
Received September 16, 2020, accepted October 13, 2020, date of publication November 2, 2020,
date of current version November 12, 2020.

Digital Object Identifier 10.1109/ACCESS.2020.3035158

Dynamic Traffic Control of Staging Traffic on the
Interconnect of the HPC Cluster System
ARATA ENDO 1, (Member, IEEE), HIROKI OHTSUJI2, ERIKA HAYASHI2, EIJI YOSHIDA2,
CHUNGHAN LEE3, SUSUMU DATE 1, (Member, IEEE),
AND SHINJI SHIMOJO 1, (Member, IEEE)
1Cybermedia Center, Osaka University, Osaka 567-0047, Japan
2Fujitsu Laboratories Ltd., Kawasaki 211-8588, Japan
3Toyota Motor Corporation, Tokyo 100-0004, Japan

Corresponding author: Arata Endo (endou.arata@ais.cmc.osaka-u.ac.jp)

This work was supported by the Japan Society for the Promotion of Science (JSPS) Grants-in-Aid for Scientific Research (KAKENHI)
Number JP16H02802, JP17KT0083, and JP17K00168.

ABSTRACT High-performance computing (HPC) cluster systems sometimes adopt a two-layered file
system composed of local and global file systems to achieve both capacity and performance in storage. In
such a cluster system, the input data of an application needs to be staged from the global storage into the local
storage, and the output data needs to be staged from the local storage out to the global storage. This staging
operation must be efficiently and quickly performed to gain higher job throughput because an inefficient
staging operation prevents waiting job requests from being executed. In particular, in the case of the cluster
system with the oversubscribed interconnect shared by the storage and the computing nodes, the inter-node
communication and this staging operation traffic collides, which may degrade the job throughput. In this
research, we focus on the traffic collision of the inter-node communication and the staging traffic to improve
job throughput, targeting the cluster system with the oversubscribed interconnect where these two types of
traffic flow. In other words, whether the dynamic control of the traffic flow derived from the staging operation
leads to the improvement in the job throughput or not is investigated. For the investigation, we present a traffic
collision avoidance method to dynamically configure a set of data paths for each type of the traffic only while
the staging operation is conducted. The evaluation in this article shows that the proposed method avoids a
traffic collision and accelerates the staging operation by 22.0% on our cluster system. Also, this evaluation
indicates the overhead of the application incurred by the proposed method is negligible. Furthermore, 8.7%
of the job execution time is reduced by the proposed method.

INDEX TERMS Dynamic traffic control, high-performance computing, interconnect, software-defined
networking.

I. INTRODUCTION
Recent scientific research increasingly necessitates high-
performance computing (HPC). In fact, the advancement of
measurement technology increases the size of scientific data
obtained with scientific measurement devices. For example,
radio telescopes coordinated in the Event Horizon Telescope
as a virtual telescope generate 2PB of observation data every
night [1]. As a result, scientists strongly require high perfor-
mance to perform their own research with high efficiency. In
addition, today’s increasing expectations and concerns with

The associate editor coordinating the review of this manuscript and

approving it for publication was Nitin Nitin .

artificial intelligence (AI) and machine learning (ML) have
furthered the computing needs of scientists and researchers.
In this way, HPC systems are now taking on greater impor-
tance in the advancement of scientific research.

Today’s HPC systems are mostly built as cluster systems
composed of multiple computing nodes, each of which is
connected on a low latency and high-performance inter-
connect [2]. Furthermore, HPC cluster systems such as the
K-computer [3] adopt a two-layered file system composed
of a local file system on each computing node and a global
file system shared by multiple computing nodes to achieve
both capacity and performance in storage. To obtain the
higher performance of applications on such cluster systems,

198518 This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/ VOLUME 8, 2020

https://orcid.org/0000-0003-4539-312X
https://orcid.org/0000-0001-7159-289X
https://orcid.org/0000-0003-2348-7408
https://orcid.org/0000-0001-5686-1131


A. Endo et al.: Dynamic Traffic Control of Staging Traffic on the Interconnect of the HPC Cluster System

the communication performance on the interconnect is as
important as the computing performance on the computing
nodes. In particular, in the case of the cluster system with
an oversubscribed interconnect shared by the storage and the
computing nodes, the communication performance on the
interconnect becomes a more important factor that affects the
total performance of the applications. For example, the inter-
node communication traffic and the traffic derived from the
staging operation, or the data movement between the local
and global file systems collide, which may result in the
degradation of job throughput.

In this research, we focus on the traffic collision of the
inter-node communication traffic and the staging traffic to
improve job throughput, targeting the cluster system with
an oversubscribed interconnect where these two types of
traffic flows. In other words, whether the dynamic control of
the traffic flow derived from the staging operation leads to
improvement in job throughput or not is investigated. For the
investigation, we present a traffic collision avoidance method
to dynamically configure a set of data paths for each type of
the traffic only while the staging operation is conducted.

The structure of this article is as follows: In Section II,
we show theHPC cluster systems targeted in this research and
explain the possibility of a traffic collision between two types
of traffic. Also, we present our approach to solve the traffic
collision problem in this article. In Section III, we verify
that a traffic collision causes the degradation of job through-
put through the preliminary investigation. In Section IV,
we present the traffic collision avoidance method. Section V
shows the evaluation experiment for our investigation on an
actual HPC cluster system. In Section VI, we review related
works. Finally, we conclude this article in Section VII.

II. PROBLEM CLARIFICATION AND APPROACH
In this section, we first clarify the HPC cluster system tar-
geted in this research. Second, the traffic collision between
two types of the traffic on the HPC cluster system is
described. Finally, we briefly describe our approach to solve
the traffic collision problem in this research.

A. HPC CLUSTER SYSTEMS TO BE TARGETED
In this research, the HPC cluster systems with the oversub-
scribed interconnect shared by computing nodes and storages
are targeted. An example of such cluster systems is shown
in Fig. 1. In the target cluster systems, we assume that a two-
layered file system is adopted. The two-layered file system is
composed of a parallel file system as a global file system
accessible from every computing node and a local file system
accessible on a computing node. It is also assumed that a par-
allel file system such as Lustre [4] and Gluster [5] is adopted
for the global file system and a file system is constructed
on a high performance storage such as SSD on a computing
node as a local file system. As to the interconnect, we assume
an oversubscribed fat-tree where the bisection bandwidth is
smaller than half of injection bandwidth.

FIGURE 1. The HPC cluster system targeted in this research.

A fat-tree [6] is a major topology adopted for the inter-
connect of HPC cluster systems. In the fat-tree interconnect,
the top-level switch is called the core switch. On the other
hand, the lowermost switch is called the edge switch, and
the remains are called the aggregation switch. In general,
the fat-tree interconnect is classified into two types in terms
of available bandwidth: full-bisection and oversubscription.
In a full-bisection fat-tree, the bisection bandwidth is half
of the injection bandwidth in the cluster system, meaning
that half of computing nodes can communicate with the
other half without network contention. On the other hand,
in the oversubscribed fat-tree, the bisection bandwidth is
smaller than half of the injection bandwidth. In today’s HPC
cluster systems, the latter fat-tree interconnect is used more
frequently than the former although the former can provide
higher communication performance on the interconnect. For
example, AI Bridging Cloud Infrastructure (ABCI) at the
National Institute of Advanced Industrial Science and Tech-
nology (AIST) adopts an oversubscribed fat-tree [7]. A reason
for this can be explained from the fact that the latter costs
more than the former, especially in the case of the larger HPC
cluster systems.

B. NETWORK TRAFFIC COLLISION
Under target cluster systems like the one shown in Fig. 1,
to achieve higher I/O performance from the application run-
ning on computing nodes, the input data of an application is
staged from the global file system into the local file system
before computation (stage-in) and the output data is staged
from the local file system into the global file system after
the computation (stage-out). The staging traffic, which is
the traffic derived from this staging operation, flows on the
interconnect of the HPC cluster systems. On the other hand,
there are usually many parallel jobs running on HPC cluster
systems. Each job is composed of multiple parallel processes
that exchange data and messages with each other. Therefore,
the inter-node communication traffic exists on the intercon-
nect of the HPC cluster system. In other words, the inter-
connect is shared by these two types of the traffic. In the
case of a full-bisection fat-tree interconnect, these two types
of traffic flow without blocking each other. However, in the
case of the oversubscribed fat-tree topology adopted in the
modern HPC cluster systems, these two types of traffic may
block each other due to the bottleneck of the bandwidth on

VOLUME 8, 2020 198519



A. Endo et al.: Dynamic Traffic Control of Staging Traffic on the Interconnect of the HPC Cluster System

the interconnect. As a result, the staging operation may take
a longer time and the inter-node communication also may
take a longer time, which causes the degradation of the job
throughput. In this research, we focus on this traffic collision
to improve the job throughput.

C. APPROACH
If performance degradation by traffic collision happens,
avoiding the traffic collision may lead to the improvement of
the job throughput. As described in Section II-B, this staging
operation is executed before and after job execution. This
means that the longer stage-in results in the delay of job
execution and also that the longer stage-out prevents other
job to be executed. Therefore, this staging operation must
be quickly finished. Likewise, the inter-node communication
among computing nodes also must be quickly and efficiently
performed for higher job throughput. The longer inter-node
communication causes the increase in total job execution
time.

For this reason, it becomes important to control these two
types of traffic on the interconnect so that these two types of
traffic do not interfere with each other. For example, it might
be effective to configure a dedicated path on the interconnect
to the staging traffic onlywhen the staging operation happens.
Based on the above idea, we take the strategy of applying a
dynamic traffic control method for the two types of traffic on
the interconnect in response to computation context [8].

III. PRELIMINARY INVESTIGATION
A. OVERVIEW OF THE PRELIMINARY INVESTIGATION
As a preliminary investigation, how the two types of traf-
fic flow on the interconnect and how the job throughput is
affected was observed. For this observation, we built a HPC
cluster system with the oversubscribed fat-tree interconnect
and then performed a job submission experiment on the clus-
ter system to reproduce the situation that the two types of the
traffic co-exist on the interconnect where the representative
static routing algorithm often used in the fat-tree intercon-
nect is applied. To investigate how the two types of traffic
flow, we look into the bandwidth consumed by each type of
the traffic in the core switches. To investigate how the job
throughput is affected due to the traffic collision, we measure
the total execution time of jobs when the traffic collision is
configured to occur and the execution time when a traffic
collision is configured not to occur.

B. EXPERIMENTAL ENVIRONMENT
Fig. 2 shows the HPC cluster system which we built for
this preliminary investigation. The HPC cluster system
is composed of six computing nodes, one storage node,
four switches, one management node and four monitoring
nodes (mnt1 tomnt4). The specification of the nodes used for
this preliminary investigation is shown in Table 1. The infor-
mation on switches used for this investigation is summarized
in Table 2. The storage node stores data to bemoved in staging

FIGURE 2. The experimental environment.

TABLE 1. The spec of each node.

TABLE 2. The spec of each OpenFlow switch.

operations as the global file system of this HPC cluster
system. Themanagement nodemanages the computing nodes
with Slurm [9], which is a job scheduler widely used in the
modern HPC cluster systems.

Two core switches (ofs1, ofs2) and two edge switches (ofs3,
ofs4) forms a two-level oversubscribed fat-tree (2:3 block-
ing on ofs3 and ofs4) interconnect, on which the comput-
ing nodes and the storage node are connected. Equal-cost
multipath (ECMP) [10], which is a static routing algorithm
widely used for fat-tree interconnects, was adopted. It selects
one of the candidate shortest paths searched by a routing
protocol such as Open Shortest Path First (OSPF) for a pair of
the nodes. In this investigation, ECMP-based traffic control
was implemented with the Ryu [11] framework, which is a
software framework to develop an OpenFlow controller. In
addition, all of switches, the computing nodes, the storage
node and the monitoring nodes were connected on a manage-
ment network.

OpenFlow [12] is the de facto standard implementation
of Software-Defined Networking (SDN), which is a network
architecture to realize network programmability and a cen-
tralized control of switches. It allows us to apply different
routing algorithms and methods on the interconnect in a soft-
ware programming manner. In this preliminary investigation,
an OpenFlow controller is deployed on the management node
to control the OpenFlow switches via the management net-
work. Table 3 summarizes software used for this preliminary
investigation.

198520 VOLUME 8, 2020



A. Endo et al.: Dynamic Traffic Control of Staging Traffic on the Interconnect of the HPC Cluster System

TABLE 3. Software used for this investigation.

TABLE 4. The port mirroring configuration.

Also, the four monitoring nodes were configured to mon-
itor and capture all outgoing packets passing through on the
core switches ofs1 and ofs2. For this configuration, the port
mirroring function on the core switches was used. Table 4
shows the port mirroring configuration.

C. JOB SUBMISSION EXPERIMENT
In this investigation, we submitted a set of six jobs, each
of which executes MPI_Alltoall collective communication
repeatedly, fifty times. Each job performs the stage-in and
the stage-out operation before and after computation. For
the staging operation, we have set up a simple function that
uses SCP to move 2GB data generated by the dd command
between tmpfs, which is a memory-based file system, on the
storage node and tmpfs on a computing node that executes a
job. Each job is set to request three computing nodes so that
two jobs are executed simultaneously on six computing nodes
and then the traffic collision between the two types of the traf-
fic is observed. The reason why we adopt MPI_Alltoall col-
lective communication with which data is exchanged among
all processes composing a job is explained from our intention
that we want to investigate how the traffic collision causes
degradation in the job throughput. Furthermore, to investigate
how the traffic collision causes degradation in job throughput,
we adjusted the job scheduler configuration so that the pro-
cesses of a job are not allocated to a set of computing nodes
linked to the same edge switch.

To observe how the two types of the traffic consume the
bandwidth on the links from the core switches to the edge
switches, tcpdump was deployed on the monitoring nodes
to capture all packets on the core switches during the job
submission experiment. After the job submission experiment,
we calculated the bandwidth consumed by each type of the
traffic using the captured packets. In the calculation, the pack-
ets were classified into the staging traffic and the inter-node
communication traffic based on the source and destination
MAC address recorded on their packet headers. After that, for
each classified group of packets, we calculated the bandwidth
used at time t on a port of the core switches by summing the
packet lengths of the packets captured between time t and
time t + 1.

FIGURE 3. The bandwidth consumed by each traffic on port2 on ofs1.

To observe how the job execution time is changed with
and without traffic collision on the interconnect, we have
measured the job execution time with and without traffic
collision in the job submission experiments. For the measure-
ment of the job execution time without the traffic collision,
we configured the staging traffic to pass through not the
interconnect, but the management network.

D. EXPERIMENTAL RESULT
Fig. 3 shows how each type of the traffic consumed the band-
width on port2 on ofs1 when a stage-in operation occurred
under the situation where two jobs are executed as shown
in Fig. 4. In Fig. 3, the Y axis indicates the bandwidth
consumed by each type of the traffic, and the X axis indicates
time. From this graph, it is supposed that the following
situation happened. From 02:24:45 to 02:25:31, only the
inter-node communication traffic flowed on port2 on ofs1.
The stage-in operation started at 02:25:31 and finished at
02:26:07. During this stage-in operation, the staging traffic
and the inter-node communication traffic co-existed on the
link between ofs1 and ofs4 and the link between ofs3 and
ofs1. Also, it was observed that the bandwidth used by the
inter-node communication traffic was lowered to 424 Mbps
from 894 Mbps. In addition, the bandwidth used by the
staging traffic was 484 Mbps. After that, only inter-node
communication traffic flowed on port2 on ofs1 again. Note
that a similar traffic pattern was observed on the other
ports (port1 on ofs1, port1 on ofs2 and port2 on ofs2) and
during different time periods.

Fig. 5 shows the result of the job submission experi-
ment. The leftmost bar shows the average execution time
of 300 jobs (6 jobs×50 job submissions). The result indicates
that the average execution time under the situation where the
traffic collision occurs was larger than the average execution
time without the traffic collision. In detail, the job execution
time was increased by 7.7%. The job execution time is com-
posed of application execution time, stage-in operation time,
and stage-out operation time. We also plot each component
time in Fig. 5. From this result, it is obvious that the traffic
collision causes the degradation in the job throughput.

VOLUME 8, 2020 198521



A. Endo et al.: Dynamic Traffic Control of Staging Traffic on the Interconnect of the HPC Cluster System

FIGURE 4. The process allocation during the stage-in operation.

FIGURE 5. Average execution time with and without traffic collision.

IV. DYNAMIC TRAFFIC COLLISION AVOIDANCE
A. DESIGN
As shown in Section III, traffic collision causes degradation
in job throughput. Based on the results of the preliminary
investigation, we propose a method to avoid traffic collision
to gain performance acceleration by applying dynamic con-
trol on the interconnect using SDN. The basic idea behind our
proposedmethod is illustrated in Fig. 6. The proposedmethod
consists of two functions: dedicated path search and progres-
sive path switching. With the dedicated path search function,
the proposed method searches a set of dedicated paths on
the interconnect for each type of the inter-node communica-
tion traffic and the staging traffic. With the progressive path
switching function, the proposed method configures the set
of dedicated paths for each type of traffic while the staging
traffic happens.

If the proposed method configures a set of dedicated paths
for each type of traffic all the time, the utilization of the entire
bandwidth available on the interconnect becomes low when
any staging operation does not occur. Therefore, the proposed
method takes a strategy to dynamically configure a new set
of dedicated paths on the interconnect for each type of traffic
and then diverts the two types of traffic to the corresponding
set of dedicated paths in a progressive way without blocking
any traffic. Note that we adopted ECMP as a simple load-
balancing routing method for the situation when no staging
operation happens.

FIGURE 6. The basic idea behind the proposed method.

1) THE DEDICATED PATH SEARCH FUNCTION
The dedicated path search function searches a set of dedicated
paths according to our proposed link separation method.
The link separation method is composed of the following
three steps: core switch allocation, subnetwork formation and
path search. In the first core switch allocation step, the core
switches composing the fat-tree interconnect are divided into
the staging traffic group and the inter-node communication
traffic group based on the amount of the inter-node commu-
nication traffic passing through each core switch. Although
there is room for consideration about a better division algo-
rithm of core switches, we have adopted a simple way to
equally divide core switches into the two groups in this stage
of the research. In the second subnetwork formation step,
the dedicated path search function forms a subnetwork for
each type of traffic so that the corresponding subnetwork does
not contain any core switches allocated to the other type of
traffic. In the third path search step, the dedicated path search
function searches the shortest path for any pair of the nodes in
the subnetwork. In the proposed method, the Dijkstra is used
as an algorithm for searching the shortest path.

The dedicated path search function works as follows for
the example in Fig. 6. Core switch A and Core switch B are
allocated to two groups. Core switch A is allocated to the
staging traffic group and Core switch B is allocated to the
inter-node communication traffic group because more traffic
flows on Core switch B than Core switch A. Next, the subnet-
work for the staging traffic is formed so that it contains the
Core switch A, which belongs to the staging traffic group.
The subnetwork for the inter-node communication traffic is
formed so that it contains the Core switch B, which belongs
to the inter-node communication group. On the subnetwork
for the staging traffic, the dedicated path search function
searches the shortest path for staging traffic A, which newly
appeared between the computing node and the storage node.
On the other hand, on the subnetwork for the inter-node
communication traffic, the function searches the shortest path
for each traffic A, traffic B and traffic C. The proposedmethod

198522 VOLUME 8, 2020



A. Endo et al.: Dynamic Traffic Control of Staging Traffic on the Interconnect of the HPC Cluster System

forces each type of traffic to flow on its shortest paths and
consequently each type of traffic passes through a different
core switch.

2) THE PROGRESSIVE PATH SWITCHING FUNCTION
The progressive path switching function is designed to inter-
act with the job scheduler. We assume that ECMP works
under the situation where no staging operation happens (OFF
status), while on the other hand, the link separation method
works under a situation where any staging operation hap-
pens (ON status). The progressive path switching function
starts when this function is notified by the job scheduler
that the staging operation happens. In detail, this function
switches the path determined by ECMP to the dedicated path
determined by the link separation method for each type of
traffic, immediately after being notified of the beginning of
the staging operation, or after this function recognizes the
situation is under ON status. Then it switches the dedicated
path by the link separation method back to the path by ECMP
right after being notified of the end of the staging operation,
or after this function recognizes the situation is under OFF
status.

B. OpenFlow
An OpenFlow network is composed of an OpenFlow con-
troller and OpenFlow switches. In the OpenFlow net-
work, the OpenFlow controller controls how the OpenFlow
switches forward packets centrally. The OpenFlow switches
only forward packets, while the control and the forwarding
are performed on each switch independently in a conventional
network. Additionally, the OpenFlow controller is developed
by a network administrator with a development framework
such as Ryu and Trema [13]. Therefore, OpenFlow provides
programmable traffic control and the OpenFlow controller
can control the traffic according to an off-network event,
which occurs outside the network, such as the beginning of
a staging operation.

The following describes how the OpenFlow controller con-
trols the OpenFlow switches. Each OpenFlow switch has a
flow table, which is a set of flow entries. A flow entry is a
rule to decide how to forward packets and it is comprised of an
action, a match field and a priority. The action defines how to
handle a packet and it generally decides which port to forward
the packet from. The match field defines what kind of packets
the action of the flow entry holding the match field is applied
to and the action is applied to the packets whose packet header
has the same information (MAC address, IP address, port
number, and so on) described on the match field. The priority
is for when multiple flow entries are matched to a packet, and
the flow entry with the higher priority is applied to the packet.
When an OpenFlow switch receives a packet, it finds the flow
entrymatched to the packet from its flow table and it forwards
the packet according to the action of the found flow entry.
The OpenFlow controller controls the OpenFlow switches by
installing the flow entries to each OpenFlow switch.

FIGURE 7. The architecture of the proposed method.

C. IMPLEMENTATION
Fig. 7 shows the implementation detail of the proposed
method. The proposed method was implemented using the
OpenFlow framework described in Section IV-B. The imple-
mentation is composed of a notificator module and dynamic
path switching controller comprised of notification proces-
sor, job information database, path searcher and flow entry
manager modules. The dynamic path switching controller
receives event notifications regarding job and staging opera-
tion sent from the notificator module and then configures a set
of dedicated paths for each type of traffic on the interconnect
based on the event notifications. The notificator module,
notification processor module and flow entry manager mod-
ule offer the progress path switching function, and the path
searcher module provides the dedicated path search function.
The job information database module is used by the notifica-
tion processor module and the path searcher module.

1) NOTIFICATOR MODULE
The notificator module notifies events regarding jobs and
staging operations to the notification processor. For example,
when a job starts, the notificator module delivers a job event
notification that contains the job ID and the flag information
identifying the job being started as well as the information on
the computing nodes on which jobs are allocated. Also, when
a job ends, it delivers a job event notification that contains
the job ID and the flag information identifying the job being
finished. On the other hand, when a staging operation starts or
ends, the notificator module sends a staging event notification
that contains the job ID and the flag information identifying
the staging operation being started or finished.

2) JOB INFORMATION DATABASE MODULE
The job information database module holds job information.
It is composed of the ID of a running job, the ID of the
computing nodes on which the job is allocated and the flag
information on whether the staging operation of the job
happens. This job information is used by the notification

VOLUME 8, 2020 198523



A. Endo et al.: Dynamic Traffic Control of Staging Traffic on the Interconnect of the HPC Cluster System

FIGURE 8. The flowchart of the path switching on the notification
processor module.

processor module when the notification processor module
performs the switching of the routing algorithm. Further-
more, the path searcher module searches a set of dedicated
paths for each type of traffic based on the job information.

3) NOTIFICATION PROCESSOR MODULE
The notification processor module controls the path switch-
ing by instructing the path searcher module and the flow entry
manager module to configure and delete the dedicated paths
on the interconnect. When the notification processor module
receives an event notification, it parses the event notification
and then updates the job information held by the job infor-
mation database module using the parsed information. After
the job information is updated, the notification processor
module instructs the path searcher module to configure a
set of dedicated paths or instructs the flow entry manager
module to delete a set of dedicated paths. For the instruction,
the notification processor module sends a request regarding
the switching of the routing algorithm or the control of the
path search under the link separation method according to
the flowchart shown in Fig. 8. The control of the path search
under the link separation is mentioned in Section IV-C4 in
detail.

Four kinds of requests sent by the notification processor
module to the path searcher module or the flow entrymanager
module exist: ON status request, OFF status request, path
search request and path deletion request. ON status request

and OFF status request are used for the switching of the
routing algorithm, and path search request and path deletion
request are used for control of the path search under the link
separation method. The notification processor module sends
each type of the request as follows.

ON status request
When a staging operation happens under OFF sta-
tus, the notification processor module sends an ON
status request to the path searcher module.

OFF status request
When all the staging operations are finished,
the notification processor module sends an OFF
status request to the flow entry manager module.

Path search request
When a new job starts under ON status, the notifica-
tion processor module sends the path search request
to the path searcher module for configuration of
paths for the traffic caused by the started job.

Path deletion request
When a job is finished under ON status, the noti-
fication processor module sends the path deletion
request to the flow entry manager module.

4) PATH SEARCHER MODULE
The path searcher module performs the path search for
the paths determined by ECMP under OFF status and
for the set of dedicated paths by the link separation
method under ON status. The searched path information,
which is expressed as the array of node and switch IDs
such as [computing_node1, edge_switch1, core_switch1,
edge_switch2, computing_node2], is sent to the flow entry
manager module so that the flow entry manager module
configures the switches composing the interconnect.

In the case of ECMP (OFF status), the path search is
performed only when the dynamic path switching controller
is initialized and launched. The information on the searched
path is sent to the flow entry manager module. On the other
hand, the path search is performed with the link separation
method whenever the path searcher module receives any ON
status request or path search request from the notification
processor module. After that, the information on the searched
path is sent to the flow entry manager module.

Implementation of the link separationmethod is as follows.
This method is composed of three steps as mentioned in
Section IV-A: the core switch allocation step, the subnetwork
formation step and the path search step. The path searcher
module performs these three steps in order when receiving
an ON status request. On the other hand, it performs only
the path search step when receiving a path search request.
The ON status request case is for searching a set of dedicated
paths for the traffic caused by running jobs and the path search
request case is for searching a set of dedicated paths for the
traffic caused by a started job.

The core switch allocation step was implemented so that
the path switching does not affect any existent inter-node

198524 VOLUME 8, 2020



A. Endo et al.: Dynamic Traffic Control of Staging Traffic on the Interconnect of the HPC Cluster System

TABLE 5. The definition of the variables.

communication traffic. Specifically, division of the core
switches are conducted based on the number of flow entries
to force more paths of the inter-node communication traffic
to pass through the same core switches before and after the
dedicated paths are configured on the interconnect. The path
searcher module allocates half of the core switches with more
flow entries than those of the other core switches to the inter-
node communication traffic group because the more paths
pass through a core switch, the more flow entries are installed
to the core switch. On the other hand, it allocates the other
core switches to the staging traffic group.

Next, the path search step was implemented based on
the path search algorithm shown in Algorithm 1. Table 5
shows the variables used in this algorithm. Two variables,
jobs, alloc_com_nodes hold the job information recorded
by the notification processor module, and two variables,
st_subnetwork , in_subnetwork are the subnetworks calcu-
lated in the subnetwork formation step of the dedicated path
search function. This algorithm is composed of the staging
traffic path search (line 2–10), the inter-node communication
traffic path search (line 11–20) and the path configuration
request step (line 21–24). In the staging traffic path search
step, the path searcher module searches a path for any pair
of the storage nodes and the computing nodes allocated to
a job on st_subnetwork . In the inter-node communication
traffic path search step, the path searcher module searches
a path for any pair of the computing nodes allocated to a
job on in_subnetwork . In the path configuration request step,
the path searcher module sends a path configuration request,
which contains the searched path information, for each path
searched in two above steps to the flow entry manager mod-
ule. In this way, the number of dedicated paths for each type
of traffic is reduced so that the flow entry manager module
takes less time for the configuration of the dedicated paths.

Again, for the example in Fig. 9, the path search based on
this path searcher module works as follows. First, the path
between the computing nodes c1 and c3 allocated to the job J1
is configured according to ECMPunderOFF status.When the
job J2 starts a stage-in operation after J2 starts on the comput-
ing nodes c5 and c6, the notification processor module sends
an ON status request to the path searcher module. On receiv-
ing the ON status request, the path searcher module searches
a set of dedicated paths for the traffic caused by J1 and J2,
and then it sends the path configuration requests to config-
ure the dedicated path for the inter-node communication traf-
fic caused by J1 and the requests for the staging traffic caused
by J2 on the interconnect. The path configuration request to

Algorithm 1 The Path Search of the Link Separation Method
1: for job in jobs do
2: F The staging traffic path search step
3: for src in storage_nodes do
4: for dst in alloc_com_nodes[job] do
5: path = Dijkstra(src, dst, st_subnetwork)
6: path_list.add(path)
7: path = Dijkstra(dst, src, st_subnetwork)
8: path_list.add(path)
9: end for
10: end for
11: F The inter-node communication traffic path search

step
12: for src in alloc_com_nodes[job] do
13: for dst in alloc_com_nodes[job] do
14: if src == dst then
15: continue
16: end if
17: path = Dijkstra(src, dst, in_subnetwork)
18: path_list.add(path)
19: end for
20: end for
21: F The path configuration request step
22: for path in path_list do
23: send_path(path) F To the flow entry manager

module
24: end for
25: end for

configure the former dedicated path contains the searched
path information [c1, sw3, sw1, sw4, c3] and the requests
to configure the latter dedicated path contains the searched
path information [storage, sw3, sw2, sw4, c5]. When job J3
starts its computation under this situation after J3 starts on the
computing nodes c2 and c4, the notification processormodule
sends a path search request to the path searcher module. On
receiving the path search request, the path searcher module
searches a set of dedicated paths for the traffic caused by
the started job J3, and then it sends the path configuration
request to configure the dedicated paths for the inter-node
communication traffic caused by J3 using the same core
switch sw1 used by the request for the inter-node commu-
nication traffic caused by J1. The path configuration request
to configure this dedicated path contains the searched path
information [c2, sw3, sw1, sw4, c4].

5) FLOW ENTRY MANAGER MODULE
The flow entry manager module configures paths when
receiving the path configuration request sent from the path
searcher module, and removes paths when receiving an OFF
status request or a path deletion request sent from the notifica-
tion processor module. When the flow entry manager module
receives a path configuration request, it makes flow entries
to configure the requested path and then installs them to the

VOLUME 8, 2020 198525



A. Endo et al.: Dynamic Traffic Control of Staging Traffic on the Interconnect of the HPC Cluster System

FIGURE 9. The path search example based on the path searcher module.

switches composing the interconnect. When the flow entry
manager module receives an OFF status request, it removes
all of flow entries for dedicated paths from the switches.
When the flow entry manager module receives a path deletion
request, it removes the flow entries for the dedicated paths for
the traffic caused by a finished job.

To perform the switching of ON and OFF status seam-
lessly without blocking both the two types of traffic, the flow
entry manager module manages the flow entries to con-
figure the path by each routing algorithm so that the path
by ECMP can be available to any traffic until the flow
entries for the dedicated paths for each type of traffic
are installed on each switch. Fig. 10 shows the switching
mechanism based on this idea. In this switching mecha-
nism, the flow entries for path configuration under OFF
status are always on switches, while the flow entries for
path configuration under ON status are always regener-
ated and installed with higher priority than the ones under
OFF status.

V. EVALUATION
A. EVALUATION APPROACH
To investigate whether the proposed method can improve
performance in job throughput or not, we perform the same
job submission experiment on the same HPC cluster sys-
tem used for the preliminary investigation summarized in
Section III. For the routing algorithm on the interconnect,
we used the proposed method instead of ECMP. We measure
the total execution time of a job. Also, we observe how
the bandwidth consumed by each type of traffic is changed
over time.

FIGURE 10. The switching mechanism of ON and OFF status.

FIGURE 11. The average execution time of the jobs in the job sets.

B. EVALUATION RESULT
We show three types of evaluation results: job throughput,
operation verification of the proposed method and progres-
sive path switching. In the job throughput, we investigate
whether the proposed method improves the job throughput in
the job submission experiment. In the operation verification
of the proposed method, we investigate whether our imple-
mented dynamic path switching controller works properly.
In the progressive path switching, we investigate how the
progressive path switching function of the proposed method
contributes to improvement in the job throughput.

1) JOB THROUGHPUT
Fig. 11 shows the result of the job submission experiment.
This result is the average execution time of the jobs in the fifty
job sets. In this result, we plot three component times: the job
execution time, the computation time and the staging opera-
tion time. To investigate how our proposed dynamic traffic
collision avoidance improves job throughput, we compare
these times between the proposed method and ECMP. From
this result, the job execution time of the proposed method is
shorter than ECMP and its reduction rate is 8.7%. The com-
putation time and the staging operation time of the proposed
method are also shorter than ECMP and this indicates that the
performance improvement of the inter-node communication
and the staging operation contributes to improvement of the
job throughput. The reduction rate of the computation time is
5.6% and the rate of the staging operation time is 22.0%.

198526 VOLUME 8, 2020



A. Endo et al.: Dynamic Traffic Control of Staging Traffic on the Interconnect of the HPC Cluster System

FIGURE 12. The average job execution time for each job set.

Fig. 12 shows the result for each job set submitted in the job
submission experiment. Each bar in this result is the average
job execution time of the six jobs in a job set. We observed
that the job execution time under the proposed method is
shorter than that under the ECMP method in 45 job sets. This
fact indicates that the proposed method stably improves the
job throughput.

2) OPERATION VERIFICATION OF THE PROPOSED METHOD
Fig. 13 shows the bandwidth consumed on each port of the
switches during the stage-out operation of a job in a job
set when the proposed method is adopted for the routing
algorithm on the interconnect. In Fig. 13, the Y axis indicates
the bandwidth consumed by each type of the traffic, and
the X axis indicates time. These graphs indicate that our
implemented dynamic path switching controller configures a
set of dedicated paths for each type of traffic properly while
the stage-out operation occurs as follows. Until 06:35:26,
only the inter-node communication traffic flowed on all the
ports. Under this situation, the stage-out operation started
at 06:35:26 and finished at 06:35:48. The change in the
bandwidth from before the start of this stage-out operation
to during this stage-out operation is illustrated as follows.
First, Fig. 13(a) shows that the bandwidth used by the inter-
node communication traffic was raised from 519 Mbps to
845Mbps on port1 on ofs1. Second, Fig. 13(b) shows that the
bandwidth used by the inter-node communication traffic was
raised from 784 Mbps to 849 Mbps on port2 on ofs1 during
this stage-out operation. Third, Fig. 13(c) shows that the
bandwidth used by the inter-node communication traffic on
port1 on ofs2 was lowered to 42 Mbps from 522 Mbps,
and the bandwidth used by the staging traffic on port1 on
ofs2 was raised from 0Mbps to 721Mbps. Finally, Fig. 13(d)
shows that the bandwidth used by the inter-node communi-
cation traffic on port2 on ofs2 was lowered to 30 Mbps from
260 Mbps. These observation results indicate that ofs2 was
used for the dedicated paths of the staging traffic and ofs1 was
used for the dedicated paths of the inter-node communica-
tion traffic during this stage-out operation. The reason why
the bandwidth used by the inter-node communication traffic
on port1 and port2 on ofs2 was not 0 Mbps even though
ofs2 was used for the dedicated paths of the staging traffic
is that the inter-node communication traffic flowed there for

approximately 2 seconds before the dynamic path switch-
ing controller allocated the dedicated paths for each type of
traffic. After the stage-out operation finished, only the inter-
node communication traffic flowed on all of ports again. In
this way, the proposed method avoids the traffic collision
between each type of traffic dynamically. This path switching
is observed in the staging operations of the other jobs in the
job set.

3) PROGRESSIVE PATH SWITCHING
Fig. 14 shows the average times of the progressive path
switching between ON and OFF status. The path switching
time from OFF status to ON status is from when the notifi-
cator module informs the dynamic path switching controller
that a staging operation starts until when the controller com-
pletes the flow entry installs, and the path switching time from
ON status to OFF status is from when the notificator module
informs the controller that a staging operation finishes until
when the controller completes the flow entry deletions. In this
graph, we plot the path switching time fromOFF status to ON
status in the stacked bar graph composed of the processing
times in the notification processor module, the path searcher
module and the flow entry manager module. From this graph,
there is a 2.20 seconds delay to complete the path switching
from the paths determined by ECMP to the paths determined
by the link separation method, while there is a 0.31 seconds
delay to complete the path switching from the paths by the
link separation method to the paths by ECMP. Moreover,
the overhead time to complete the path switching from OFF
status to ON status is 0.0085 seconds for the notification
processor module, 0.17 seconds for the path searcher module
and 2.01 seconds for the flow entry manager module. The
breakdown of the overhead time shows that the flow entry
installs on the flow entry manager module incurs the longest
delay in the path switching from OFF status to ON status.
On the other hand, the path switching time from ON status to
OFF status is mostly occupied by the flow entry deletions on
the flow entry manager module. The reason can be explained
from the fact that the path searcher module is not performed
in this path switching and the notification processor module
takes a few milliseconds as shown above.

However, each type of traffic can continue to flow
on the interconnect until the path switching completes
because the progressive path switching works as shown
in Fig. 15. The stage-in operation observed in these graphs
started at 06:25:46 and finished at 06:26:09. Fig. 15(a) shows
the staging traffic flows on port2 of ofs1 at 202 Mbps from
06:25:47 to 06:25:48. After that, the staging traffic flows
on port2 of ofs2 at 735 Mbps from 06:25:49 to 06:26:09 as
shown in Fig. 15(b), and the inter-node communication traffic
flows on port2 of ofs1 as shown in Fig. 15(a). In this way,
the progressive path switching function enables each type of
traffic to pass through the paths by ECMP in 2.20 seconds
on average until the path switching completes and suppresses
the effect of the delay in the path switching from OFF status
to ON status to the job throughput.

VOLUME 8, 2020 198527



A. Endo et al.: Dynamic Traffic Control of Staging Traffic on the Interconnect of the HPC Cluster System

FIGURE 13. The bandwidth consumed on each port of the switches during a stage-out operation under ON status.

FIGURE 14. The average execution time of the progressive path switching
between ON and OFF status.

VI. RELATED WORKS
An investigation of the interference between I/O traffic
and inter-node communication traffic on a full-bisection
fat-tree interconnect exists [14]. This investigation shows
the interference degrades inter-node communication perfor-
mance more than I/O performance. It has been also shown
that several strategies, where the interference is reduced by
configuring the traffic pattern of how traffic flows on the
interconnect such as I/O sever placement, can improve the

inter-node communication and the I/O performance. On the
contrary, our proposed method focuses on the traffic control
on the interconnect, which has not been considered in this
investigation.

On the interconnect constructed with InfiniBand [15], sev-
eral research studies [16], [17] have improved communica-
tion performance. In vFtree [16], each traffic identified by a
pair of source and destination nodes is allocated to a different
virtual lane to alleviate the performance degradation caused
by Head-of-Line blocking. However, this method does not
solve the problem that each type of traffic blocks each other
due to the bottleneck of the bandwidth on the interconnect.
A QoS-aware data-staging framework [17] targets the inter-
ference between inter-node communication traffic and I/O
traffic, which is caused by processes to access the data on
a global file system during computation. This framework
allocates I/O traffic to different virtual lanes from the lanes
used by inter-node communication to transfer the inter-node
communication traffic with priority over I/O traffic so that
I/O traffic does not affect the performance of the inter-node
communication. Although this framework controls multiple
types of traffic to improve the performance of the inter-
node communication, this way to sacrifice the performance
of I/O is contrary to our research issue to improve both

198528 VOLUME 8, 2020



A. Endo et al.: Dynamic Traffic Control of Staging Traffic on the Interconnect of the HPC Cluster System

FIGURE 15. The bandwidth consumed on port2 of each switch during a stage-in operation under ON status.

the inter-node communication performance and the staging
operation performance.

Traffic load-balancing methods using SDN have been pre-
sented in [18]–[20]. Hedera [18] estimates the bandwidth
required by traffic and allocates paths to the traffic based on
the estimated bandwidth so that the traffic is distributed on
the interconnect without the traffic collision. Dynamic load-
balancing (DLB) [19] and SDN-based ECMP [20] monitor
the bandwidth consumed by traffic, and allocate the path with
the most available bandwidth to new traffic when the new
traffic starts to flow on the interconnect. These traffic load-
balancing methods fairly distribute traffic on the interconnect
without looking into the characteristics of each type of traffic
for the optimal bandwidth allocation to prevent traffic col-
lision from occurring. However, based on the characteristic
that inter-node communication traffic always flows on the
interconnect while the staging traffic does not always flow
on the interconnect, our proposed method switches the traffic
control applied on the interconnect between ECMP and the
link separation method when the staging operation starts or
finishes.

The idea of using dynamic traffic control on the inter-
connect of HPC cluster systems is shared in [21]–[25].
In [21], an SDN-accelerated HPC cluster system has been
proposed as a concept to integrate SDN into HPC cluster
systems. Based on this concept, an SDN-enhanced job man-
agement system (JMS) [22], [23], which is a job sched-
uler to manage not only the computing nodes but also
the interconnect to improve the job throughput, and SDN-
enhancedMPI [24], [25], which enhancesMPI protocol using
SDN to improve the performance of inter-node communi-
cation, have been proposed. In SDN-enhanced JMS [22],
[23], the job scheduler allocates computing nodes to a job
based on the topology of the interconnect so that as many
of the computing nodes as possible are connected in one
hop, and then allocates the path with the most available
bandwidth to a pair of each computing node allocated to
the job for improving the inter-node communication per-
formance. In SDN-enhanced MPI_Bcast [24], MPI_Bcast,

which is one of the MPI functions, has been enhanced using
SDN so that the amount of the traffic caused by MPI_
Bcast is reduced. In [25], the coordination mechanism, which
applies the traffic control based on the SDN-enhancedMPI in
synchronization with the execution of the MPI functions, has
been proposed to apply the SDN-enhancedMPI to real-world
MPI applications. Although these research studies improve
the performance of the inter-node communication, they do not
assume that other types of traffic such as the staging traffic
flow on the interconnect.

VII. CONCLUSION
In this article, we proposed a traffic collision avoidance
method between staging traffic and inter-node communica-
tion traffic on the interconnect, targeting the cluster system
with an oversubscribed interconnect shared by the storage
and the computing nodes. Our proposed method dynamically
switches routing algorithms based on whether the staging
operation happens. Our proposed method allocates a set of
dedicated paths determined by our proposed link separation
method for each type of traffic while any staging operation
happens (ON status). On the other hand, it allocates a set of
paths determined by ECMP for the inter-node communication
traffic while no staging operation happens (OFF status). The
evaluation in this article indicates the proposed method is
capable of avoiding traffic collision and can then acceler-
ate the staging operation by 22.0% on our cluster system.
Also, the evaluation indicates the overhead of the application
incurred by the proposed method is negligible. Furthermore,
8.7% of the job execution time is reduced by the proposed
method.

However, several issues remain to be tackled in the future.
The first issue is to investigate how many core switches
should be allocated to the staging traffic group and the
inter-node communication traffic group in the dedicated
path search function to further improve the communication
performance of each type of traffic. This issue is difficult
to achieve for the scale of the interconnect and the bisec-
tion bandwidth of the interconnect. The second issue is the

VOLUME 8, 2020 198529



A. Endo et al.: Dynamic Traffic Control of Staging Traffic on the Interconnect of the HPC Cluster System

overhead reduction of traffic control in our proposed method
to improve scalability for the scale of the cluster system. In
our proposed method, a set of flow entries is generated per
a pair of nodes, and consequently the traffic control time to
install them on each switch is increased on a larger scale of the
cluster system. The final issue is to control I/O traffic in addi-
tion to the staging traffic and the inter-node communication
traffic. Although we proposed our traffic collision avoidance
method assuming that the staging traffic and the inter-node
communication flow on the interconnect in this stage of our
research, it is necessary to investigate how to avoid traffic
collision between three types of traffic because the computing
nodes are allowed to read and write data on a global file
system during computation in the real-world cluster system.

ACKNOWLEDGMENT
Chunghan Lee was with Fujitsu Laboratories Ltd., Kawasaki,
Kanagawa 211-8588, Japan.

REFERENCES
[1] D. Castelvecchi, ‘‘How to hunt for a black hole with a telescope the size of

earth,’’ Nature News, vol. 543, no. 7646, p. 478, 2017.
[2] H. W. Meuer, E. Strohmaier, J. Dongarra, H. Simon, and M. Meuer.

TOP500: TOP500 Supercomputer Sites. Accessed: May 22, 2020.
[Online]. Available: https://www.top500.org

[3] M. Yokokawa, F. Shoji, A. Uno, M. Kurokawa, and T. Watanabe,
‘‘The K computer: Japanese next-generation supercomputer development
project,’’ in Proc. 17th IEEE/ACM Int. Symp. Low Power Electron. Design,
Aug. 2011, pp. 371–372.

[4] P. J. Braam and P. Schwan, ‘‘Lustre: The intergalactic file system,’’ in Proc.
4th Ottawa Linux Symp., Jun. 2002, pp. 50–54.

[5] Gluster. Accessed: May 27, 2020. [Online]. Available: http://gluster.org
[6] M. Al-Fares, A. Loukissas, and A. Vahdat, ‘‘A scalable, commodity data

center network architecture,’’ in Proc. 8th ACM SIGCOMM Conf. Data
Commun., Oct. 2008, pp. 63–74.

[7] National Institute of Advanced Industrial Science and Technology. ABCI:
AI Bridging Cloud Infrastructure. Accessed: May 25, 2020. [Online].
Available: https://abci.ai.

[8] A. Endo, R. Jingai, S. Date, Y. Kido, and S. Shimojo, ‘‘Evaluation of SDN-
based conflict avoidance between data staging and inter-process commu-
nication,’’ in Proc. 15th Int. Conf. High Perform. Comput. Simulation
(HPCS), Jul. 2017, pp. 267–273.

[9] A. B. Yoo, M. A. Jette, and M. Grondona, ‘‘SLURM: Simple linux utility
for resource management,’’ in Proc. 9th Job Scheduling Strategies Parallel
Process., Jun. 2003, pp. 44–60.

[10] D. Thaler and C. E. Hopps,Multipath Issues in Unicast andMulticast Next-
Hop Selection, document RFC 2991, Nov. 2000.

[11] T. Fujita. Ryu SDN Framework. Accessed: Jan. 22, 2020. [Online]. Avail-
able: https://github.com/osrg/ryu

[12] N. McKeown, T. Anderson, H. Balakrishnan, G. Parulkar, L. Peterson,
J. Rexford, S. Shenker, and J. Turner, ‘‘OpenFlow: Enabling innovation
in campus networks,’’ ACM SIGCOMM Comput. Commun. Rev., vol. 38,
no. 2, pp. 69–74, Mar. 2008.

[13] Trema: Full-Stack OpenFlow Framework in Ruby/C. Accessed:
Apr. 2, 2020. [Online]. Available: https://trema.github.io/trema/

[14] K. A. Brown, N. Jain, S. Matsuoka, M. Schulz, and A. Bhatele, ‘‘Interfer-
ence between I/O and MPI traffic on fat-tree networks,’’ in Proc. 47th Int.
Conf. Parallel Process., Aug. 2018, pp. 1–10.

[15] T. Shanley and J. Winkles, InfiniBand Network Architecture. Boston, MA,
USA: Addison-Wesley, Oct. 2002.

[16] W. L. Guay, B. Bogdanski, S.-A. Reinemo, O. Lysne, and T. Skeie,
‘‘vFtree—A fat-tree routing algorithm using virtual lanes to alleviate
congestion,’’ in Proc. 25th IEEE Int. Parallel Distrib. Process. Symp.,
May 2011, pp. 197–208.

[17] R. Rajachandrasekar, J. Jaswani, H. Subramoni, and D. K. Panda, ‘‘Mini-
mizing network contention in InfiniBand clusters with a QoS-aware data-
staging framework,’’ in Proc. 14th IEEE Int. Conf. Cluster Comput.,
Sep. 2012, pp. 329–336.

[18] M. Al-Fares, S. Radhakrishnan, B. Raghavan, N. Huang, and A. Vahdat,
‘‘Hedera: Dynamic flow scheduling for data center networks,’’ in Proc. 7th
USENIX Conf. Netw. Syst. Design Implement., vol. 10, Apr. 2010, p. 19.

[19] Y. Li and D. Pan, ‘‘OpenFlow based load balancing for fat-tree net-
works with multipath support,’’ in Proc. 12th IEEE Int. Conf. Commun.,
Jun. 2013, pp. 1–5.

[20] R. Dewanto, R. Munadi, and R. M. Negara, ‘‘Improved load balancing on
software defined network-based equal cost multipath routing in data center
network,’’ Jurnal Infotel, vol. 10, no. 3, pp. 157–162, Aug. 2018.

[21] S. Date, H. Abe, D. Khureltulga, K. Takahashi, Y. Kido, Y. Watashiba,
P. U-Chupala, K. Ichikawa, H. Yamanaka, E. Kawai, and S. Shimojo,
‘‘SDN-accelerated HPC infrastructure for scientific research,’’ Int. J. Inf.
Technol., vol. 22, no. 1, pp. 1–30, Jun. 2016.

[22] Y. Watashiba, S. Date, H. Abe, Y. Kido, K. Ichikawa, H. Yamanaka,
E. Kawai, S. Shimojo, and H. Takemura, ‘‘Efficacy analysis of a SDN-
enhanced resource management system through NAS parallel bench-
marks,’’ Rev. Socionetwork Strategies, vol. 8, no. 2, pp. 69–84, Dec. 2014.

[23] M. Shimizu, Y. Watashiba, S. Date, and S. Shimojo, ‘‘Adaptive network
resource reallocation for hot-spot avoidance on SDN-based cluster sys-
tem,’’ in Proc. IEEE Int. Conf. Cloud Comput. Technol. Sci. (CloudCom),
Dec. 2016, pp. 608–613.

[24] H. Morimoto, K. Dashdavaa, K. Takahashi, Y. Kido, S. Date, and
S. Shimojo, ‘‘Design and implementation of SDN-enhanced MPI broad-
cast targeting a fat-tree interconnect,’’ in Proc. Int. Conf. High Perform.
Comput. Simulation (HPCS), Jul. 2017, pp. 252–258.

[25] K. Takahashi, S. Date, D. Khureltulga, Y. Kido, H. Yamanaka, E. Kawai,
and S. Shimojo, ‘‘UnisonFlow: A software-defined coordination mech-
anism for message-passing communication and computation,’’ IEEE
Access, vol. 6, pp. 23372–23382, 2018.

ARATA ENDO (Member, IEEE) received the
B.E. and M.E. degrees from Osaka University,
Osaka, Japan, in 2015 and 2017, respectively,
where he is currently pursuing the Ph.D. degree
with the Graduate School of Information Sci-
ence and Technology. Since 2020, he has been a
Specially-Appointed Researcher with the Cyber-
media Center, Osaka University. His research field
is computer science. His research interests include
high-performance computing, visualization, and

networking. He is a member of IPSJ.

HIROKI OHTSUJI received the B.E., M.E.,
and Ph.D. degrees from the University of
Tsukuba, in 2011, 2013, and 2016, respectively.
He has worked as a Research Aide with the
Argonne National Laboratory, from May 2013 to
August 2013. From 2014 to 2016, he was a
Research Fellowwith JSPS. Afterwards, he joined
Fujitsu Laboratories Ltd. His research interests
include utilizing high-speed networks andmemory
devices to improve the performance of storage

systems for high-performance computing and machine learning systems.

198530 VOLUME 8, 2020



A. Endo et al.: Dynamic Traffic Control of Staging Traffic on the Interconnect of the HPC Cluster System

ERIKA HAYASHI received the B.S. and M.S.
degrees in science from NaraWomen’s University,
in 2017 and 2019, respectively. Afterwards, she
joined Fujitsu Laboratories Ltd. She is currently
engaged in research and development of high-
performance computing file systems. Her research
interests include persistent memory systems, stor-
age systems, and machine learning.

EIJI YOSHIDA received the B.S. andM.S. degrees
from Hiroshima University, in 1998 and 2000,
respectively, and the Ph.D. degree in electrical
engineering from Tohoku University, in 2015.
He joined Fujitsu Laboratories Ltd., in 2000.
He was a Visiting Scholar with Stanford Univer-
sity, from 2007 to 2008. His research interests
include persistent memory systems, distributed
storage systems, and cloud computing.

CHUNGHAN LEE received the Ph.D. degree
from the Department of Electronic and Informa-
tion Engineering, Toyohashi University of Tech-
nology, Japan, in 2013. From 2013 to 2019,
he has worked with Fujitsu Laboratories Ltd.,
Japan. He is currently a Senior Researcher with
Toyota Motor Corporation, Japan. His research
interests include SDN/NFV/cloud and network
measurement/analysis.

SUSUMU DATE (Member, IEEE) received the
B.E., M.E., and Ph.D. degrees from Osaka Univer-
sity, in 1997, 2000, and 2002, respectively. He was
an Assistant Professor with the Graduate School
of Information Science and Technology, Osaka
University, from 2002 to 2005. He has worked as a
Visiting Scholar with the University of California
at San Diego, in 2005. From 2005 to 2008, he has
worked as a Specially-Appointed Associate Pro-
fessor on the internationalization of education with

the Graduate School of Information Science and Technology, Osaka Univer-
sity. Since 2008, he has been an Associate Professor with the Cybermedia
Center, Osaka University. His research field is computer science. His current
research interests include cloud, cluster, grid, high-performance computing,
and their applications. He is a member of IPSJ.

SHINJI SHIMOJO (Member, IEEE) received the
M.E. and Ph.D. degrees from Osaka University,
Japan, in 1983 and 1986, respectively. He was an
Assistant Professor with the Department of Infor-
mation and Computer Sciences, Faculty of Engi-
neering Science, Osaka University, in 1986, and an
Associate Professor with the Computation Center,
from 1991 to 1998. During this period, he also
worked for a year as a Visiting Researcher with
the University of California at Irvine. He has been

a Professor with the Cybermedia Center (then the Computation Center) at
Osaka University, since 1998, and from 2005 to 2008, he was the Director
of the Center. He was an Executive Researcher and the Director of the
Network Testbed Research and Development Promotion Center, National
Institute of Information and Communications Technology, from 2008 to
2011. He is currently the Director of the Cybermedia Center. His current
research interests include wide variety of multimedia applications, peer-to-
peer communication networks, ubiquitous network systems, and the IoT
systems. He is a member of IEICE and a Fellow of IPSJ. He is a Founding
Member of PRAGMA and CENTRA. He was awarded the Osaka Science
Prize in 2005. He was awarded by the Minister of Internal Affairs and
Communications in 2017.

VOLUME 8, 2020 198531


