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ABSTRACT The increasing in energy consumptions of the current wireless networks, leads towards
designing energy-efficient 5G networks. The application of non-orthogonal multiple access (NOMA)
in the heterogeneous networks (HetNets) improves the spectrum utilization with the cost of efficient
resource allocation. Hence, this article proposes optimal user-pairing and power allocation solutions towards
achieving fair energy-efficient resource allocation in downlink femtocell NOMA-HetNets. In the proposed
optimization process, the considered constraints are the user’s transmission rate, transmit power budget at the
base station (BS), and the interference. The energy consumption of both the transmitter and the receiver are
considered to simulate the real system design. The Greedy Algorithm (GA) is used to achieve a low-complex
optimal solution during the user-pairing process. Simultaneously, the max-min energy efficiency optimiza-
tion approach is employed to maximize the minimum energy efficiency of the femtocell users to achieve
the optimal power allocation solution. The mathematical formulation of the max-min energy efficiency
is a non-convex fractional programming problem and is intractable. Thus, the fractional programming
theory is adopted to transform the problem into a sequence of subtractive form, followed by the Sequential
Convex Programming (SCP) approach to determine the optimal solution. Simulation results show that the
proposed NOMAwith optimal power allocation method using SCP and GA (NOMA-SCP-GA) achieves fair
energy efficiency performance with lower complexity compared to the benchmark methods. Moreover, the
minimum energy efficiency of the femtocell user is 38.22% higher than NOMA with Difference of Convex
programming (NOMA-DC). The NOMA-SCP-GA method can assure 5G capability demands.

INDEX TERMS Greedy algorithm, heterogeneous network, non-orthogonal multiple access, power alloca-
tion, sequential convex programming.

I. INTRODUCTION
The growing demands of smart devices for high data rate
creates new challenges in the current wireless cellular sys-
tem, particularly spectrum allocation. The advent of 5G
and other improved technological advancement is expected
to address the higher data rate achievement and meeting
the demand for massive wireless connectivity [1]. One of
the key technologies to accomplish these objectives is by
exploiting heterogeneous networks (HetNets). The HetNets
are introduced to improve the network capacity growth,
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spectral efficiency improvement with low energy consump-
tion, and consequently improve the overall network perfor-
mance [2]–[4]. HetNets are composed of the macrocells and
overlaid small-cells (e.g., microcells, picocells, and femto-
cells). The macrocells and small-cells are distinct in power
transmission systems and various data processing capabil-
ities, enabling them to support different radio access tech-
nologies. The main purpose of employing small-cells into
the macrocells is to improve the coverage and increase the
frequency reuse of the network. The macrocells have the
most extensive coverage area, and uses High Powered Base
Stations (HBSs), while the small-cells have smaller coverage
areas with Low Powered Base Stations (LBSs) usage [2], [5].
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Recently, non-orthogonal multiple access (NOMA) has
emerged as a promising technology that can meet the
5G requirements in solving the spectrum scarcity prob-
lems [6]–[8]. The main operating principle of NOMA is
to allow non-orthogonal spectrum usage by multiple users
at the same time, frequency, and code. The superposition
coding (SC) of the multiple user’s signals is performed
at the transmitter with allowable inter-user interference, while
the successive interference cancellation (SIC) is performed at
the receiver to separate the multiple user’s signals accurately.
However, the detection process at the receiver is highly com-
plicated due to themultiple signals combination [9], [10]. The
most popular type of NOMA is the power domain NOMA
(PD-NOMA) in which powers are assigned to the users
based on their channel conditions whereby strong channel
gain users are assigned with lower power compared to weak
channel gain users [11], [12].

Recently, NOMA has been employed in HetNets to har-
ness the benefits of both technologies and improve on the
spectral efficiency, and energy efficiency as well as cover-
age area. However, the combination of NOMA and HetNets
faces the challenges of co-tier and cross-tier interferences
as well as efficient resource allocation [12]. Thus, the effi-
cient resource allocation and interference management are
the fundamentals aspects to be considered in the design of the
hybrid NOMA-HetNets system. In such a system, the overall
energy efficiency is an important performance index to be
considered [13]. It is also significant to consider the trans-
mitter and receiver power consumption for energy efficiency
resource allocation design [14]. The reason is that the Base
Station (BS) transmission power and user circuit power con-
sumptions are not equal even in short-range communication
systems, such as in femtocells networks and wireless sensor
networks.

The research studies in [15]–[18] are mainly focused on
solving the resource allocation problem based on overall
energy efficiency without considering the transmitting and
receiving power consumption in the optimization process.
This leads to unfairness among users because such designs
favor the stronger channel gain users over the weaker chan-
nel gain users [19]. Fairness is an essential attribute to
be considered in resource allocation to prevent resource
deprivation and misuse in wireless systems [20]. The study
on the fairness-based energy-efficient resource allocation in
PD-NOMA-HetNets have earlier addressed in [21] by investi-
gating the joint subcarrier and power allocation problem with
the tradeoff between energy efficiency, fairness, and energy
harvesting, while the authors in [22] considered the tradeoff
between energy efficiency and user fairness in a multicarrier
NOMA system. However, these works also did not consider
the transmitter and receiver power consumption.

On the contrary, this article investigates the fairness
of energy-efficient resource allocation problems in down-
link femtocell NOMA-HetNets. The fairness-based energy
efficiency optimization focused on maximizing the ratio
of the individual user rate to its power consumption

(bits/Joule) [23], [24]. This study focused on both transmitter
and receiver power consumption, with attention centered on
the presence of both co-tier and cross-tier interference within
the network. These considerations provide more accurate
modeling of the wireless communication system to achieve
fairness in energy efficiency among users. The max-min
energy efficiency adoption as the primary objective function
helps to achieve system fairness and preserve integrity among
users [19]. It ensures fairness for all users bymaximizing their
minimum energy efficiency for their assigned sub-channels.

The considered resource allocation problem is a joint
user-pairing and power allocation problem in which attaining
a system global optimal solution is very complex. There-
fore, the joint problem was firstly decomposed into two sub-
problems. The first sub-problem is approached by deploying
the Greedy Algorithm (GA) to solve the user-pairing prob-
lem [22]. On the other hand, the second sub-problem, which
is the power allocation problem is addressed by formulating
the fair energy efficiency as a maximization objective func-
tion problem, which is a mixed-integer non-convex fractional
programming problem. Hence, it is then transformed into
its subtractive form to obtain the optimal power allocation
solutions by adopting the Sequential Convex Programming
(SCP) approach [22].

Based on the literature, the investigation on energy effi-
ciency maximization that ensures fairness among users
using a max-min optimization approach, with considera-
tions to interference, the transmitter, and the receiver power
consumption has not been considered in NOMA-HetNets.
Meanwhile, the fair energy-efficient resource allocation is of
critical importance in achieving fair resources to each user in
the 5G and upcoming future generations. With this motiva-
tion, this study proposes and demonstrates a novel approach
of investigating the fair energy-efficient resource alloca-
tion problem for the downlink femtocell NOMA-HetNets,
with the consideration to the co-tier, and cross-tier inter-
ference, the transmitter, and receiver power consumptions.
The main contributions of this study are summarized
as follows:
• A user-pairing approach based on GA is proposed by
assigning the two users to a certain effectively utilized
sub-channel. For each stage, two users are selected
and allocated to an optimal sub-channel that maxi-
mized their energy efficiency. This approach achieves
the sub-optimal performance with low computational
complexity than the exhaustive search approach.

• A formulation of the fairness-based energy efficiency
maximization problem is developed by using max-min
approach with the following satisfied constraints: the
user’s transmission rate, transmit power budget at the
BS, and interference frommacrocell’s users. The consid-
ered formulated problem is non-convex and intractable,
so the fractional programming theory is adopted to trans-
form the problem into a sequence of subtractive form to
solve it with lower complexity and easily determine the
sub-optimal solution.
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• The SCP optimization approach is proposed to solve
the sub-channel power allocation problem. On assur-
ing the optimal sub-channel power allocation solution
is achieved, the SCP optimization approach holds the
convex part of the optimization problem correctly and
keeps the non-convex part accurate. The obtained power
allocation value is updated iteratively until the optimal
power allocation solution is found.

• A new algorithm termed as fair energy-efficient power
allocation (FEPA) is developed to find the optimal power
that can assign to each of the paired users iteratively.
Simulations verify that the proposed power allocation,
alongside with user pairing, leads to more remarkable
improvement in terms of energy efficiency and fairness
compared to the benchmark methods.

The rest of this article is organized as follows. Section II
explores the system model, the power consumption model,
and the energy efficiency metric. Section III, presented the
proposed resource allocation solutions. Section IV, describes
the simulation results and discussions to show the significant
improvement of the proposed solution. The paper concluded
in Section V.

A. RELATED WORKS
The efficient resource allocation is essential to obtain high
performance of the PD-NOMA system. In line with this
objective, several studies proposed to address the resource
allocation problems in single-cell scenarios. The power allo-
cation solutions were introduced to maximize the sum-rate
for PD-NOMA system in uplink transmission [25], [26],
downlink transmission [27], [28], and both uplink and
downlink transmission [29]. Besides, the power allocation
solutions have also been proposed to maximize the energy
efficiency for the downlink PD-NOMA system in [30]–[34].

On the other hand, to address the resource allocation
problems in multi-cell scenarios, recent studies have been
introduced for the sum-rate [35]–[41] and energy efficiency
maximization [15]–[18]. The reviews from [35]–[41] have
analyzed the effect of power allocation and user scheduling
problems on maximizing sum-rate in NOMA-HetNets. The
authors in [35] investigated the power allocation problem
using a Stackelberg game approach by adopting a distributed
power allocation algorithm to achieve the Stackelberg equi-
librium. In [36], the Karush-Kuhn-Tucker (KKT) conditions
for multi-cell multi-user based NOMA system was proposed
under BS power and user’s transmission rate constraints for
efficient power allocation. However, these works did not
tackle the issue of user-pairing.

To maximize the overall system throughput, the authors
in [37] proposed user scheduling and iterative distributed
power control algorithms to obtain the sub-optimal solution
for both small-cells and macro-cells. The proposed algo-
rithms achieved higher spectral efficiency and lower outage
performance, but the system complexity is high. The Initial-
ization Algorithm (IA) and Swap Operation Enabled Match-
ing Algorithm (SOEMA) proposed to pair the users into

the sub-channel to maximize the small-cells user’s through-
put [38]. However, the proposed algorithms have shown
lower computational complexity, but the optimal power not
assigned to the users.

Random and selective pairing solution with Fixed Power
Allocation (FPA) was introduced for both the downlink and
uplink multi-cell scenario in [39], where the average achiev-
able data rate and outage probability evaluated. The pro-
posed solution has low computational complexity from the
fixed power allocation to the users, but this does not guar-
antee an optimal performance. The collaborative communi-
cation method was introduced in [40] to improve system
throughput and reduce inter-cell interference. The sorting
based user-pairing approach was introduced in [41] for cog-
nitive radio in NOMA-HetNets system. The KKT condi-
tion and difference of convex (DC) algorithm were used to
obtain the optimal power within and across the sub-channel,
respectively.

The power and user scheduling optimization for energy
efficiency maximization in downlink NOMA-HetNets have
been presented in [15]–[18]. The fair power allocation
with a given BS power constraint was proposed in [15],
while the sub-channel and power allocation problems for
small-cells were investigated in [16]. But these studies disre-
gard the user-pairing issue. The performance of NOMA with
non-uniform small-cells deployment has been evaluated with
the consideration for both user-pairing and user association
to obtain higher data rate and energy efficiency [17].

The perfect Channel State Information (CSI) and imperfect
CSI has been considered in [18], where the matching theory
was adopted to pair two users in a sub-channel, and the
Fractional Transmitting Power Allocation (FTPA) was used
to assign power for each user accordingly. The proposed
approach solution has low computational complexity, but the
performance is degraded due to the changing of users’ chan-
nel conditions. The studies in [42]–[44] have considered the
power control aspects in the NOMA system. The sum power
minimization and sum-rate maximization were considered in
the multi-cell NOMA system, while the sum power mini-
mization in two cells NOMA networks was considered for
downlink transmission in [42], [43] respectively, and uplink
transmission in [44].

From the aforementioned studies, it can be deduced that,
there is no comprehensive solution that addresses the fair
energy-efficient resource allocation problem with consider-
ation to the co-tier and cross-tier interference, alongside with
transmitter and receiver energy power consumptions.

II. SYSTEM MODEL
This section describes the proposed systemmodel and param-
eters of the NOMA-HetNets, alongside with the description
of the applied power consumption model.

A. SYSTEM MODEL
The system model represents a downlink femtocell
NOMA-HetNets consisting of one macro BS, overlaid with a
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FIGURE 1. The system model of downlink femtocell NOMA-HetNets.

set of F Femto BSs. All BSs and all users are assumed to be
equipped with a single antenna, which is single-input single
output (SISO) system, as shown in Figure 1.

For simplicity, we denote macro BS as BSm and femto
BS as BSf , where m = 1 and f , {1, 2, . . . ,F}. The
indices Ur , {1, 2, . . . ,R} and Uw , {1, 2, . . . ,W} rep-
resent the set of macrocell users (mCUEs) and femtocell
users (fCUEs) served by BSm and BSf respectively. NOMA
technology is adopted to serve the users in this HetNets using
S sub-channels. Hence, mCUEs and fCUEs share the same
resources through these S sub-channels. The total bandwidth
of the system is represented by Bw. The bandwidth for each
sub-channel is obtained by dividing Bw equally among S
sub-channels. Where Bsch = Bw/S. The Pmmax and Pfmax
are defined parameters for the maximum transmitted power
budget for BSm and BSf respectively. The pms and pfs are
the power assigned for each sub-channel from BSm and BSf
respectively. The Rayleigh fading model which depends on
distance and path loss attenuation, is employed.

The UEfw,s, UEqw,s, and UEmr,s are used to indicate
w-th fCUE in sub-channel-s served by BSf , w-th fCUE in
sub-channel-s served by BSq, where (f 6= q) and r-th mCUE
in sub-channel-s is served by BSm respectively. We assume
that channel coefficients of all fCUEs from BSf are arranged
as seen in (1).

hf1,s ≤ h
f
2,s ≤ · · · ≤ h

f
w,s · · · ≤ h

f
W,s (1)

where,
hfw,s represents the channel fading coefficient of UEfw,s

defined as hfw,s = gfw,sχ
f
w,s. The symbol gfw,s is a parameter

that represents Rayleigh fading, and χ fw,s is the shadowing
and path loss between w-th fCUE with the associated BSf .

According to theNOMAprinciple, the BS uses SC to trans-
mit the multiple user’s signals with different power levels.
At the receiver, each user receives the desired signal from its
served BS and the undesired signals (interfering signals) from
other BSs. This proposed model considered the interfering
signals that come from the same type of BSs (i.e., from BSf
to BSq) which are typically called co-tier interference and
from a different type of BSs (i.e., fromBSm to BSf ) which are

known as cross-tier interference.We use this model to achieve
realistic performance for both fCUEs as well as mCUEs.
Hence, the received signal by UEfw,s can be mathematically
expressed as in (2).

yfw,s = hfw,s

√
pfw,sx fw,s︸ ︷︷ ︸

desired signal

+

W∑
i=w+1

hfw,s

√
pfi,sx

f
i,s︸ ︷︷ ︸

intra-NOMA user interference

+

F∑
q=1,q6=f

αqw,sh
f ,q
w,s

√
pqw,sxqw,s︸ ︷︷ ︸

co-tier interference

+

R∑
r=1

αmr,sh
f ,m
r,s

√
pmr,sx

m
r,s︸ ︷︷ ︸

cross-tier interference

+ zfw,s︸︷︷︸
noise

(2)

The desired signal term in (2) represents the desired transmit-
ted signal of the UEfw,s, where x

f
w,s and p

f
w,s are the desired

transmitted symbol and the power assigned to UEfw,s respec-
tively. The intra-NOMA user interference term represents the
interference caused by other users. In the co-tier interference
term, xqw,s, h

f ,q
w,s, and p

q
w,s are the desired transmitted symbol,

the channel fading coefficient (between BSf and UEqw,s),
and the power assigned to UEqw,s, respectively. In cross-tier
interference, the term xmr,s, h

f ,m
r,s , and pmr,s are the desired

transmitted symbol, the channel fading coefficient (between
UEmr,s and BSf ), and the power assigned to UEmr,s respec-
tively. Also hm,fw,s is the channel fading coefficient between

UEfw,s and BSm. The noise term zfw,s ∼ CN
(
0,
(
σ
f
w,s

)2)
denotes the Additive White Gaussian Noise (AWGN) power

at UEfw,s with zero mean and the noise variance of
(
σ
f
w,s

)2
.

The parameters αfw,s ∈ {0, 1} and αmr,s ∈ {0, 1} are the binary
variables that represent the sub-channel allocation indicator
for the fCUEs and mCUEs in (3) and (4), respectively.

αfw,s =

{
1, if subchannel s is assigned to fCUE w
0, otherwise

(3)

and,

αmr,s =

{
1, if subchannel s is assigned to mCUE r
0, otherwise

(4)

The NOMA technology allows more than one user in the
same sub-channel and should apply the correct demodulation
process at the receiver using the SIC technique. The SIC
can remove interference by arranging all users according to
their assigned power [38]. With this consideration in place,
the UEfw,s can decode all (w-1)-th fCUEs’ signals efficiently
and treat all (w + 1)-th fCUEs’ signals as noise. Assuming
that all BSs have perfect knowledge of CSI, then the Signal-
to-Interference-plus-Noise-Ratio (SINR) received by UEfw,s
can be represented as in (5), shown at the bottom of the
next page. Equation (5) can be simplified as expressed
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in (6), as shown at the bottom of the page, where, I fw,s =∣∣∣hfw,s∣∣∣2∑W
i=w+1 p

f
i,s is the intra-NOMA user interference,

I f ,qco = αqw,s
∣∣∣hf ,qw,s∣∣∣2∑F

q=1,q6=f p
q
w,s is the co-tier interference,

and I f ,mcr = αmr,s

∣∣∣hf ,mr,s ∣∣∣2∑R
r=1 p

m
r,s is the cross-tier interfer-

ence. Therefore, the UEfw,s achievable data rate measured in
bits per second (bps) is given as expressed in (7).

Rfw,s (α, p) = α
f
w,sBsch log2

(
1+ γ fw,s

)
(bps) (7)

where,
α = (αf1,s, α

f
2 s, · · · , α

f
W,s) represent the set of

sub-channel allocation parameters, while p = (pf1,s, p
f
2,s, · · · ,

pfW,s) which is the power allocation values for each UEfw,s.
Accordingly, the total sum rate of all femtocells is calculated
as in (8).

Rfsum (α, p) =
F∑
f=1

W∑
w=1

S∑
s=1

αfw,sR
f
w,s (8)

B. POWER CONSUMPTION MODEL
The power consumption parameters model is executed based
on [45], by considering the power consumption from the
transmission side of the BSs, as well as from the users’
receiver side. The power consumption of the femtocell is
given by (9).

PfT (w,s) (α, p) =
1
ξf

W∑
w=1

S∑
s=1

αfw,sp
f
w,s︸ ︷︷ ︸

dynamic power

+Pfst +
W∑
w=1

Pwst︸ ︷︷ ︸
static power

(9)

where, the first component of (9) is the dynamic power, which
is constituted by the transmission side parameters (i.e., the
BSf ). This dynamic power corresponds to the power dis-
sipated by the radio frequency (RF) signals in the power
amplifiers [45], [46]. The term ξf ∈ {0, 1} represents the
efficiency of the power amplifier at the BSf . The second
component is the static power, which is made up of two

constant parameters Pfst and P
w
st . The P

f
st corresponds to the

power consumed by operating circuits and transmitted signal
systems (such as cooling system, filters etc.) at the BSf . The
Pwst corresponds to operating circuits, which is responsible for
the reception of the signal at the receiving side i.e., fCUE. The
mathematical expression in (9) can be simply written as (10).

PfT (w,s) (α, p) =
1
ξf

W∑
w=1

S∑
s=1

αfw,sp
f
w,s + P̃

f
st (10)

where,

P̃fst = Pfst +
W∑
w=1

Pwst (11)

Similarly, the power consumption for macrocell is given as
displayed in (12). All corresponding parameters definitions
are similar to the femtocell, except that they are related to
BSm and mCUE.

PmT (r,s) (α, p) =
1
ξm

R∑
r=1

S∑
s=1

αmr,sp
m
r,s︸ ︷︷ ︸

dynamic power

+P̃mst (12)

where,

P̃mst = Pmst +
R∑
r=1

Prst (13)

C. ENERGY EFFICIENCY METRIC
Energy efficiency is an important parameter in evaluating
cellular system design performance targeting towards reduc-
ing the system energy consumption. By definition, energy
efficiency

(
QEE

)
is the ratio of throughput (achievable data

rate) to the total power consumption [47], [48]. It is measured
in bits/Joule as expressed in (14).

QEE
=

Throughput (bps)

Total Power Consumption
(
Joule

/
s
) (14)

γ fw,s =
pfw,s

∣∣∣hfw,s∣∣∣2∣∣∣hfw,s∣∣∣2 W∑
i=w+1

pfi,s︸ ︷︷ ︸
intra-NOMA user interference

+αqw,s

∣∣∣hf ,qw,s∣∣∣2 F∑
q=1,q6=f

pqw,s︸ ︷︷ ︸
co-tier interference

+αmr,s

∣∣∣hf ,mr,s ∣∣∣2 R∑
r=1

pmr,s︸ ︷︷ ︸
cross-tier interference

+

(
σ fw,s

)2
︸ ︷︷ ︸

noise

(5)

γ fw,s =
pfw,s

∣∣∣hfw,s∣∣∣2
I fw,s︸︷︷︸

intra-NOMA user interference

+ I f ,qco︸︷︷︸
co-tier interference

+ I f ,mcr︸︷︷︸
cross-tier interference

+

(
σ fw,s

)2
︸ ︷︷ ︸

noise

(6)
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The energy efficiency of UEfw,s can be obtained as in (15),

QEE
w,s (α, p) =

∑
s∈S

Rfw,s (α, p)

1
ξf

∑
s∈S

α
f
w,sp

f
w,s + P̃

f
st

(15)

Equation (15) can be simply written as in (16),

QEE
w,s (α, p) =

Rfw,s (α, p)

PfT (w,s) (α, p)
(16)

The sum energy efficiency for the corresponding femtocell
NOMA-HetNets can be determined as given in (17).

QEE,f
sum (α, p) =

F∑
f=1

W∑
w=1

S∑
s=1

α
f
w,sR

f
w,s

1
ξf

W∑
w=1

S∑
s=1

pfw,s + P̃
f
st

(17)

III. PROPOSED RESOURCE ALLOCATION SOLUTIONS
In the proposed system model, initially, the study assumes
that the user association process has been performed by
using state-of-the-art algorithms such as those discussed
in [17], [49]. Note that our proposed user-pairing and power
allocation solutions are independent of the used user asso-
ciation algorithm. The user-pairing and power allocation
problem evaluation is then followed, which is the main
focus of this study. The proposed solution is achieved by
NOMA-SCP-GA which is referred to as applying SCP solu-
tion after pairing users based on GA to obtain the optimal and
fair energy efficiency in femtocell NOMA-HetNets.

The user-pairing and power allocation form a joint opti-
mization problem that affects the performance of NOMA
systems. To decrease the computational complexity in solv-
ing this impending joint problem, it is decoupled into two
sub-problems. The first section addresses the user-pairing
problem solution using GA to assign two users to the same
sub-channel. The second section uses the SCP approach to
solve the power allocation problem to obtain the optimal and
fair energy efficiency for each sub-channel and each user. The
summary for the proposed resource allocation solution which
is NOMA-SCP-GA is shown in Figure 2.

A. ENERGY EFFICIENT USER-PAIRING BASED ON GREEDY
ALGORITHM (GA)
The user-pairing phenomenon highly affects the NOMA sys-
tem performance. The designing of an optimal user-pairing
solution is a requirement for enhancing the NOMA system
performance. Exhaustive search approach can be used to
achieve optimal system performance by allowing all possible
combinations of user-paring. However, as the number of the
users increase, the computational complexity also increases.
Thus, to overcome this issue, this article employs a GA
approach with lower computational complexity and with the
capability of achieving a sub-optimal user-pairing solution
for the femtocell NOMA-HetNets.

FIGURE 2. The proposed resource allocation solution (NOMA-SCP-GA).

With an assumption that only two users are assigned to
each sub-channel, equal power is allocated for each sub-
channel with fair power allocation for each paired users in
each sub-channel as adopted in [15]. The fair power allocation
assigned to the first user

(
UEf1,s

)
is determined by (18).

pf1,s =
pfs

1+ δf1,s + δ
f
1,sδ

f
2,s + · · · + δ

f
1,sδ

f
2,s · · · δ

f
Ws−1,s

(18)

where,
Ws is the number of paired users in the sub-channel and

δ
f
1,s is the ratio of channel coefficient between the first and
the second user expressed as (19).

δ
f
1,s =

Gf1,s

Gfi+1,s
(19)

where,

Gf1 s =
∣∣∣hf1,s∣∣∣2/(

I fw,s + I f ,qco + I f ,mcr +
(
σ fw,s

)2)
(20)

The power assigned to the other paired user
(
UEfwi,s

)
is given

as expressed in (21).

pfwi,s=

(
i−1∏
l=1
δ
f
wl ,s

)
pfs

1+δfw1,s+δ
f
w1,sδ

f
w2,s + · · · + δ

f
w1,sδ

f
w2,s · · · δ

f
Ws−1,s

(21)

The main idea for using GA is to select the best choice
at each stage of the problem that possibly achieves the best
optimal solution. The adoption of GA is focused on assigning
two optimal users that can maximize their energy efficiency.
Algorithm-1 describes the GA at assigning the two users to
a certain effectively utilized sub-channel. For each stage, two
users are selected and allocated to optimal sub-channel that
maximized their energy efficiency. This process terminated
after all users assigned to their best-utilized sub-channels.
The procedures for algorithm-1 is divided into two processes;
initialization process and sub-channel assignment process.
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(a) Initialization process: Algorithm-1 starts by initializing
sets of users, sub-channels, allocation variable, superimposed
users, the empty data rate for each user, and power allocation
for each sub-channel. Then, the algorithm obtains the SINR
for each user and arranges them in ascending order (i.e., high
to low SINR) to assign power to each user as defined in (18)
and (21), then, the data rate for each user is updated.

(b) Sub-channel assignment process: The first user is
assigned to a selected sub-channel if it has a higher SINR
compared to other users and if it couldn’t acquire its desired
data rate. The first user should also satisfy the condition
of having a co-channel interference that is lower than the
threshold of the assigned sub-channel. After the first user
selection, the superposition set and the user sub-channel allo-
cation parameter are updated. Then this user is removed from
the user set.

On the other hand, the second user is selected if it has a
lower energy efficiency compared to other users and if its
energy efficiency can improve by adding the energy effi-
ciency of the first selected user. After selecting the second
user, the superposition set, and the user sub-channel alloca-
tion parameter are all updated, the user then removed from
the user set.

Consequently, the optimal pairing has been achieved, and
the optimal sub-channel is removed from the sub-channel set.
This process continues until all users are assigned to their
best-utilized sub-channels. The summary of algorithm-1 is
shown in Table 1.

B. ENERGY EFFICIENT POWER ALLOCATION SOLUTION
BASED ON SEQUENTIAL CONVEX PROGRAMMING (SCP)
This section focuses on solving the power allocation opti-
mization problem for the femtocell NOMA-HetNets system
by mathematically formulating the optimization problem and
then transforming the formulated problem into an equivalent
problem. The equivalent problem is then iteratively solved
to update the optimal energy efficiency parameter with the
application of the SCP optimization approach to obtain the
optimal power allocation solution.

1) PROBLEM FORMULATION
The max-min energy efficiency is formulated as the objective
function to maximize the minimum energy efficiency of the
fCUE by attaining the achievable maximum value to guar-
antee fairness for each fCUEs. In this problem formulation,
consideration is given to the total transmitted power budget
for each BSf , the minimum required data rate for each fCUE,
and the limitation of cross-tier interference caused by fCUEs
to macrocell. This optimization problem can be expressed
mathematically as objective function P1 with sets of formu-
lated constraints as in (22).

P1 : max
α,p

min
w∈W

QEE,f
w,s (α, p)

s.t. C1 :
∑
s∈S

αfw,sp
f
w,s ≤ pfs , ∀f ,w

TABLE 1. Algorithm-1: Greedy Algorithm (GA) for User-Pairing.

C2 :
∑
s∈S

pfs ≤ P
f
max,∀f

C3 :
∑
s∈S

αfw,sR
f
w,s ≥ R

req
w , ∀f ,w

C4 :
∑
f ∈F

∑
w∈W

αfw,sp
f
w,s

∣∣∣hm,fw,s

∣∣∣2 ≤ Isth,∀s

C5 : pfw,s ≥ 0, ∀f ,w, s

C6 :
∑
w∈W

αfw,s ≤ 1, ∀f , s

C7 : αfw,s ∈ {0, 1} , ∀f ,w, s (22)

The constraints C1 and C2 limit the maximum transmitted
power budget for each sub-channel and BSf , respectively.
C3 maintains the minimum QoS requirement for each UEfw,s
which is limited by the data rate thresholdRreqw . The constraint
C4 imposed to ensure that the maximum cross-tier interfer-
ence caused by fCUEs to macrocell on each sub-channel does
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not exceed the threshold value denoted by Isth. By satisfying
the constraintC4, themCUEs’QoS requirements are fulfilled
significantly. The C5 ensures that the power assigned to
UEfw,s is always positive, while the constraints C6 and C7 are
associated with sub-channel assignment aspects that ensure
at least one fCUE user is assigned on each sub-channel.
It is challenging to solve the objective function P1 because
it is a non-convex and non-deterministic polynomial
(NP)-hard problem [19]. Thus, solving it in polynomial-time
is impossible. Consider the following theorem:
Theorem 1: The objective function P1 is NP-hard problem,

by cause of joint user pairing and power allocation problem.
For the Proof: See Appendix A.
The objective function P1 is NP-hard, meaning that obtain-

ing the optimal global solution is not guaranteed with
polynomial-time algorithms [50]. Alternatively, efficient and
approximate solutions with local optimum performance are
most preferred in the practical wireless system design. Thus,
we need to transform objective function P1 into subtractive
form to solve it with lower complexity and easily determine
the sub-optimal solution.

2) PROBLEM TRANSFORMATION AND ITERATIVE
ALGORITHM DESIGN
Since the objective function P1 is a mixed-integer nonlinear
programming problem due to αfw,s and p

f
w,s , it becomes hard

to solve such nonlinear problem. After relaxing αfw,s to [0, 1],
the function P1 is still a non-convex; hence, we assume
that Rfw,s (α, p) > 0 and PfT (w,s) (α, p) > 0. For simplicity,
we denote K ∈ (α, p) as a feasible solution set for formu-
lated objective function P1. Therefore, the optimal energy
efficiency is denoted as Q∗w, which is given as in (23).

Q∗w = max
(α,p)∈K

min
w

Rfw,s (α, p)

PfT (w,s) (α, p)
= min

w

Rfw,s (α∗, p∗)

PfT (w,s) (α∗, p∗)
(23)

where (α∗, p∗) is the optimal solution. To solve the formu-
lated problem function P1, the generalized fractional pro-
gramming theory in [51], [52] is considered with the follow-
ing theorem:
Theorem 2: The optimal solution (α∗, p∗) ∈ K for the

objective function P1 is obtained if and only if P1 ≡ P2
in (24).

P2 : max
(α,p)∈K

min
w

{
Rfw,s (α, p)−Q∗wP

f
T (w,s) (α, p)

}
= min

w

{
Rfw,s

(
α∗, p∗

)
−Q∗wP

f
T (w,s)

(
α∗, p∗

)}
= 0 (24)

The optimum conditions stated in theorem 2 indicate that
solving an optimization problem function P1, which is in
fractional form is equivalent to solving problem function
P2 in subtractive form. This entails that the optimal solution
of the problem function P1 is the same as the optimal solu-
tion of its equivalent problem function P2 based on litera-
ture [53], [54]. For the Proof: SeeAppendix B.

The optimal solution to problem function P1 can be dis-
covered by solving optimization function P2 to obtain Q∗w.

However, Q∗w cannot be obtained directly because it is
challenging to solve objective function P2. Therefore, the
proposed iterative algorithm-2 update Qw and ensure that
the optimal solution p∗ remains feasible in each iteration.
To design this algorithm, we define an equivalent function
as shown in (25), followed by the proposed theorem 3.

F (Qw) = max
(α,p)∈K

min
w

{
Rfw,s (α, p)−QwP

f
T (w,s) (α, p)

}
(25)

Theorem 3: F (Qw) is a strictly monotonically decreasing
function in Qw. For the proof: SeeAppendix C.

F (Qw)≥0 when Qw=0, and F (Qw)<0 when Qw>0.

Consequently, Q∗w is achieved when F (Qw) = 0. There-
fore, the bisection method-based iterative algorithm in [55] is
applied to obtain the optimal solutionQ∗w, which lies between
two opposite signs intervals

[
Qmin
w ,Qmax

w
]
. The detailed pro-

cedure of obtaining Q∗w is given in algorithm-2 as shown
in Table 2.

TABLE 2. Algorithm-2: Bisection Method-Based Iterative Algorithm for
Obtaining Q∗w .

The following optimization problem function P3 with
stated constraints shown in (26) is solved at step 4 of the
algorithm-2 with the considerable value of Qk

w.

P3 : max
(α,p)∈K

min
w

{
Rfw,s (α, p)−Qk

wP
f
T (w,s) (α, p)

}
s.t. C1–C7 (26)

3) SUB-CHANNEL POWER ALLOCATION USING
SEQUENTIAL CONVEX PROGRAMMING (SCP)
To solve the power allocation problem across sub-channels,
the fair energy efficiency is formulated as an objective
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function P3.1 subjected to the stated constraints in (27).

P3.1 : max
pfs

min
w

{
Rfw,s (p)−Qk

w

(
PfT (w,s)

)T
(p)
}

s.t. C2 :
∑
s∈S

pfs ≤ P
f
max,∀f

C3 :
∑
s∈S

Rfw,s ≥ R
req
w , ∀f ,w

C4 :
∑
f ∈F

∑
w∈W

pfw,s
∣∣∣hm,fw,s

∣∣∣2 ≤ Isth, ∀s

C8 : pfs ≥ 0, ∀f , s (27)

The formulation of the objective function problem P3.1 sub-
jected to stated constraints in (27) is a non-convex prob-
lem with respect to pfs which makes it difficult to solve in
polynomial-time. Thus, the SCP approach in [55], [56] is
utilized as a local optimizationmethod to hold the convex part
of the optimization problem correctly and to formulate the
non-convex part to an accurate convex. To solve this problem,
the value of power allocation is updated until the optimal
value is found. This proposed power allocation solution is
called the NOMA power allocation with SCP (NOMA-SCP).
The problem function in P3.1 can then be formulated as two
difference concave functions with respect to p and expressed
as in (28).

Rfw,s (p)−Qk
wP

f
T (w,s) (p) = mw (p)− vw (p) (28)

where,

mw (p)

=

∑
s∈S

Bsch log2


1+

pfw,s
∣∣∣hfw,s∣∣∣2

W∑
i=w+1

∣∣∣hfw,s∣∣∣2 pfi,s + F∑
q=1

∣∣∣hf ,qw,s∣∣∣2 pqw,s
+

R∑
r=1

∣∣∣hf ,mr,s ∣∣∣2 pmr,s + (σ fw,s)2


−Qk

wP
f
T (w,s) (29)

and,

vw(p)=
∑
s∈S

log2


W∑

i=w+1

∣∣∣hfw,s∣∣∣2 pfi,s+ F∑
q=1,q6=f

∣∣∣hf ,qw,s∣∣∣2 pqw,s
+

R∑
r=1

∣∣∣hf ,mr,s ∣∣∣2 pmr,s + (σ fw,s)2

(30)

By adopting the SCP procedure, the non-convex constraint
C3 must be formulated into a convex as expressed in (31) by
denoting this new constraint as C3′.

C3′ : pfw,s
∣∣∣hfw,s∣∣∣2 + (1− 2R

req
w
/
Bsch
)

(
I fw,s + I f ,qco + I f ,mcr +

(
σ fw,s

)2)
≥ 0, ∀f ,w (31)

Equation (31) is applied to reformulate the objective function
problem P3.1 into an equivalent form in P3.1.1 with stated
constraints in (32).

P3.1.1 : max
pfs

min
w
{mw (p)− vw (p)}

s.t. C2, C3′, C4, C5 (32)

The reformulated problem function P3.1.1 is a non-smooth
optimization problem, with a new variable H introduced to
smooth the optimization function. Hence, P3.1.1 is further
re-written with an equivalent function form expressed in
P3.1.2 with stated constraints in (33).

P3.1.2 : max
pfs ,H

H

s.t. C2, C3′, C4, C5

C8 : {mw (p)− vw (p)} ≥ H, ∀f ,w (33)

Since the constraint C8 is a combination of two different
concave functions, then the SCP is effective in solving prob-
lem function P3.1.2 iteratively with stated constraints in (33).
An iterative fair transmitted power allocation pt is gener-
ated at step t and then used to approximate vw (p) using the
first-order Taylor expansion as expressed in (34).

vw (p) ≈ vw
(
pt
)
+∇vTw

(
pt
) (
p− pt

)
(34)

where ∇vw (p) is the gradient of vw (p) at p and is expressed
as in (35). The cw is a W-dimensional column vector with

cw (f ) = 0 and cw (q) =
∣∣∣hf ,qw,s∣∣∣2/ln 2, q 6= f .

∇vw(p)=
cw

W∑
i=w+1

∣∣∣hfw,s∣∣∣2 pfi,s + F∑
q = 1, q 6= f

∣∣∣hf ,qw,s∣∣∣2 pqw,s
+

R∑
r=1

∣∣∣hf ,mr,s ∣∣∣2 pmr,s + (σ fw,s)2


(35)

By substituting (34) into P3.1.2, the following convex opti-
mization problem function P3.1.3 is generated with a stated
sets of constraints in (36).

P3.1.3 : max
pfs ,H

H

s.t. C2, C3′, C4, C5

C8 :
{
mw (p)− vw

(
pt
)
+∇vTw

(
pt
) (
p− pt

)}
≥ H, ∀f ,w (36)

The current formulated objective function P3.1.3 with new
constraints in (36) is smoothened and standardized as the con-
vex approximation of the formulated problem function P3.1,
which can be effectively solved to obtain the objective func-
tion sub-optimal power allocation solution. The detailed pro-
cedure of finding the iterative power allocation is given
in algorithm-3 as shown in Table 3 with consideration to
theorem 4.
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TABLE 3. Algorithm-3: Iterative Sub-channel Power Allocation for
Obtaining p∗s .

Theorem 4: The iterative power allocation of algorithm-3
always converges, and with any feasible initial points,
it reaches the optimal power allocation by converging to a
stationary point. For the proof, refer to [22].

4) POWER ALLOCATION FOR THE PAIRED USERS USING
FAIR ENERGY-EFFICIENT POWER ALLOCATION (FEPA)
ALGORITHM
After solving the power allocation problem for the sub-
channel assignment and obtaining the pfs , the power allocation

for each user
(
pfw
)
in each sub-channel is further processed.

This is achieved from the formulated optimization problem
function P3.2 with stated constraints in (37).

P3.2 : max
pfw,s

min
w

{
Rfw,s (p)−Qk

w

(
PfT (w,s)

)T
(p)
}

s.t. C1 :
∑
w∈W

pfw,s ≤ pfs , ∀f ,w

C3 :
∑
s∈S

Rfw,s ≥ R
req
w , ∀f ,w

C4 :
∑
f ∈F

∑
w∈W

pfw,s
∣∣∣hm,fw,s

∣∣∣2 ≤ Isth, ∀s

C5 : pfw,s ≥ 0, ∀f ,w, s (37)

Based on the optimization problem formulated function P3.2,
the power is assigned to the paired users in each sub-channel
according to their channel conditions. Meaning that the weak
user is given more power than the strong user. According
to the NOMA principle, the expression in (18) is used to
calculate the power assigned to the weak user, and that in (21)
is used to calculate the power assigned to the strong user as
demonstrated in [15]. The power allocated to the weak user
efficiently lies in the interval

[
pmin
1,s , p

max
1,s

]
, where,

pmin
1,s = 0 (38)

pmax
1,s = pfs

/(
1+ δf1,s

)
(39)

To simplify the power allocation process, the bisection
method is applied to obtain the sub-optimal power allocation
solutions for the paired users in their assigned sub-channel.

TABLE 4. Algorithm-4: Fair energy-efficient power allocation (FEPA) for
the paired users.

The detailed procedure is given in algorithm-4 as shown
in Table 4.

IV. RESULTS
The study considered the system model of femtocell
NOMA-HetNets to evaluate the performance of the proposed
solutions. The BSm is located at the centre of the circular
coverage area, with a radius of 500 m, and the maximum
transmitted power of 46 dBm. The several BSf are distributed
uniformly inside the macro cell coverage area within a radius
of 20 m and with the maximum transmitted power of 20 dBm.
The total static power consumption in the network is 30 dBm,
while the mCUEs and fCUEs are distributed randomly within
the coverage area of their corresponding BSs. The path loss
is modelled as in [45].

Femtocell: 127+ 30 log10(d
f ) dB (40)

Macrocell: 128.1+ 37.6 log10(d
m) dB (41)

where dm and d f are the distances in km between BSm
to UEmr,s and BSf to UEfw,s, respectively. The shadowing
standard deviation is set to 10 dB, the system bandwidth
Bw is 10 MHz, and the noise of the power spectral density
is −174 dBm/Hz. The summary for the default parameters is
shown in Table 5.

A. COMPLEXITY ANALYSIS
The computational complexity analysis of the proposed
user-pairing and power allocation methods are discussed with
the assumption that S is the number of sub-channels and L
represents the available users in the network (i.e., L = 2S).
Applying the exhaustive search can help to achieve higher
system performance, but needs the consideration of all pos-
sible user’s combination that leads to theO

(
2S!

/
2S
)
higher

computational complexity, as seen in [30].
The computational complexity of the proposed solution

based on the GA (algorithm-1) depends mainly on the
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TABLE 5. Parameters specifications.

initialization process, which includes sorting of users based
on their SINR and assignment process, which is based on
assigning users to the sub-channels. The initialization process
requires L(L− 1)

/
2 operations, and assignment processes

require 2L ln (L) operations, as used in [22]. Therefore,
the total complexity of the GA can simply be written
as in (43).

GA complexity = initialization process complexity

+ assignment process complexity (42)

GA complexity = O
(
L(L− 1)

/
2
)
+O (2L ln (L))

= O
(
L2
)

(43)

Therefore, the computational complexity of the GA
(algorithm-1) is O

(
L2
)
.

The power allocation problem is solved based on the SCP
approach, using algorithm-3, since the solution is obtained
through the transformation process; it first updatesQw using
algorithm-2 (bisection method) that requires I1 iterations.
Hence, based on the formulated optimization problem P3.1,
the convergence of the sub-optimal power allocation solution
is achieved with I2 iterations. Thus, the computational com-
plexity of algorithm-3 using the SCP approach isO (I1I2LS).
Hence, the total complexity of the proposed resource alloca-
tion solutions (NOMA-SCP-GA) is given as in (44).

NOMA-SCP-GA complexity = O
(
L2
)
+O (I1I2LS)

= O
(
L2
+ I1I2LS

)
(44)

From the result observation, the computational complexity
of the proposed solution is lower than the exhaustive search
approach, and can be implemented with a polynomial-time.

TABLE 6. The complexity comparison for the proposed and existing
method.

The summary of the computational complexity comparison of
the proposed resource allocation solutions and the exhaustive
search method is shown in Table 6.

FIGURE 3. The convergence of the proposed iterative algorithm-2 with
Rreq

w = 10Kbps, ξf = 1 and P̃f
st = 30dBm.

FIGURE 4. The convergence of the proposed iterative algorithm-3 with
Rreq

w = 10Kbps, ξf = 1, P̃f
st = 30dBm and maximum value of

Qk
w = 5bits/Joule.

B. PERFORMANCE EVALUATION AND DISCUSSION
The performance of the proposed resource allocation solu-
tions is evaluated and compared with the FTPA method [9],
DC algorithm [30], and OFDMA technique for sufficient
validation. Figure 3 and Figure 4 display the convergence of
the proposed iterative algorithm-2 and algorithm-3, respec-
tively in achieving the optimal value of estimatedQ∗w and p∗s .
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It is observed that after a few iterations, both algorithms
converge to reach their respective optimal solutions when
the initial transmitted power used are within the acceptable
range values (i.e.,0.2× Pfmax – 1× P

f
max). This indicates that

the initial transmitted power values do not have any effect
on the obtained optimal solution. These results conclude that
both deployed algorithms are effective and useful for practical
situations.

FIGURE 5. Comparison of the energy efficiency of the network, best fCUE
and worst fCUE with Pf

max = 20dBm, P̃f
st= 30dBm, ξf = 1 and

Rreq
w = 10 Kbps for all four schemes (NOMA-SCP-GA, NOMA-DC,

NOMA-FTPA and OFDMA).

Figure 5 compares the proposed solution with the bench-
marked methods in terms of energy efficiency of the network,
best fCUE, and worst fCUE. As observed, the difference
between the best fCUE and the worst fCUE is considerable
in NOMA-DC and NOMA-FTPA, but with a slight deviation
in the OFDMA method, because the OFDMA technique
assigns equal powers to all users which subsequently leads
to nearly equal energy efficiency among the served users.
The network energy efficiency is high across all methods, but
the proposed NOMA-SCP-GA achieving the highest perfor-
mance value. The energy efficiency of the worst fCUE using
NOMA-SCP-GA is higher by 38.22%, 58.84%, and 76.39%
compared to NOMA-DC, NOMA-FTPA, andOFDMAmeth-
ods, respectively.

Figure 6 presents the system energy efficiency of the
different schemes with respect to the number of users,
where the number of users was varied from 1 to 6. The
energy efficiency for all schemes increased significantly
when the number of users incremented from 1 to 2 and
achieved saturated-like efficiency with the additional num-
ber of users. The proposed NOMA-SCP-GA shows the
highest system energy efficiency compared to NOMA-DC,
NOMA-FTPA, and OFDMA. The schemes with NOMA
technology achieved better energy efficiency performance
compared to OFDMA because more than one user is assigned
in a single sub-channel in NOMA scheme, while only a
single user is assigned in a single sub-channel in OFDMA
scheme. When the number of users (UEs) is 6, the proposed

FIGURE 6. The energy efficiency vs. number of UEs with Pf
max = 20 dBm,

P̃f
st = 30 dBm, ξf = 1 and Rreq

w = 10 Kbps for all four schemes
(NOMA-SCP-GA, NOMA-DC, NOMA-FTPA and OFDMA).

NOMA-SCP-GA improves the system’s energy efficiency
by 18.75%, 58.31%, and 91.34% compared to NOMA-DC,
NOMA-FTPA, and OFDMA, respectively.

FIGURE 7. The energy efficiency vs. network and each UE in the system
with Pf

max = 20 dBm, P̃f
st= 30dBm and ξf = 1 for all four schemes

(NOMA-SCP-GA, NOMA-DC, NOMA-FTPA and OFDMA).

The overall energy efficiency performance of the whole
system network and of each user (UE1 – UE6) is presented
in Figure 7. The results show that the NOMA-SCP-GA and
NOMA-DC schemes improve the network energy efficiency
greatly compared to NOMA-FTPA and OFDMA schemes,
because in NOMA schemes the users with worst channel con-
ditions are prioritized during the resource allocation. In con-
trast, the resource allocation inNOMA-FTPA is unstable with
consideration to the channel condition of all users, while the
resource allocation in OFDMA is inefficient as it does not
consider the channel condition of all users. Given these two
polarizing approaches, the proposed NOMA-SCP-GA takes
attention in considering the channel condition of users and
is able to achieve better fairness among the served users

200140 VOLUME 8, 2020



Z. J. Ali et al.: Fair Energy-Efficient Resource Allocation for Downlink NOMA HetNets

FIGURE 8. The energy efficiency of the femtocell vs. femtocell maximum
transmit power

(
Pf

max
)

with P̃f
st = 30 dBm and ξf = 1 for all four

schemes (NOMA-SCP-GA, NOMA-DC, NOMA-FTPA and OFDMA).

with the highest network energy efficiency compared to other
benchmarked schemes.

Figure 8 demonstrates the effect of the femtocell BS’s
maximum transmission power

(
Pfmax

)
on energy effi-

ciency. The Pfmax is varied from 0.01 – 0.1 W with 4 users
in the femtocell. It is observed that the energy efficiency
of the femtocell increases progressively with the increase of
Pfmax across all deployed methods. The highest Pfmax means
additional value of optimal power is allocated to the BSf
through the optimization solution formulation in problem
function P3.1. The received SINR for each UEfw,s in each
femtocell is improved and leads to higher improvement of
the energy efficiency. The proposed NOMA-SCP-GA signif-
icantly outperformed all other validating benchmark methods
with a remarkable high value of Pfmax . The energy effi-
ciency gap between the proposed NOMA-SCP-GA and all
other validating methods is notably high due to the efficient
assignment of the additional optimal transmitted power com-
pared to NOMA-DC, NOMA-FTPA, and OFDMA. When
Pfmax is 0.05 W, the proposed NOMA-SCP-GA achieves a
higher energy efficiency by 25.65%, 64.02%, and 91.37%
than NOMA-DC, NOMA-FTPA, and OFDMA, respectively.
These results conclude that Pfmax affects the femtocell energy
efficiency performance.

In Figure 9, the influence of the femtocell BS’s maxi-
mum transmission power (Pfmax) on the worst fCUE’s energy
efficiency is presented. The proposed NOMA-SCP-GA
achieves the highest energy efficiency at the initial value
of maximum transmission power and increases at a high
rate up to 0.04 W, and remains unchanged beyond 0.04 W
across all deployedmethods.Meaning that, whenPfmax is low,
the utilized constraints have a strong impact on the worst
fCUE’s assigned power, which leads to a high energy effi-
ciency increment. However, when the Pfmax reaches a certain
threshold value, the constraints no longer affect the assigned
worst fCUE’s power, and the additional power do not affect
the energy efficiency. Therefore, it can be concluded that

FIGURE 9. The energy efficiency of the worst fCUE vs. femtocell maximum
transmit power

(
Pf

max
)

with P̃f
st = 30 dBm and ξf = 1 for all four

schemes (NOMA-SCP-GA, NOMA-DC, NOMA-FTPA and OFDMA).

FIGURE 10. The energy efficiency vs. efficiency of the power amplifier (ξf )
at the BSf with P̃f

st = 30 dBm for all four schemes (NOMA-SCP-GA,
NOMA-DC, NOMA-FTPA and OFDMA).

FIGURE 11. The energy efficiency of the worst fCUE vs. static power
consumption (P̃f

st ) with Pf
max = 20dBm and ξf = 1 for all four schemes

(NOMA-SCP-GA, NOMA-DC, NOMA-FTPA and OFDMA).

the femtocell needs to operate below a certain level of the
maximum transmitted power to improve the user’s energy
efficiency.

Figure 10 shows the impact of power amplifier efficiency
on the network energy efficiency, where the Pfmax is varied
from 0.02 W to 0.1 W, while ξf is varied from 0.2 W to 1 W,
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and the number of femtocell users Uw is set to 4. The network
energy efficiency increases upon increasing the ξf across all
deployed methods. The higher the value of ξf , the lower the
obtained dynamic power consumption, as described in the
mathematical formulation of (10). This results to lower signal
dissipation and increases the obtained network energy effi-
ciency of the proposed NOMA-SCP-GA that outperformed
the NOMA-DC, NOMA-FTPA and OFDMA.

In Figure 11, the effect of static power consumption
(
P̃fst
)

on the energy efficiency of the worst fCUE is demon-
strated where the P̃fst is varied from 20 – 30 dBm. The
energy efficiency of the worst fCUE decreases with the
increase in the P̃fst which fulfils the mathematical formu-
lation expressed in (15). Considering the observed trend in
Figure 11, P̃fst should be limited to a certain level to pre-
vent the further decrease in energy efficiency. Furthermore,
the energy efficiency of the worst fCUE using the proposed
NOMA-SCP-GA is the highest compared to other bench-
marked methods.

V. CONCLUSION
In this article, fair energy-efficient resource allocation solu-
tion with the proposed NOMA-SCP-GA for downlink fem-
tocell NOMA-HetNets has been successfully presented. The
study has achieved the objective of maximizing the energy
efficiency for the user with the minimum energy effi-
ciency performance. The considered maximization problem
has been decoupled into user-pairing and power allocation
problems to reduce the complexity and obtains the sub-
optimal solutions. The GA was deployed to pair two users
in each sub-channel and the power allocation problem was
formulated as a fair energy efficiency maximization prob-
lem which is a mixed-integer non-convex fractional pro-
gramming problem, with the constraints of BS transmission
power, minimum user rate, and interference. Also, consid-
eration focused on energy consumption from both transmit-
ters and receivers to simulate the real system design. The
problem was transformed into its subtractive form and then
solved using the SCP approach to obtain the sub-channel
power allocation solutions. The fair energy efficiency power
allocation solution was proposed to assign power to the
paired users. The results demonstrated that the proposed
NOMA-SCP-GA has low complexity, and fast convergence
with more fairness among users. Moreover, the proposed
scheme achieved high energy efficiency performance com-
pared to other deployed benchmarkedmethods. The proposed
resource allocation solution is a promising solution for the 5G
network. The study of fair energy-efficient resource alloca-
tion for NOMA-HetNets with multiple-input multiple-output
(MIMO) system is considered as future research.

APPENDIX A
PROOF OF THEOREM 1
In the theory of complexity, to prove an optimization prob-
lem is NP-hard, we need to create the NP-hardness of its

equivalent decision problem and show that the decision ver-
sion is NP-hard. To do this, we need to consider the following
three steps [50]. (i) select a relevant and known NP-complete
decision problem C; (ii) establish a polynomial-time transfor-
mation from instance C to other instance Dwhich is appropri-
ate to the considered problem; (iii) after the transformation,
then prove that the two instances (C and D) have the
same objective solution. Based on these considerations,
we now prove that the objective problem P1, as seen in (22)
is NP-hard.

Proof: Two cases are considered for the proof, when
(a) αfw,s = 1 and (b) αfw,s > 1.
(a) For αfw,s = 1, the objective problem P1 is NP-hard

as equivalent to the maximization problem with joint
sub-channel and power allocation problem that has been
proved as NP-hard for the OFDMA system [57].

(b) For αfw,s > 1, we establish an instance of the objec-
tive problem P1 with known power allocation, followed by
proving thatP1 is NP-hard under this known power allocation
solution. First, we consider an instance of the problemP1 cor-
responds to the multiple-choice knapsack problem (MKP),
commonly known as the NP-hard problem. Then the instance
of αfw,s = 2 is considered, followed by proving that the joint
sub-channel and power allocation problem in simplified form
can be reduced to the knapsack problem. To understand the
MKP, the following concept is considered as in [50].

Assuming that there are B1, B2, . . . ,BN classes, such that
each class i contains bi items that need to be loaded in a knap-
sack, which corresponds to the total weight of P, and every
item j ∈ Bi acquire a weight Pi,j, and profit of Ki,j. Assuming
that the item’s weights, profits, and knapsack weights have
non-negative values. The problem is to allocate the items to
every class and ensure that the maximum profit is achieved
without exceeding the knapsack’s total weight.

Based on the MKP concept, now the problem P1 can
be reduced to the MKP problem by assuming that each
sub-channel is similar to the knapsack, and every user is
similar to an item that is going to be loaded in the knapsack.
The total number of items for every knapsack is limited to
two (i.e., two users). The profit of every item loaded in the
knapsack corresponds to the utility function (Ki,j), with the
needed weight of pi,j. The problem P1 intends to choose
precisely two users (which corresponds to two items) along
every sub-channel (which corresponds to class) in order to
maximize the energy efficiency of the fCUEs with the stated
power constraint pfs . The problem P1 can now be written in
the form of P1′, as seen in (45).

P1′ : max
α,p

min
w∈W

QEE,f
w,s (α, p)

s.t. C1 :
∑
s∈S

αfw,sp
f
w,s ≤ pfs , ∀f ,w

C6 :
∑
w∈W

αfw,s ≤ 1, ∀f , s

C7 : αfw,s ∈ {0, 1} , ∀f ,w, s (45)
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Therefore, the problem P1′ is NP-hard as being classified
as the MKP, by the ordinary generalization of the knapsack
problem. Observing that the problem P1′ is a specialized
case of problem P1; therefore, the original formulation of the
problem P1 is NP-hard.

APPENDIX B
PROOF OF THEOREM 2
Theorem 2 can be proved by considering both the necessary
and sufficient conditions. Starting with the necessary condi-
tion and assuming that the feasible solution of P2 is (α, p),
consider the expression in (46),

min
w

{
Rfw,s (α, p)

PfT (w,s) (α, p)

}
≤ Q∗w,min

w

{
Rfw,s (α∗, p∗)

PfT (w,s) (α∗, p∗)

}
= Q∗w

(46)

From (46), (47) is obtained as the following,

min
w

{
Rfw,s (α, p)−Q∗wP

f
T (w,s) (α, p)

}
≤ 0,

min
w

{
Rfw,s

(
α∗, p∗

)
−Q∗wP

f
T (w,s)

(
α∗, p∗

)}
= 0 (47)

Therefore, (α∗, p∗) is the optimal solution of P2, and the
necessary condition proof completed.

In proving the sufficient condition, it is assumed that, (α, p)
is the feasible solution and (α∗, p∗) is the optimal solution
of P2. Then (48) is given as the following,

min
w

{
Rfw,s (α, p)−Q∗wP

f
T (w,s) (α, p)

}
≤ 0,

min
w

{
Rfw,s

(
α∗, p∗

)
−Q∗wP

f
T (w,s)

(
α∗, p∗

)}
= 0 (48)

Equation (49) is obtained by arranging (48),

min
w

{
Rfw,s (α, p)

PfT (w,s) (α, p)

}
≤ Q∗w,min

w

{
Rfw,s (α∗, p∗)

PfT (w,s) (α∗, p∗)

}
= Q∗w

(49)

Therefore, (α∗, p∗) is also the optimal solution of P1, and
sufficient proof completed.

APPENDIX C
PROOF OF THEOREM 3
For any Q1

w and Q2
w, assume that Q1

w > Q2
w and the

corresponding optimal solutions are
(
α1, p1

)
and

(
α2, p2

)
.

Therefore, the energy efficiency can be expressed as in (50).

F
(
Q1
w

)
= max

(α,p)∈K
min
w

{
Rfw,s (α, p)−Q1

wP
f
T (w,s) (α, p)

}
= min

w

{
Rfw,s

(
α1, p1

)
−Q1

wP
f
T (w,s)

(
α1, p1

)}
< min

w

{
Rfw,s

(
α1, p1

)
−Q2

wP
f
T (w,s)

(
α1, p1

)}
≤ min

w

{
Rfw,s

(
α2, p2

)
−Q2

wP
f
T (w,s)

(
α2, p2

)}
= F

(
Q2
w

)
(50)

p2 is the optimal solution ofF
(
Q2
w
)
. Hence,F (Qw) is strictly

a monotonically decreasing function inQw, which completes
the proof.
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