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ABSTRACT In this article, surface soil moisture was retrieved from Radarsat-2 and polarimetric target
decomposition data by using semiempirical models and machine learning methods. The semiempirical
models and machine learning techniques employed were Oh (1992), Dubois (1995), Oh (2004) and
Generalized Regression Neural Network (GRNN), Least Squares — Support Vector Machine (LS-SVM),
Extreme Learning Machine (ELM), Kernel based Extreme Learning Machine (KELM), Adaptive Network
based Fuzzy Inference System (ANFIS), respectively. In addition, Yamaguchi, van Zyl, Freeman-Durden,
H/A/o and Cloude polarimetric target decomposition methods were used in this study. For soil moisture
inversion, firstly, preprocessing was applied to the Radarsat-2 image of two different dates with bare and
moderately vegetated soil. Then, sigma nought coefficients and the polarimetric decomposition components
were extracted as feature vector from preprocessed SAR image pixels corresponding to ground measured
points. Lastly, sigma nought coefficients were used in semiempirical inversion models, and sigma nought
coefficients and polarimetric decomposition components were used as input to machine learning methods.
The best accuracy results for semiempirical models were 13.01 vol. % and 17.91 vol. % Root Mean Square
Error (RMSE) for bare and moderately vegetated soil, respectively. The best accuracy for machine learning
techniques were 4.04 vol. % and 2.72 vol. % RMSE for two dates, respectively. The results indicated that
the machine learning techniques performed much better than the semiempirical models.

INDEX TERMS Machine learning, polarimetric target decompositions, Radarsat-2 imagery, remote sensing,
semiempirical models, soil moisture inversion.

I. INTRODUCTION

Soil moisture is a very important parameter for agriculture,
hydrology and climatology [1]. Soil moisture in agriculture
is closely related to plant growth. Accurate and reliable mea-
surement of soil moisture is useful in prevention of wasteful
use of water resources and soil management [2].

Ground measurement methods used to determine soil
moisture have many disadvantages in terms of time, cost and
labor. Therefore, a great number of researches have been
done by using remote sensing technologies, especially with
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active microwave sensors, in recent years in order to retrieve
soil moisture because radar return is sensitive to changes in
soil moisture content on the surface [3]. Synthetic Aperture
Radar (SAR) sensor which is an active microwave sensor is
important in agricultural monitoring in such working areas
as yield forecasting, mapping and soil moisture retrieving
[4]. Since the Radarsat-2 satellite has an active SAR sensor,
it does not need sunlight and because it operates at a longer
wavelength than optical sensor satellites, it can measure in
adverse weather conditions (cloudy, rainy and foggy weather)
and is not very sensitive to atmospheric effects. Radarsat-
2 uses the C-band microwave frequencies of the electro-
magnetic spectrum and operating frequency is 5.405 GHz
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and wavelength is 5.5 cm. The sensor is fully polarimetric
(captures both amplitude and relative phase of returned sig-
nal in all polarizations: HH, VV, HV, VH), where the first
letter represents the transmitted horizontal (H) or vertical
(V) polarization and the second letter indicates the received
polarization) [5]. The most important sensor parameters that
affect radar backscattering are incidence angle, wavelength
and polarization of the sensor, while the important target
parameters are surface roughness, surface dielectric coeffi-
cient and vegetation. Dielectric property describes the ability
of a wave to propagate through a material. Dielectric proper-
ties of soil are closely related to moisture content and are the
second most important factor that controls backscattering.

Full polarimetric SAR data provides information by
multiple polarizations with very high spatial and temporal
resolutions and penetrates the vegetative canopies [6] and
contains the contributions of soil and vegetated fields, while
vegetation contributions change with phenological stages
of the plant. To estimate the soil moisture over vegetated
areas accurately, the backscattering contributions by vegeta-
tion and ground must be separated from the total measured
backscattering [7].

The approaches used to achieve soil moisture inversion
can be grouped into two categories: The first group includes
empirical, semiempirical and physical models, while the sec-
ond includes machine learning based approaches. Empirical
models establish regression equations between backscatter
and volumetric soil moisture as collected in field sampling.
For bare or barely vegetated soils, backscatter is a function
of RMS height (roughness) and volumetric soil moisture.
For vegetated surfaces, backscatter contributions from the
vegetation canopy and from ground-canopy interactions are
added. Semiempirical models establish the relations between
backscatter (or backscatter ratios) and relative dielectric per-
mittivity. The most widely used semiempirical models are
the Oh (1992) [8], Dubois (1995) [9] and Oh (2004) [10]
models. All three models are valid through L, C and X
bands. The most widely used physical model for soil mois-
ture retrieval is the integral equation model [11]. Due to
its complex formulation, it is commonly applied by running
a number of forward iterations with a range of roughness
and dielectric characteristics to populate lookup tables rather
than inverting the model to estimate soil moisture. The main
difficulty with physical models lies in finding closed solu-
tions for their inversion. Machine learning approaches used
to retrieve soil moisture include Artificial Neural Networks
(ANN), Support Vector Machine (SVM), Relevant Vector
Machine (RVM) and Adaptive Network Based Fuzzy Infer-
ence System (ANFIS) [12]. These approaches were originally
developed to solve classification problems but were success-
fully applied to inversion problems later. The advantages of
these approaches are that they are generally flexible and can
be used for any learning task, while their disadvantage is
requiring large ground truth measurements.

In the literature, many studies have been conducted to
retrieve soil moisture. For example, Satalino et al. utilized an
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ANN model to retrieve soil moisture from ERS dataset [13].
The training dataset was obtained from the simulated data of
IEM model. The performance of this approach was measured
with 6% RMSE value for estimated volumetric soil mois-
ture content. In another study [14], different configurations
of ANN were used to estimate soil moisture content form
ASAR and Radarsat-2 data. The accuracy was presented as
5% RMSE value. Pasolli et al. employed an SVR model on
Radarsat-2 imagery [15]. They used HH and HV channels
of polarimetric features to inverse the soil moisture and the
accuracy was presented with an RMSE of 4.85%.

This article evaluates semiempirical models and different
machine learning methods for soil moisture inversion. The
contributions of this study are using different machine learn-
ing models and different polarimetric coefficients feature
vector as model inputs. The proposed approach in this study
has never been investigated using agricultural areas in Turkey.
As far as is known, Yamaguchi decomposition coefficients
are used to estimate the soil moisture for the first time.

The following sections are organized as follows: In the sec-
ond section, study area, ground measurements, properties and
preprocessing of Radarsat-2 imagery are presented. In the
third section, the formulations of semiempirical and machine
learning methods and polarimetric decomposition models are
given. In the following sections, study results, discussion and
conclusions are presented.

Il. MATERIALS

A. STUDY AREA

The study area selected is located within the agricultural
fields of Dicle University in Diyarbakir province in the south-
east of Turkey (40°04’ —40°26’E, 37°46' —38°04'N) and
consists of two parts of a total of 22 km?. The average height
of study area is 650 m. Average rainfall in March and June is
65 mm and 8 mm, respectively, and average temperature
is 8 and 26 °C, respectively. Wheat and corn are mostly
cultivated in these agricultural fields. The map showing the
study area is given in Figure 1.

B. GROUND MEASUREMENTS

Detailed information on collecting samples is given in
[16], but can also be briefly mentioned here. The ground
measurements were conducted on 10 June 2015 and
3 March 2016 simultaneously with the Radarsat-2 data acqui-
sition. Firstly, the study area was divided into areas of
100 m x 100 m and at least one soil sample was taken
from each area. The distance between ground measurements
is approximately 100 m and soil samples were taken with
3-5 cm depth. Soil samples were filled in 100 cm® metal
cylinders. The location information of these samples was
recorded with the help of GPS device. Soil moisture content
was measured by gravimetric methods at Dicle University
research labs. The number of soil samples taken from the
study area on 10 June 2015 and 3 March 2016 is 272 and
156, respectively. Other information on soil moisture mea-
surements performed on these dates is presented in Table 1.
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TABLE 1. Soil moisture measurements (%).

Measurement Number of ) Standard
Study area Min Max Mean o

date samples deviation
10 June 2015 Bare 272 0.79 4473 7.46 7.01
3 March 2016 Moderately Vegetated 156 25.38 43.20 34.45 2.89

40°04°09"E 40°15°21"E

40°26'33"E

59N

3504

TURKEY

37°55'38"N

IT4E18N

40°04'09"F 40°1521E

FIGURE 1. The map of study area (a) two sites of study area are marked
with black rectangles on Freeman-Durden decomposition RGB image
where red is for double bounce, green is for volume and blue is for
surface scattering components, (b) sample points are shown in red on the
Google Earth image.

TABLE 2. Information of the acquired Radarsat-2 IMAGERY.

Date of Orbit .
L o Beam model Incidence angle
acquisition direction
10 June 2015 Descending Q29 46.8° —48°
3 March 2016 Descending Q13 32.39° - 34.04°

C. SAR IMAGERY AND PREPROCESSING

Radarsat-2 is a spaceborne radar satellite launched by the
Canadian Space Agency in 2007 and has C-band microwave
sensors. To estimate soil moisture, two full polarimetric
single-look complex (SLC) products were utilized in this
study. Information of the acquired Radarsat-2 imagery was
given in Table 2.

The SNAP Sentinel-1 toolbox was used for preprocessing
of SAR products. Preprocessing steps were radiometric cali-
bration, speckle filtering and terrain correction. Firstly, radio-
metric calibration was applied to provide imagery in which
the pixel values could be directly related to radar backscatter
of the scene. Then, speckle filtering step was applied by
the refined Lee filter with 7 x 7 sliding window to remove
speckle noise. The resolution of the speckle filtered image is
4256 x 6149 pixels. Lastly, terrain correction was achieved
using SRTM-3 Digital Elevation Model (DEM) and
WGS84 map projection. The resolution of terrain corrected
image is 6226 x 5171 pixels. The spatial resolution of the
final image is 6.43 m. As a result of these steps, the sigma

197898

nought radar scattering coefficients were obtained from SAR
data. In addition to these steps, the T3 coherency matrix
was obtained before the terrain correction step. This step is
required to obtain polarimetric target decomposition compo-
nents. Sample Radarsat-2 images whose pre-processes are
completed are presented in Figure 2.

lll. METHODS

A. SEMIEMPIRICAL MODELS

1) OH MODELS

Oh (1992) [8] and Oh (2004) [10] proposed semiempiri-
cal backscatter models for bare soil surfaces by using the
theoretical model, backscatter and SAR measurements. The
models define co-polarization ratio (p) and cross polarization
ratio (q) depending on incidence angle (6), wave number (k),
standard deviation of the surface height (s), and volumetric
soil moisture (my). Oh et al. (1992) presented the model
firstly as shown in equations (1) and (2). The model is for
bare soils and is valid for 0.1 < ks < 2.5,0.09 < m, < 0.31
and 10° < 6 < 70°.

20
p=0ly/ol, =[1— ()00 k2 (1)
T

q = ogy/ogy = 0.23/To[l —e™*] 2
1— /e, 2
o= |1 = 3)
+ JEr

Soil moisture estimation using the Oh (1992) model from
the remotely sensed image, the backscattering coefficients
(algH, 02‘, and 08\,), 0 and wavelength (1) must be known.
If the p and q equations are arranged in a manner that the term
e % is eliminated, then the equation (4) is obtained. When
this equation is solved iteratively for I'g (Fresnel reflection),
the dielectric constant can be calculated from equation (3),
and then the volumetric soil moisture can be obtained with
the polynomial (5) proposed in [17].

29\ /370 g
il 1o —2 |+ p-1=0 @
<n> [ 0.23«/ro] P @
my = —5.3 4 2.92(¢1) + 0.055(e1)% + 0.0043(¢1)> (5)

Equations (6) and (7) were modified, and a new equation
(given in (8)) for the cross-polarized backscatter coefficient
was presented in [18]. Considering that the measurement of
the correlation length is not precise [19] and the ratio of q is
insensitive to the roughness parameter, Oh proposed in [10]
a new equation for q in neglecting the correlation length. The
model is for bare soils and is valid for 0.13 < ks < 6.98,
0.04 <m, <0.291 and 10° < 0 < 70°.

4 )0.35.m;0'65 o 0-4ks)" (6)

=1 —(—
P 900
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(d)

FIGURE 2. RGB images derived from preprocessed full scene Radarsat-2 data (a) 10 June 2015 and
(b) 3 March 2016 where red is for HH polarization, green is for HV polarization, blue is for HH/HV,
(c) 10 June 2015 and (d) 3 March 2016 where is red for double bounce, green is for volume and
blue is for surface scattering components of Yamaguchi decomposition.

g = 0.095(0.13 + sin 1.50)14(1 — ¢~ 133%™y (7
oy = 0.11m07 cos>2 (1 — e~ 020"y ®)

An inversion model was created from the Oh (2004) model
to estimate soil moisture. For this purpose, equation (8) is
arranged for ks as follows:

50 5/9
ks = | —3.1251 VH 9
g [ n<0.11m9'7(0059)2~2)] ®

Equation (9) is substituted in equation (7) and a non-linear
equation (10) is obtained for m,. This equation is solved for
the initial value my = 0.5 by iterative numerical methods.

9 0.35m;, 063
1—
(5%)

0 5/9
0.4 1|=3.1251 v

- €X —U. —J.

cxp "0.11m07 (cos 0)22

—p=0 (10)

1.4

The first estimation of ks is obtained by substituting m,’s
first estimation in equation (9). The second estimation of ks

is derived from equation (7):
q 10/9
ks=|In(1-— —1.3 11
S [ " ( 0.095(0.13 sin(1.59))1-4) / } (in
Using this second estimate of ks, two more estimations of
my are derived from equations (6) and (8):
10/9
} (12)
l—p

— ‘7\911
=
0.11(cos 6)22[1 — exp(—0.32(ks)1 5]
—20/13
_y 13
v [ ! (exp(—0.4(ks)1-4/0.351n9):| (13)
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This process ends with two estimates of s and three esti-
mates of my. s and m,’s weighted averages are obtained with
equations (14) and (15).

s1 % wi + 52 % 0.25w
g SLEWLT S 2 (14)
w1 + 0.25wp
myl * W3 + myp * wq + my3 x ws
my, = 15)
w3 + wq + ws

At the final stage, it is confirmed whether the estimates
produced are within the model validity ranges. Due to the
averaging process in the previous stage, estimates are likely

to be outside the model validity ranges.

2) DUBOIS MODEL

Dubois et al. [9] proposed a semiempirical approach to model
agH and 08V radar backscatter coefficients. agH and 08V
are expressed by the incidence angle, dielectric coefficient,
standard deviation of the surface height and wavelength. The
model is for bare soils and is valid for k.s < 2.5, m, < %35

and 6 > 30°.

0 275,086 1 0008 0 1.4,0.7
oy = 1077 (——==)10%24- 80k g sin0) 17" (16)
sin” 6
36
08V=10_2'35(Z§: 0)100.046.sr.tan9(k‘s.Sin9)1.1A0.7 (17)

For the Dubois (1995) inversion model, it is solved for
ertan® one of the equations given in (16) and (17) and
substituted in the other equation. The resulting equation is
solved to obtain surface roughness (ks). The obtained ks is
substituted by the equation (16) and the dielectric constant is
estimated.

_ logj(o;)10%7(cos )~ (sin 6) (k.s. sin ) "' 42. 707
B 0.028 tan 0

8/

(18)
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Finally, the dielectric constant estimation is converted to
volumetric soil moisture estimation by using empirically
derived 3rd order polynomial (5).

B. MACHINE LEARNING METHODS

1) LEAST SQUARE — SUPPORT VECTOR MACHINES (LS-SVM)
Vapnik proposed the Support Vector Machines (SVM)
method based on machine learning theory and quadratic pro-
gramming solution in order to minimize the disadvantages of
Artificial Neural Networks [20]. A support vector machine
optimally creates a hyper plane that divides the data into
two categories. In SVM regression, an approach error is used
instead of a margin between the most appropriate separating
hyper plane and support vectors [21].

Suykens et al. proposed using the Least Squares - Support
Vector Machines (LS-SVM) to simplify conventional SVM
[22]. LS-SVM has been used for classification in vari-
ous areas of pattern recognition and has recently addressed
regression problems successfully. LS-SVM has similar
advantages as SVM, but its additional advantage is that it
requires solving a series of linear equations that are much
easier and simpler in calculation.

In this method, the error optimization problem is pro-
vided with the equation (19) using the {x;, y;} training data
set presented to the model [23]. LS-SVM for regression is
formulated

1 C <
minJ O, &) = — [l + = 3 &’
i=1

yi={w, o)) +b+§&, i=1,....,N (19

where & € R are error variables, w are weights, ¢(x;) is
the kernel function that allows input space to be mapped
non-linearly to a multi-dimensional feature space, b is bias
and C > 0 is a regularization constant.

The solution of the optimization problem in LS-SVM
is realized by taking into account Lagrange multipliers.
Lagrangian is given by

! Lo N
Lis—svm = 5 lwl? + ECZ%Z -
i=1

i=1

x {{w, o)) + b+ & — v} (20)

with Lagrange multipliers oy € R. While these multipliers
must be positive in the standard SVM method, they can also
be negative values in the LS-SVM method. The function esti-
mation for the LS-SVM model is arranged as in Equation 21,
after eliminating w and the error term by applying the first
order partial derivatives in Equation 20.

N
Vi = oK (xi,x) +b 1)
i=1
Here, the K (x;, x) function refers to the kernel function.
2) GENERALIZED REGRESSION NEURAL NETWORK (GRNN)
GRNN is a radial-based feedforward ANN model pro-

posed by Donald Specht in 1991 [24], and unlike the
back-propagation method, it does not require an iterative
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training process. GRNN consists of four layers, each associ-
ated with the next layer: input layer, pattern layer, summation
layer and output layer.

GRNN is a probabilistic neural network containing the
probability distribution function. The training data set con-
sists of input x corresponding to each y output of the GRNN
regression model.

[ yf e, ydy
E[GI0] = g—— (22)
[ fGx,ydy

where E[(y|x)] is the expected value of the output y given
input vector x and f (x, y) is the probability density function
of x and y. The estimated y can be computed as:

n .

> vexp (-%)

=1 .

lfz—c, Ci = Z ‘x] — X;‘ (23)
exXp (—?) Jj=1

i=1

where 7 is number of training samples, ¢ is spread parameter
and C; is the squared distance between input vector x and
training vector x'.

3) EXTREME LEARNING MACHINE (ELM) AND KERNEL ELM
(KELM)
ELM is a simple, fast and robust learning method, recom-
mended in [25] and developed for Single Hidden Layer Feed
Forward Neural Networks. While the input layer weights
and bias values are randomly selected in the ELM, the out-
put layer weights are calculated analytically. In this way,
the learning process is extremely accelerated.

The input of the output layer for any transfer function (g(-))
of an ANN is

glwi,1x1 + by)

A
Y(x) =

g(Wl,mxm + bp)
H = : : 24)
g(wn,lxn +by) g(Wn,mxm + bp)

where n is input neuron number, m is hidden layer neuron
number, w; j are input layer weights and b; are bias values.

y=Hp (25)

is output equation of ANN and B indicates output weights.
The output weights are calculated by equation (26).

B=HTy (26)

where H7T, the inverse of H matrix is calculated by
generalized inverse Moore-Penrose matrix.

By including a kernel function in ELM, errors in weights
can be reduced and the system’s robustness and generaliza-
tion ability can be increased. The weights in the Kernel ELM
are calculated as follows:

I _
B=(z+K7y @7
where C represents regularization coefficient and K is kernel.
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FIGURE 3. ANFIS architecture.

4) ADAPTIVE NETWORK BASED FUZZY INFERENCE SYSTEM
(ANFIS)

ANFIS is a multi-layered adaptive network that combines the
learning ability of artificial neural networks and the inference
principles of fuzzy logic and was originally presented in [26].
This hybrid learning algorithm uses both back propagation
and least square algorithms. In order to apply the ANFIS
method, first of all, a data set containing inputs and outputs is
required. Then, the number and type of membership functions
are selected, and the model established accordingly is created
using a learning algorithm. The method uses the created
fuzzy set of if-then rules. ANFIS architecture is created by
determining parameters to minimize the difference between
output and target values.

Five layers are necessary to create the ANFIS inference
system. Each of these layers consists of several nodes defined
by the node functions. The ANFIS architecture is given
in Figure 3, while the adjustable parameters are denoted with
square nodes, the nodes which parameters are fix are denoted
in circles.

C. POLARIMETRIC DECOMPOSITION MODELS
Polarimetric decomposition is mainly based on the scatter-
ing matrix explaining how radar targets or ground surface
objects distribute electromagnetic energy. The main purpose
of target decomposition methods is to decompose measured
polarimetric matrix into a summation of a set of basic scat-
tering mechanisms, and each scattering mechanism corre-
sponds to a physical mechanism and the dominant scattering
mechanism can be determined. Hence, the polarimetric target
decomposition methods simplify the interpretation of the
scattering process.

Decomposition theorems are divided into two as coherent
and incoherent target decompositions. The incoherent
decompositions give better results due to the targets
distributed heterogeneously and are more common on the
surface of the earth. Polarimetric decomposition can be
classified as follows: coherent decomposition based on
the S scattering matrix (Pauli, Touzi, Cameron decompo-
sitions), model-based decomposition of the coherent (T3)
and covariance (C3) matrices (Yamaguchi, Freeman-Durden
decompositions), and coherent (T3) and covariance (C3)
decomposition based on the eigenvalue or eigenvector (H/ A/
Alfa, van Zyl, Cloude decompositions). Model-based decom-
position has merits of interpreting scattering mechanisms
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TABLE 3. Polarimetric decomposition methods and their components.

Polarimetric Components

decomposition

Freeman Durden Surface scattering, Double bounce

scattering, Volume scattering

Yamaguchi Surface scattering, Double bounce
scattering, Volume scattering and

Helix scattering
van Zyl Surface scattering, Double bounce

scattering, Volume scattering

Cloude-Pottier (H/A/o) Entropy, Anisotropy, Alpha angle

Cloude Surface scattering, Double bounce
scattering, Volume scattering
* N
4 N
/ A s
i by % '/:4 .
(a) (b)
(] .
3
\ /‘ .
LRI 4
& < !/~ ot .
[ AR —
(©) (d)

FIGURE 4. Scattering mechanisms (a) Surface scattering, (b) Double
bounce scattering, (c) Volume scattering and (d) Helix scattering.

directly relating to physical structures with canonical physical
models.

Polarimetric decomposition models and their components
used in this study are shown in Table 3 and scattering
mechanisms are shown in Figure 4.

Freeman-Durden is one of the first three-component inco-
herent model-based decompositions. The three-component
scattering mechanism includes surface scattering from a
rough surface, double bounce scattering from the dihe-
dral surface, and volume scattering from randomly directed
dipoles. Freeman-Durden decomposition assumes the reflec-
tion symmetry condition for which the cross-correlation and
co-polarization are always zero. Freeman-Durden decom-
position provides a more realistic representation as it uses
scattering patterns with dielectric surface [27].

Based on the three-component scattering model approach,
Yamaguchi er al. proposed a four-component scattering
model [28], introducing a helix scattering term. Helix scat-
tering model removes the reflection symmetry assump-
tion since it is not always valid for various land covers
except for man-made structures and complex-shaped tar-
gets. Freeman-Durden and Yamaguchi decompositions have
advantages such as simplicity, easy physical interpretation,
computational efficiency and relatively good performance.
However, volume scattering contribution is overestimated
because the dynamic ranges of commonly used volume scat-
tering models are very limited.
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Radarsat-2 Imagery

Preprocessing
(Radiometric calibration, Speckle
filtering, T3 matrix generation,
Terrain Correction)

|
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| Sigma nought values (HH, HV.VH, VV) | Polarimetric Tar:gel Decompositions: |
I Yamaguchi
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| Soil moisture inversion
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FIGURE 5. Flow chart of study.

FIGURE 6. The preprocessed Radarsat-2 SAR data scene which includes
study area derived for 10 June 2015 using (a) sigma nought tecnique,

(b) Yamaguchi, (c) van Zyl, (d) Freeman-Durden, () H/A/« and (f) Cloude
decomposition models.

Van Zyl decomposition is an eigenvector-based
decomposition method [29], and the main idea of this decom-
position is to avoid the occurrence of nonphysical negative
power. In Freeman-Durden and Yamaguchi decompositions,
negative eigenvalues of covariance matrix can be generated
for surface and double-bounce scattering components. Thus,
the results of these decompositions are physically incorrect.
The polarimetric components of van Zyl decomposition are
surface scattering, double bounce scattering and volume
scattering.

Cloude decomposition is an eigenvector-based decom-
position that is based on an algorithm to identify the
dominant scattering mechanism to extract the largest eigen-
value of coherency matrix [30]. The components of this
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FIGURE 7. The preprocessed Radarsat-2 SAR data scene which includes
study area derived for 3 March 3016 using (a) sigma nought tecnique,
(b) Yamaguchi, (c) van Zyl, (d) Freeman-Durden, () H/A/« and (f) Cloude
decomposition models.

35 | RMSE: 13.0144 .

20

Retrieved Soil Moisture (%)

0 5 10 15 20 25 30 35
Observed Soil Moisture (%)

FIGURE 8. Soil moisture inversion using semiempirical models for
10 June 2015 Radarsat-2 data with Dubois (1995) model.

decomposition are surface scattering, double bounce scatter-
ing, and volume scattering.

Cloude-Pottier decomposition is based on eigenvector
decomposition of the coherency matrix and is also called as
H / A / o decomposition. This method decomposes com-
plex scattering into three polarimetric parameters, which
are entropy (H), anisotropy (A), and mean alpha angle («).
Low entropy values generally define the dominant scattering
mechanisms, and high entropy values define the random com-
binations of different scattering mechanisms [31]. The alpha
angle has three specific states as ¢ = 0°, 45° and 90° due
to surface scattering, volume scattering and double-bounce
scattering, respectively. Anisotropy is a useful parameter to
distinguish scattering mechanisms and define the relative
importance of second and third eigenvalues.

In this study, the sigma nought radar backscatter coeffi-
cients and the components of Yamaguchi, van Zyl, Freeman
Durden, H/ A /o and Cloude polarimetric target decomposi-
tions were extracted as feature vectors from the preprocessed
Radarsat-2 images of 10 June 2015 and 3 March 2016 for
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FIGURE 9. Soil moisture inversion using semiempirical models for
3 March 2016 Radarsat-2 data with Oh (1992) model.
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FIGURE 10. Soil moisture inversion using semiempirical models (a)
10 June 2015 Radarsat-2 data, (b) 3 March 2016 Radarsat-2 data.

the inversion of soil moisture using the semiempirical and
machine learning models. While the radar backscatter coef-
ficients (ofyy, oy, oy, oyyy) wWere used for retrieving with
the semiempirical models, the polarimetric decomposition
components and the radar backscatter coefficients were uti-
lized as the input of the machine learning models for inversion
process. The flow chart of the study is given in Figure 5.

IV. RESULTS AND DISCUSSION

In this section, the results of soil moisture inversion from
Radarsat-2 images are presented. The semiempirical and
machine learning models employed for this purpose and
analyzes for two different periods are given.

To obtain the sigma nought values and polarimetric
decomposition parameters to be used in the inversion of soil
moisture from Radarsat-2 SAR data, firstly, the raw Radarsat-
2 image was preprocessed. The preprocessing steps applied to
the images were detailed in the section SAR Imagery and Pre-
processing. The GPS data corresponding to the points of the
ground measurements were processed on the preprocessed
image. After that, a cell consisting of 3 x 3 pixels of the image
around ground measurement point were averaged. Then, the
sigma and polarimetric parameters values were extracted and
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FIGURE 11. Soil moisture inversion using feature vector consists of
Yamaguchi decomposition components by means of LS-SVM machine
learning method for all samples of 10 June 2015.

45 =
e
gy La
40+
g
3
g 35
=
E
- 301
©
©
E v 5 ia
? 25+t ’ El
w e == =y=T
—Fit
20
20 25 30 35 40 45

Observed Soil Moisture (%)

FIGURE 12. Soil moisture inversion using feature vector consists of
Yamaguchi decomposition components by means of LS-SVM machine
learning method for all samples of 3 March 2016.

these values were recorded to use as an input for semiempir-
ical and machine learning models. The extracted values from
Radarsat-2 images for each point of ground measurements
were 4 sigma nought values, 4 Yamaguchi decomposition
values, 3 van Zyl decomposition values, 3 Freeman-Durden
decomposition values, 3 Cloude-Pottier decomposition val-
ues, 3 Cloude decomposition values. Eventually, a total
of 20 features were generated for each cell. This process
was repeated for 272 sampling points of 10 June 2015 and
156 sample points of 3 March 2016 Radarsat-2 images.
The parameters extracted from the image for polarimetric
decomposition methods were summarized in Table 3. The
final Radarsat-2 SAR data derived for two periods using
sigma nought and polarimetric techniques were presented
in Figure 6 and 7.

Performance measurement for model estimates was
performed with root mean square error (RMSE). RMSE is a
common tool used to measure the difference between values
estimated by a model and the values measured. In this study,
this statistical index is expressed as the percentage of volu-
metric soil moisture. RMSE is calculated with the following
formula:

N
1
RMSE = |+ ; (ei — 0;)? (28)
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components, (d) van Zyl decomposition components, (e) Cloude
decomposition components, (f) H/A/« decomposition components.

where N is the number of samples, m; is the observed value
of sample i, and e; is the estimated value of sample i.
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The semiempirical Oh (1992), Dubois (1995) and
Oh (2004) were evaluated to retrieve the surface soil
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TABLE 4. The comparison of different approaches for soil moisture inversion.

Reference Province Dataset Performance Methods
Proposed Bare and vegetated  Radarsat-2 data & RMSE = 13.01 % with Semiempirical methods,
method fields (Turkey) Ground semiempirical methods, Polarimetric
Measurements RMSE = 2.72 % with decompositions, Machine
machine learning learning
[33] Vegetated lands CYGNSS data & RMSE =5.12 % Machine Learning based
(North America) Ground algorithm
Measurements
[13] Bare fields ERS-SAR & RMSE =6 % ANN
(Europe) Ground
Measurements
[34] Vegetated fields UAVSAR & SMAP RMSE=6-12% Polarimetric
(Canada) datasets decomposition
[35] Bare fields Radarsat-2 & [EM RMSE=6.5-9.8% ANN
(France) datasets
[36] Vegetated fields Radarsat-2 data & RMSE =1.76 - 2.81 % Polarimetric
(China) Ground decomposition, Bragg, X-
Measurements Bragg, ISSM
4] Bare fields (China)  TerraSAR-X, RMSE=2.2-3% SVR, Modified Dubois
Radarsat-2 & model
Ground
Measurements
[37] Bare and vegetated  Landsat, Radarsat-1 =~ RMSE =3.39 - 8.29 % Multiple regression,
fields (USA) & Ground Neural network, Fuzzy
Measurements logic
[15] Vegetated fields Radarsat-2 data & RMSE =4.85% SVR, Polarimetric
(Italy) Ground decomposition
Measurements
[38] Vegetated fields Radarsat-2 data & RMSE =4.43 % MWCM
(Canada) Ground
Measurements

moisture content. These semiempirical models are not as
complicated as theoretical models but not as simple as
empirical models. The semiempirical soil moisture inversions
were calculated based on preprocessed imagery by means of
PolSARpro source code of these models. The PolSARpro
is open-source SAR analysis software created by the Euro-
pean Space Agency (ESA). The source code for the three
surface inversion models was evaluated to retrieve dielec-
tric constant and volumetric soil moisture. The Oh (1992)
and Dubois (1995) models retrieve the dielectric constant
and Oh (2004) model directly retrieves the volumetric soil
moisture.

The accuracy of semiempirical models were obtained
as 13.01 vol % RMSE for 10 June 2015 sample points
using Dubois (1995) model and 22.93 vol % RMSE for
3 March 2016 sample points using Oh (1992). The sample
scatter plots given in Figure 8 and 9 show the relationship
between the retrieved and observed soil moisture for 10
June 2015 Radarsat-2 data with Dubois (1995) model and
3 March 2016 Radarsat-2 data with Oh (1992) model, respec-
tively. The results of all semiempirical models for two periods
are presented in Figure 10.

VOLUME 8, 2020

It is seen that most of the soil moisture inversions
carried out with the semiempirical approach for the datasets
of 10 June 2015 and 3 March 2016 were out of the
validity ranges of models. Soil moisture inversions car-
ried out with Oh (1992), Dubois (1995) and Oh (2004)
for 10 June 2015 dataset, 74, 74 and 11 inversions
were in the model validity ranges, respectively, and for
3 March 2016 dataset, 54, 106, 16 inversions were in the
model validity ranges, respectively.

In the machine learning approach, soil moisture inver-
sion was performed using 5 different methods which were
LS-SVM, GRNN, ELM, KELM and ANFIS. Training and
test sets were created to calculate the success of these meth-
ods. Soil moisture ground measurements were defined as the
target vector for machine learning methods. In the testing
phase, 10-fold cross-validation was used to validate the suc-
cess of the system. In k-fold cross-validation method [32],
the data set is randomly divided into k parts. Each time, one
part of this data set is used for testing while the rest is used
for training. At the end of k trials, each part of data is used
for testing and the accuracy of the system is calculated as the
average of the error obtained for all data parts.

197905



IEEE Access

H. Acar et al.: Soil Moisture Inversion via Semiempirical and Machine Learning Methods With Full-Polarization

The accuracy of the machine learning models, for example,
were obtained 4.80 vol % RMSE for all samples of 10 June
2015 and 3.13 vol % RMSE for 3 March 2016 by using the
LS-SVM model. This model was trained with the dataset
containing Yamaguchi decomposition coefficients as input.
Among the machine learning approaches used, LS-SVM,
GRNN, ELM and KELM generally gave the best RMSE
results for both periods. The RMSE values obtained with
ANFIS were mostly higher. The scatter plots given in
Figure 11 and 12 show the relationship between the esti-
mated value by LS-SVM machine learning model using
feature vector consist of Yamaguchi decomposition compo-
nents and measured soil moistures for 10 June 2015 and
3 March 2016, respectively. The calculated RMSE results of
all machine learning models using different feature vectors as
input are presented in Figure 13 and 14 for 10 June 2015 and
3 March 2016, respectively.

When all results are compared, the inversion of soil mois-
ture with semiempirical models gave much worse results
than the machine learning approach. This might be because
the surface of study area is covered with vegetation. More-
over, in order to get accurate results from semiempiri-
cal models, the parameters, which include soil moisture,
radar incidence angle and surface roughness, must be in
model validity ranges. Otherwise, the models cannot produce
accurate results, and this restricts the use of semiempirical
models.

Although the machine learning approach gave better
results than semiempirical models for soil moisture inversion,
it has some drawbacks. One of the main disadvantages of
machine learning approach is that it needs to collect a large
number of samples for the acceptable accuracy of results.
Looking at the machine learning methods used in this study;
GRNN, ELM and KELM methods were much faster than
LS-SVM and ANFIS methods during the training of the
model.

Several other literature studies on soil moisture inversion
by different approaches were given in Table 4. It can be said
that the proposed models in this study also produce good
and noticeable results compared to the other studies in the
literature.

V. CONCLUSION

In this study, the performance of semiempirical and machine
learning models was evaluated for soil moisture inversion
employing Radarsat-2 SAR imagery.

The results indicated that the machine learning models
could perform much better compared to the semi empirical
models for soil moisture inversion because semiempirical
models only give accurate results depending on the soil mois-
ture, radar incidence angle and surface roughness parameters
in model validity ranges. Therefore, this limits the usage area
of semiempirical models. When machine-learning methods
used in this study are considered, GRNN, ELM and KELM
were very fast, however LS-SVM and ANFIS had more com-
putation time in training stage.

197906

To sum up, the results of this study showed that SAR
remote sensing data could be used for soil moisture inversion
fast and with acceptable accuracy thanks to machine learning
approach.

In future studies, it is planned to conduct comprehensive
analysis for soil moisture inversion with the combination
of active and passive sensor data and more ground truth
measurements to improve the proposed approach.
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