that the
resulting mesh density ensures a numerically realizable yet
computationally cost-effective CFD solution. In this regard,
the specifications of the vehicle under consideration is based
on the vehicles employed in Calif. Pathway [28] experi-
ment: 1991 General Motors Lumina APV having a length
of 4616 mm, width of 1890 mm, height of 1688 mm, and a
ground clearance of 184mm.On the other hand, Fig. 4 depicts
the detail of mesh elements employed in the discretization of
the computational domain. In particular, the computational
domain of 4-vehicle platoon is discretized using, on average,

FIGURE 3. Description of Dataset.

25million volumemesh elements with an appreciable orthog-
onal quality and skewness. Table 2 summarizes the average
mesh statistics for the CFD study of 4-SUV platoon at inter-
vehicle distances of 0.25L, 0.5L, 0.75L and 1L. The remain-
ing aspects of the computational setup including governing
equations, solver parameter and convergence are based on the
work by Farid et al. [44].

E. TRAINING AND TESTING DATA
As evident from section III-C, there are a total of 126 data
points: 10% of the data is separated as test data while the rest
is used for training.
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TABLE 2. Average Mesh Statistics of 4-vehicle platoon with inter-vehicle
distances of 0.25L, 0.5L, 0.75L and 1L.

FIGURE 4. Mesh detail of 4-vehicle platoon for CFD study.

TABLE 3. Pre-processing methods for regression.

Pre-processing is a necessary operation which needs to be
performed on data before training. Pre-processing ensures
that the features are on a similar scale, enabling gradient
descent to reach global minimum quickly. Table 3 shows two
pre-processing methods.

Here Xi is the ith entry of column, X is the mean of column,
σ is standard deviation of column, Xmax is maximum value in
column and Xmin is minimum value in the column.

Standardization brings the feature distribution mean at
0 and Normalization pushes the feature columns within [0, 1]
range. Table 4 shows the type of pre-processing operation
applied prior to training for each of the models.

F. LOSS FUNCTIONS
Loss function/Objective function characterizes how well
a model performs. Depending on the objective, it can be

TABLE 4. Pre-processing method used for the models.

TABLE 5. Loss functions used for regression.

minimized or maximized. Table 5 shows primary loss func-
tions used for regression task.

1) MEAN SQUARED ERROR (MSE)
MSE is the most widely used loss function used for regres-
sion. It is the averaged sum of squared distances between
true label value and predicted value. Key attributes of MSE
include being easier to solve and continuous derivative at all
points. It is also known as L2 loss.

2) MEAN ABSOLUTE ERROR (MAE)
MAE also called as L1 loss is average sum of absolute
differences between our target values and predicted values.
MAE derivative is continuous everywhere except at 0.

Mathematically it is evident that L1 loss is robust against
outliers in data as compared to L2 loss. This is because L2loss
squares the error, which in case of outliers becomes a large
number.

Apart from this, L1 loss has the same gradient value
which also means it will have large gradient for small inputs.
Contrary to this, MSE gives small gradient for small input
values and greater for large values. There is a possibility
that gradient descent might take large step and skip global
minimum. These problems can be mitigated to large extent
by using a loss function with the qualities of both MSE and
MAE; Huber loss is one such function.

3) HUBER LOSS
Huber loss is an amalgam of MSE and MAE and so is less
sensitive to outliers and also differentiable at 0. For some
small value δ it behaves like L2 loss if the error is smaller than
δ and becomes L1 if the error is larger than δ. It is also evident
form equation given in Table 5, Huber loss approaches MAE
if δ is small and becomes nearly same as MSE if δ is large.
Comparison of Huber loss with different values of δ and with
other loss functions is shown in Fig. 5. δ is also a hyper-
parameter and is learnt the same way as other weights of the
model.
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FIGURE 5. Comparison of Loss functions.

G. MACHINE LEARNING ALGORITHMS
In this research, five supervised learning algorithms have
been applied. Deep learning framework employed is Keras.
Same training data is used for training all the models. After
training is complete, models are compared to find the best
one which predicts the drag coefficient close to the original
experimental data. Models used and their architecture has
been briefly described below:

1) LINEAR REGRESSION
Mathematically linear regression is defined as in Equa-
tion (1):

hθ (x) = Ŷ = θ0 +
N∑
i=1

θixi (1)

Here, θ0 is the bias, θi is the ith weight and N is the total
number of features in the dataset.

As is evident from linear model equation, it tries to fit a
straight line through data while minimizing the MSE loss
(defined inTable 1) and the weights learnt by model behave
similarly as the slope and y-intercept in equation of a straight
line.

Linear regression model works well if dependent and
independent variables correlate with each other to some
extent [53]. In this dataset the drag faced by the front vehicle
is greater than those following front vehicle, leaving the
possibility of existence of a linear relationship with drag.

2) POLYNOMIAL REGRESSION
Polynomial regression is defined by Equation (2) whereM is
the order of polynomial, x j denotes feature x to the power of
j and w denotes coefficients vector w0, w1, w2 . . . wM .

y (x,w) = w0 + w1x1 + . . .+ wMxM =
M∑
j=0

wjx j (2)

It comes under the domain of linear models because although
the function y (x,w) is nonlinear with respect to x but is
linear in terms of unknown variable w hence fitting the data
in R(M+1) space. Values of the coefficients are determined
by fitting this polynomial to the training data by using MSE
loss function as indicated in Table 5. Polynomial regression

FIGURE 6. New features set for polynomial regression.

model in this research uses a second degree polynomial and
Fig. 6 shows new features made in the dataset. One of the
problems faced by polynomial regression is that as the degree
of polynomial grows the magnitude of the learnt coefficients
typically gets larger and so the model becomes tuned to the
random noise on target values [54]. Less magnitude of the
weights also means that noise in the input will not affect
the model performance much whereas if the magnitude of
learnt coefficients is large, any noisy data will render the
model prone to wrong predictions. This problem can be
avoided using regularization. Polynomials are flexible and
useful where a model must be developed empirically and can
fit a wide range of curvatures giving a good approximation of
the relationship.

3) SUPPORT VECTOR REGRESSION
Support Vector algorithm is a non-linear generalization of
generalized portrait algorithm, firmly grounded in statistical
learning theory framework. Such algorithms are designed
to fit well on the unseen data. In support vector based
algorithms, data is transformed into higher dimensional
space(kernel trick) and is then classified or regressed based
on the type of algorithm.

Support vector regression tries to fit the best line within a
predefined or threshold error value instead of minimizing the
error between the predicted and the actual value [55]. Also,
Support Vector Regression is independent of the dimension-
ality of input data [56].

Input data is transformed into high dimension by applying
kernel, followed by formulation of correlation matrix using
which weights are learnt. These weights are used to estimate
the test data. Regression takes place within high dimen-
sional vector space. The linear regression within the (trans-
formed) vector space is somewhat different than least squares
method [46].

Fig. 7 demonstrates the support vector machine parame-
ters. Only the points outside the boundary region contribute
to the cost insofar, as the deviations are penalized in a linear
fashion. The error function for support vector regression can
be stated as Equation (3) while Equation (4), Equation (5),
Equation (6) and Equation (7) demonstrate the constraints of
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FIGURE 7. Parameters of SVR, (taken from [56]), ε = margin, ξ is the
distance from nearest points.

optimization problem.

E = C
∑N

n=1
(εn + ε̂n)+

1
2

∥∥∥w2
∥∥∥ (3)

εn ≥ 0 (4)

ε̂n ≥ 0 (5)

y(Xn)+ ε + εn ≥ tn (6)

y(Xn)− ε − εn ≤ tn (7)

In these equations, tn is the target and εn, ε̂n are the slack
variables. εn > 0 refers to point where tn > y(Xn) + ε and
ε̂n > 0 refers to a point where tn < y(Xn)− ε.

4) NEURAL NETWORKS
Artificial Neural Networks are an imitation of the human
brain. The main idea is to create a network of simple pro-
cessing units called neurons, which perform computations.
A transfer function is applied on the weighted sum of the
inputs to each neuron and the result is forwarded as the output
value of that particular neuron [57]. They are also called
as universal function approximators because given enough
hidden layers and neurons, they are able to approximate
any function. Neural networks are used in supervised and
unsupervised machine learning algorithms.

Fig. 8 shows generic model of a neural network. The
index of the neuron is i, it receives inputs from N other
neurons. The strength of the connection from neuron j to
neuron i is denoted bywij. The function θH (b) is the activation
function. The threshold value for neuron i is denoted by µi.

FIGURE 8. Neural Network Model.

TABLE 6. Preprocessing method used for models.

FIGURE 9. Activation Functions Comparisons.

The index t = 0, 1, 2, 3 labels the discrete time sequence of
computation steps.

Neural Network applies subsequent transformations on
the input data as it passes through hidden layers, including
linear (affine transformation) (Equation (8)) followed by a
nonlinear transformation (activation function denoted by σ
(Equation (9)) for each hidden layer.

Z = W · X + B (8)

Activationoutput = σ (Z ) (9)

For problems related to regression, no activation function is
applied in the output layer to output raw score value. Table 6
shows mathematical formulation of different activation func-
tions. tan h function is also used as activation but is more
prevalent in recurrent neural networks. Sigmoid activation
function squashes the output between [0, 1] range. Relu
activation makes input values less than z to zero.

Nonlinear transformations (activation functions) have their
own inherent properties of derivatives as shown in Fig. 9,
suitable for the problem type [58], [59]. This allows neural
networks to fit on any type of data.

Fig. 9 shows a comparison of activation function plots
along with their derivatives. Derivatives are important in
the back- propagation. ReLU activation function solves the
problem of vanishing gradient faced by sigmoid and tan h
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TABLE 7. Comparison of ANN-I and ANN-II.

FIGURE 10. ANN-I model.

FIGURE 11. ANN-II model.

activation functions. It is clear that at smaller or larger values
of input, sigmoid and tan h derivatives tend to be closer to
zero (Derivativeσ (x) ≈ 0|σ = (sigmoid, tan h) ∧ (x �
0 ∨ x � 0)), this declines learning of the correspond-
ing weights during back-propagation. As compared to this
ReLUderivative is a large constant value for x > 0 where
x is input. This constant value of ReLUs results in faster
learning [60]. An added benefit is that ReLU (x) = 0|x ≤
0 which results in sparsity and sparse representations are
beneficial as compared to dense representations because for-
ward and backward propagation consist of a series of matrix
operations.

Two different models of neural networks namely ANN-I
and ANN-II are employed in this research. Table 7 shows
a comparison of both models whereas architectures of both
models are shown in Fig. 10 and Fig. 11.

FIGURE 12. CFD visualization of the aerodynamic characteristics
of 4-vehicle platoon using pressure contours and air-velocity streamlines.

IV. RESULTS AND DISCUSSION
The CFD results obtained after the simulation of compu-
tational domain in OpenFOAM
 are illustrated in Fig. 12
through colored contour plots and air flow streamlines that
help visualize the pressure distribution and air velocity,
respectively. The flow physics in the regions of interest near
the front and back bumper of the vehicles has been specifi-
cally highlighted to study the general aerodynamic behavior
of 4-vehicle platoon. The head-on interaction of the first
vehicle with the incoming air results in the development of
stagnation region at the front bumper of the vehicle, that
encapsulates a high pressure thereby resulting in maximum
aerodynamic drag coefficient of the lead vehicle in the pla-
toon. This is followed by the development of boundary layer
owing to the air flow over vehicle body and road surfaces,
which is characterized by the velocity gradient. The interac-
tion of the air with the vehicle bodies at the gaps between the
first, second and third vehicles in the platoon results in the
formation of vortices as indicated by the recirculation of the
air flow. These vortices are of almost similar density, so this
translates into approximately similar drag coefficients for
the second and third vehicles. Although, the vortex formation
at the front bumper of last vehicle is marked by a relatively
less concentration but the development of trailing vortices
in the wake of the last vehicle reciprocates into a high drag
coefficient for the last vehicle in the platoon.

Table 8 shows the estimation error results. It seems that
polynomial regression is the best model for this data, giv-
ing 0.0223 estimation error. Apart from estimation error,
the generalization capability of the model is a major concern
when dealing with sparse data sets. The machine learning
predictions based on small dataset, like the one employed in
this work, are expected to suffer from over-fitting: increase in
error computed for validation data occurring in concurrence
to the decrease in error computed for training data. To address
the issue of over-fitting, various techniques have been sug-
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TABLE 8. Estimation error comparison.

FIGURE 13. Polynomial Regression training and validation loss.

FIGURE 14. Comparison of models.

gested in the literature to improve ANN generalization capa-
bilities. In this regard, cross-validation [61] is a widely used
and accepted approach for scarce dataset. To address this
concern, we employed cross-validation approach which com-
pares training and validation errors at each iteration of the
model to provide an optimal criteria. The mean square error
from training and validation data are shown to converge
towards their respective minimum values in Fig. 13, indicat-
ing that the model does not suffer from over-fitting and is
general in nature.

Fig. 14 shows predicted drag coefficient from all five mod-
els compared with CFD data and experimentally calculated

drag coefficients. As is evident from the figure, linear
model performs the worst as compared with other prediction
algorithms. The least accurate model among prediction algo-
rithms (linear regression) is able to provide better approxima-
tions to experimentally calculated drag coefficient values as
compared to numerical simulations. While in terms of pro-
cessing time, none of the models take as much time for train-
ing as CFD takes to arrive at a solution. ANN-I and ANN-II
both show approximately same results whereas SVR per-
forms better than ANN but worse than linear model. Overall,
the polynomial regression has the relatively lowest estimation
error, as illustrated in Fig. 14, while the performance of linear
regression is worst in terms of prediction estimation error.
This poor performance of linear regression is a direct conse-
quence of under-fitting which results in a high RMSE value,
and, therefore, high prediction estimation error. Accordingly,
to reduce the prediction estimation error, the complexity of
the model has to be increased by increasing the degree of the
polynomial fitting on the data. As a result, the second order
polynomial regression model of relatively higher complexity,
used in this study, produced the best performance in data pre-
diction by virtue of the subsequent increase in the magnitude
of the learnt coefficients as well as the increased capability
of the higher-degree i.e. second-order polynomial to become
tuned to the random noise on the target values. Moreover,
since the size of the data set is smaller for the proper training
of a deep neural network as well as support vector regression,
so this also explains the better performance of polynomial
regression compared to other machine learning algorithms.

V. CONCLUSION
In this study, we have compared different machine learning
approaches for the estimation of the aerodynamic drag coef-
ficients for 2 to 4 vehicle platoon configurations. Inter-vehicle
distances and vehicle tags were used as features for training
and testing of the data. The data was regressed using support
vector regression, polynomial regression, linear regression
and neural networks for (comparison and) prediction of coef-
ficients. Different models for neural networks consisting of
two and three layers were used. Mean square error was used
as loss function for the two layered network whereas, Huber
model was used for the three layered network to compute the
loss. Gradient decent algorithm was used as back propaga-
tion criterion for all machine learning models. Polynomial
regression computed the lowest estimation error (0.0223)
whereas the neural network models, ANN-I and ANN-II,
computed 0.0491 and 0.0498 estimation errors, respectively.
The neural network estimation errors were higher than the
estimation error of polynomial regression due to limited train-
ing data. Upon further availability of data, a neural network
may perform better. Therefore, it is proposed that in com-
parison to a numerical simulation, a neural network model
can approximate drag coefficients for multi vehicular platoon
configurations effectively with comparable performance and
less coefficient estimation time.
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