IEEE Access

Multidisciplinary : Rapid Review : Open Access Journal

Received October 12, 2020, accepted October 28, 2020, date of publication November 2, 2020, date of current version November 13, 2020.

Digital Object Identifier 10.1109/ACCESS.2020.3035192

A Power-Efficient Approach to Detect Mobile
Threats on the Emergent Network Environment

CHIA-MEI CHEN', YI-HUNG LIU2, ZHENG-XUN CAI"“1, AND GU-HSIN LAI'“3

! Department of Information Management, National Sun Yat-sen University, Kaohsiung 804201, Taiwan
2Department of Computer Science and Information Management, Soochow University, Taipei 11102, Taiwan

3Department of Technology Crime Investigation, Taiwan Police College, Taipei 116081, Taiwan

Corresponding authors: Yi-Hung Liu (randyliu@scu.edu.tw) and Chia-Mei Chen (cmchen @mis.nsysu.edu.tw)

ABSTRACT Mobile and IoT devices are blooming, and their applications are prevailing worldwide. In the
meantime, the Industry 4.0 trend converges industrial control systems with the internet environment, which
makes it vulnerable. Mobile and IoT applications provide seamless connectivity to the emergent network
environment for daily work. As mobile phones contain privacy information, malicious mobile applications
could compromise mobile devices and cause financial losses. Moreover, attackers could launch DDoS attacks
to exhaust a resource of mobile or IoT devices in the emergent network environment. Static malware analysis
consumes less computing resources and power than dynamic analysis. This study proposes a power-efficient
solution to identify mobile threats, which applies taint analysis to protect the emergent network environment.
The experimental results show that the proposed approach could detect mobile malware efficiently.

INDEX TERMS Internet of Things, malware detection, static analysis, cyberattacks.

I. INTRODUCTION

The Industry 4.0 revolution has dramatically transformed
how manufacturing and industrial companies operate. The
traditional industrial control systems were deployed in iso-
lation and without security control. As the new emergent
network environment interconnects multiple networks such
as the Internet, wireless networks, cellular networks, and cor-
porate internal networks, it dramatically expands the attack
surface and increases the potential security risk [1].

Mobile devices and Internet of Things (IoT) are growing
at a rapid speed. The total number of devices connected to
the network will grow to 50 billion in 2020 [2]. A spending
guide from International Data Corporation [3] forecasted that
IoT spending will experience a compound annual growth
rate of 13.6% and reach $1.2T in 2022. IoT technology is
being applied to various fields such as safety, transportation,
industrial, healthcare, and building.

IoT devices make the boundary between cyberspace and
real-world disappear and IoT related cyberattacks can be
extended to the damage of real-world [4]. On the other
hand, the use of smartphones is increasing daily as well, and
they are extensively integrated with the emergent network
environment. IoT providers integrate smartphones to provide

The associate editor coordinating the review of this manuscript and

approving it for publication was Ilsun You

ubiquitous computing and to increase the computing services
of IoT networks. Mobile phones have become a control panel
for managing IoT environments [5].

While IoT smart devices provide more features, they also
introduce new security threats. A common perception is
that IoT devices are protected from Internet attacks by the
perimeter security offered by home routers or industry inter-
nal networks. Attackers could steal privacy information via
printers [6] or take control of power switches [7] remotely.
The survey [8] shows that mobile malware is one of the
major issues in the IoT security. Mobile users would expect
an increase in mobile malware, particularly on the Android
platform, as it held over 85% of the total market share on
mobile devices [9]. The great volume of Android devices now
becomes targets for attackers.

The development of demand for seamless connectivity
among IoT devices and networks provides ubiquitous com-
puting. On the other hand, the vulnerabilities are normally
considered for large infrastructures and little attention was
paid to the cyber threats from mobile devices. The mobile
security issues are not too dissimilar to those already affect-
ing traditional IT networks. The most significant issue
is the emergence of traditional malware such as viruses,
worms, Trojan horses, and rootkits. Malicious software in
this context behaves similarly to the same threats on tra-
ditional IT networks. Mobile malware may be targeted at

This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License.

199840

For more information, see https://creativecommons.org/licenses/by-nc-nd/4.0/

VOLUME 8, 2020


https://orcid.org/0000-0002-2978-9020
https://orcid.org/0000-0001-8310-5120
https://orcid.org/0000-0002-0604-3445

C.-M. Chen et al.: Power-Efficient Approach to Detect Mobile Threats on the Emergent Network Environment

IEEE Access

exfiltrating sensitive data or leveraging the compromised
asset to access sensitive information in the emergent network
environment.

Mobile developers offer software for free in order to collect
user information for data analytics and marketing purposes.
An example might be a free social network application for
users to communicate with friends and to collect users’ con-
tact list for marketing purposes. This behavior is not always
malicious to the users, but the users might not be aware that
their information is utilized for other purposes.

Mobile users store their personal information such as user-
names and passwords on their phone so that they can work
efficiently such as checking emails or online banking at
anytime and anywhere. Mobile malware FakeToken attacked
financial applications as well as apps for booking taxis,
hotels, tickets, etc. [10] Mobile malware family Fakelnstaller
sends SMS messages to premium rate numbers without the
user’s consent [10]. Therefore, data leakage is a serious secu-
rity threat to mobile devices.

Anti-virus software is a common static analysis approach
for detecting malware with signatures that are efficient for
identifying known malware. The study [11] shows that
Android turned out to be the fourth architecture with the
newest variants of malware. Signature-based approaches
might not be able to identify mobile malware efficiently;
behavior-based detection approaches could identify vari-
ants of malware as long as they exhibit similar malicious
behaviors.

According to the McAfee Mobile Threat Report [12],
in order to bypass the detection in app stores, mobile mal-
ware might infect mobile phones by communicating directly
with users via SMS. Some malware might execute a mali-
cious external program. Three samples below illustrate the
malicious behaviors aforementioned. The first sample code
in Figure 1 outlines that the mobile malware constructs and
sends out an SMS text message. The SMS message could
contain a malicious link and then infect the victim’s contact
list. The second one shown in Figure 2 acquires the vic-
tim’s privacy information, constructs a URL with the sensi-
tive information, and connects and reports to the command
and control server through the URL. The HTTP response
from the command and control server may contain mal-
ware download or attack command such as exploiting IoT
devices or infecting more devices. The third sample code
in Figure 3 first gets a malicious program, writes it into an
array, and then executes this external program.

There are two common approaches for malware detection:
dynamic and static analysis. Dynamic analysis executes a
program sample in a controlled environment (sandbox) to
observe the execution behaviors and to identify malware.
It requires a correct input sequence to trigger malicious
behaviors and would consume a lot of computing resources
in order to capture the execution behaviors. To evade detec-
tion, malware might stay dormant in such a sandbox envi-
ronment or can become active only by specific inputs or
conditions.

VOLUME 8, 2020

// Define function which invokes API function call to send a text message
function sendsms(String s, String s1, String s2, Context context)

[V TN

SmsManager.getDefault().sendTextMessage(s, null, s1,
Pendinglntent.getBroadcast(context, 0, new Intent("SMS_SENT"), 0),
Pendingintent.getBroadcast(context, 0, new Intent("SMS_DELIVERED"), 0));
}

// program starts execution from here

9 function onStart

10 {.

11 //send a SMS message "8" to phone number "1066156686"

12 sendsms("1066156686", "8", ", this);

13 .}

© N o

FIGURE 1. An illustration of sending an SMS message.

1 //Class AitHorSoundService method getUserInfo collects user info and stores into variables which pass to
another class.

2 class AirHornSoundService method getUserInfo {

4 deviceld = telephonymanager getDeviceld();
5 mobile = telephonymanager.getlineINumberf();
6  country = telephonymanager.getNetworkCountrylso().toUpperCase();

7 carrier = telephonymanager.getNetworkOperatorName();

9 1}
10 // Class AirHornSoundService method handleCommand constructs notifier with user info.

1

=

class AirHornSoundService method handleCommand{
12 .
1

@

notfier = new Notifier(deviceld, mobile, country, carrier, email);

14 .

15 }

16 //Class Notifier method Notifier passes the user info to URL and invoke read() to make the HTTP connection

1

N

class Notifier method Notifier(String s, String s1, String s2, String 53, String s4){

18 ..

-
©

//Nariable params constructs a string of user info

2

15}

params = "appld=1&deviceld="
.append(s).append("&mobile=").append(s1)
.append("&country=").append(s2)
.append("&carrier=").append(s3)
.append("&email=").append(s4).toString();
2

=

// Variable pollURL s a constructed URL with user info which is sent to read()

2

~

pollURL = “http://www.typ3studios.com/android_notifier/notifier.php?”
.append(params).toString();

23 ..

2

=

read(pollURL);
% .
2

Y

// Class Notifier method read() sends the URL request and receives the response from the server.
27 //URL(s)is an object of URL string; method openStream() opens the URL

2

©

// InputStreamReader receives the response from the URL

2

©

// BufferedReader stores the info into buffer

3

o

Return new BufferedReader(new InputStreamReader((new URL(s)).openStream()), 8192);
31 ..
32}

FIGURE 2. An illustration of stealing user privacy information.

Taint analysis or taint tracking can track the information
flow dynamically or statically. It tracks sensitive ““‘tainted”
information of a target application by starting at a pre-defined
source (e.g. a method of getting device ID as shown
in Figure 2) and following the data flow until it reaches a
given sink (e.g. a method writing the information to an URL
as shown in Figure 2), the information about where data may
be leaked to [13].

199841



IEEE Access

C.-M. Chen et al.: Power-Efficient Approach to Detect Mobile Threats on the Emergent Network Environment

1 //get a malicious APK file via AssetManager and use InputStream write malicious file to array
byteArr.
AssetManager assetmanager = getAssets();

InputStream inputstream = assetmanager.open("malicious_file_name");

5
3
4 byte byteArr[] = new byte[inputstream.available()];
5 inputstream.read(byteArr);
6 //create temp file "extract.tmp" in path “rootDirPath”

7 File file = File.createTempFile("extract", "tmp", "rootDirPath");

8  //use FileOutputStreamto write content of byteArr[](malicious) into a file

9  FileOutputStream fileoutputstream = new FileOutputStream(file);

S

fileoutputstream.write(byteArr);

/[call runtime to execute the external malicious program

12 Runtime.getRuntime().exec("rootDirPath"+file.getAbsolutePath() );

FIGURE 3. An illustration of external program execution.

Static analysis analyzes malware code without execution
and consumes fewer resources and less power. Static analysis
is a power-efficient approach. Commercial anti-virus is a
static analysis by signature matching, but the detection rate
relies heavily on the signatures. A new variant of malware
could bypass such detection easily, making mobile devices
vulnerable.

Taint analysis could identify malware variants as it tracks
data movement and does not relies on signatures. Most
taint analysis researches focus on data leakage and some
are dynamic analysis based. The proposed taint analysis
solution could identify data leakage as well as remote
execution.

Based on the literature review, it can be observed that
concluded that (1) malware variants grow fast; (2) most
mobile malware targets on information stealing, sending SMS
messages, and remote execution; (3) a power-efficient mobile
malware detection is required. The literature review sug-
gests that static analysis approaches are suitable for detect-
ing mobile malware as mobile devices have limited power
and computing resources and that taint analysis is good at
identifying malware variants. By combining the above two
approaches, this study proposes a static-based taint analysis
approach to identify misbehaviors and malware variants for
mobile devices.

The proposed detection method applies reverse engineer-
ing to reconstruct binary applications into source code form,
builds the relationships among the accessed data and API
calls, and detects anomalous data flow movements by taint
analysis.

To establish the relationships among the data and API calls,
this study proposes a data model that explores the aliasing
and the linkage relationships in multiple levels. Most taint
checking addresses information leakage as it tracks informa-
tion flow. The proposed approach extends it by tracking data
as well as methods so that untrusted external execution can
be captured.

To the best of our knowledge, this is the first attempt to
build a data model for connecting the relationships among
the objects, methods, and classes referenced by a mobile
application and to develop threat patterns by using a data
model and static taint analysis to identify unknown mobile
malware.

199842

In summary, this article has the following contributions:
1. A static taint analysis detection method is proposed
for identifying malicious mobile applications; 2. The pro-
posed approach could identify unknown malware variants;
3. A multi-level data model is proposed, which extends the
taint analysis to identify not only information leakage but
external program execution.

The rest of the paper is organized such that the related work
is studied in Section 2. The detection approach is discussed in
Section 3 followed by performance evaluation in Section 4.
The conclusions are drawn in Section 5.

Il. RELATED WORK

Dynamic analysis executes applications in a controlled envi-
ronment in order to observe the behaviors. Isohara et al. [14]
performed the dynamic analysis under a sandbox with a mod-
ified kernel in order to collect the kernel behaviors including
system calls, I/O events, and process events. They summa-
rized sixteen signatures in regular expressions to identify sus-
picious mobile applications. Event logs collected by Isohara’s
need to be transferred to a computer for further investigation.

Blising et al. [15] designed a sandbox for executing
mobile applications; an analysis method is needed to identify
anomalous behaviors collected from the sandbox. Igbal and
Zulkernine [16] proposed a monitoring mechanism that
records system call invocations of the running processes and
detects suspicious ones according to the pre-defined policies.
Shabtai er al. [17] proposed a dynamic analysis framework
and evaluated several combinations of anomaly detection
algorithms and feature selection methods in order to find the
combination that yields the best performance. Dini et al. [18]
proposed a two-level anomaly detection with two-level fea-
ture sets: the kernel and application level. The system pro-
posed by Dini needs to be installed on smartphones in order
to collect the required features.

Static analysis is a white-box approach in which a tar-
get sample is de-compiled into a source code format for
further analysis. Some code might apply obfuscation to
prevent de-compilation, and the official Android developer
website suggests to obfuscate code by renaming identifiers.
Tools [19] are available for the purpose, while obfuscation
can be de-obfuscated by some open source tools such as
DeGuard which is based on a statistical de-obfuscation model
to recover method and class names [20], [21].

Android mobile applications should request permission
for accessing data, network, or certain system features.
Permission-based approaches examine the Android Manifest
file to investigate malicious characteristics. Cerbo et al. [22]
applied an association algorithm, Apriori, to analyze
requested permissions and those that an app actually accesses.
An application is identified as malicious if the later set is not
a subset of the requested. Takayuki ez al. [23] proposed a risk-
score method to assess mobile applications, which considers
permissions requested, download rates, and user ratings.

Almin and Chatterjee [24] applied Naive Bayes classi-
fication approach by using the requested permissions as

VOLUME 8, 2020



C.-M. Chen et al.: Power-Efficient Approach to Detect Mobile Threats on the Emergent Network Environment

IEEE Access

the primary features. Sahin et al. [25] proposed a weight
function based on permission and applied Naive Bayes
and K-nearest Neighbor to identify malware. Lépez and
Navarro et al. [26] proposed a framework of static anal-
ysis based on the requested permissions. The study eval-
uated multiple machine learning classification approaches
and concluded that KNN, SVM, and decision tree perform
better.

AppProfiler [27] creates a profile of application behav-
ior and attempts to provide more information than per-
mission by considering system logs. Feizollah et al. [28]
evaluated how effective is Android intents and permissions
as a feature to identify mobile malware. They concluded
that intents or permissions should be used with other known
promising features.

Adopting the requested permissions to identify mobile
malware is easy but not adequate, as applications could
execute a privilege without permission request. Likewise,
applications could access sensitive data without request-
ing [29]. In summary, permission-based approaches are not
efficient.

Static analysis based features can be broadly categorized
into the following types [30]: API, function calls, code struc-
tures, sources and sinks, bytes, strings, and permission. Some
studies consider API call invocations as important informa-
tion for identifying malicious behaviors. Yerima ef al. [31]
chose important API calls and system calls by using feature
selection and applied the Bayesian classification approach
for detection. Wu et al. [32] combined permissions and API
calls and applied the K-means algorithm to classify mobile
applications.

Firdaus et al. [30] applied genetic search (GS) to retrieve
the optimal and smallest set of static analysis based features,
and the features considered are string-based features includ-
ing permission, the words in the double quotes, function calls,
system commands, and directory paths. Their experiments
indicate that the detection results after GS out-performs that
before GS.

Milosevic et al. [33] evaluated the performance of different
machine learning models for detecting malware. They con-
cluded that static analysis of source code has higher detec-
tion rate than that of permissions and classification models
outperform clustering models.

Like other dynamic analysis approaches, dynamic taint
analysis executes programs in a virtual environment [34],
where it monitors and tracks the flow of sensitive data (aka
tainted data), such as users’ private information or network
communication [35]. TaintDroid [36] implemented the mul-
tiple levels of tracking: variable, message, method, and file
to ensure persistent information conservatively retains its
taint markings. TaintChaser [37] is an improvement work
of the above work by testing Android software automat-
ically. The study claimed that it could identify more pri-
vacy leakage than the previous work. Most dynamic taint
analysis solutions require to be installed and executed on
smartphones and consume a lot of computing resources,

VOLUME 8, 2020

such as computing, storage, network, and battery. There-
fore, mobile users would experience performance downgrade
during analysis and detection. Moreover, advanced malware
may circumvent dynamic analysis detection by applying
anti-analysis approaches such as anti-rooting, anti-emulating,
and anti-debugging [38].

Static taint analysis tracks data with taint tags by following
them to their operations also known as sinks. To build the
mapping relation between the data and the operation, call
graph and control flow graph (CFG) are common approaches
along with static taint checking. Static taint checking based
approaches [39], [40] were proposed to detect information
leakage.

FlowDroid [13] is a static taint checking framework which
computes one call graph for each component of the tested
application and extends it to include callback functions and
method invocations. While this method is more expensive
than just scanning for classes implementing the callback
interfaces. AndroidLeaks [41] finds potential leaks of sensi-
tive information in Android applications on a massive scale.
It creates a permission mapping, a mapping between Android
API calls and required permissions and generates a call graph
to determine the methods which invoke sensitive methods.

DroidChecker [42] detects Android capability leaks by
CFG. The study demonstrated that, with few extra lines of
code, an Android application could access a contact list
without any permission. DroidSafe [43] combines static and
dynamic analysis, where a combination of analysis that
scan statically resolve communication targets identified by
dynamically constructed values such as strings and class des-
ignators. The analysis does not have a fully sound handling of
Java native methods, dynamic class loading, and reflection.
Based on the literature review, taint tracking based studies
mainly focus on information leakage.

Ill. THE PROPOSED APPROACH

Malicious behaviors of mobile applications mainly can be
categorized into three types: sending an SMS message, infor-
mation leakage, and remote execution as mentioned and
illustrated in the introduction. The proposed method adopts
static analysis and hence applies reverse engineering technol-
ogy [44] to retrieve the source code of a target mobile applica-
tion. However, the source code from reverse engineering loses
important information. To overcome the problem, this study
proposes a multi-level data model which reestablishes the
linkage among the classes, function calls, and data objects.
By using the data model, the proposed detection method can
track the movement of sensitive data as well as the invocation
of sensitive function calls to identify the above suspicious
behaviors.

The proposed detection method consists of three phases.
The first phase reconstructs an executable mobile application
bytecode into source code by reverse engineering technol-
ogy. The second phase builds up a data model by exploring
the relationships among the classes, objects, function calls,
and data entities of the target code. The last phase tracks

199843



IEEE Access

C.-M. Chen et al.: Power-Efficient Approach to Detect Mobile Threats on the Emergent Network Environment

De-compilation

.........................

Building Data Model

Class Property Mapping
v

APKTools

Method Variables Mapping
v

Node Dependence
Establishment

Code

Reconstruction

FIGURE 4. The proposed detection method.

sensitive data movement and sensitive function call invoca-
tion by using taint analysis and identifies if sensitive informa-
tion is tainted or not. The system architecture of the proposed
approach is depicted in Figure 4.

Phase 1 (De-Compilation): An Android application is in
.apk file extension form; apk stands for Android Application
Package. An .apk file is an installer package file, containing
the following information: app resources, manifest, signa-
ture, as outlined in Figure 5. The code reconstruction is
to disassemble a given mobile application into java source
code. Several open source solutions can be applied such
as apktool, dex2jar, and java decompiler. Apktool decodes
resources to the original form and transforms Dalvik byte-
code (classes.dex) into Smali source; dex2jar converts Dalvik
bytecode to java bytecode (.jar); a java decompiler, such
as jadx, JDCore, or JAD, decompiles java bytecode to
source code.

. -

mA BEE AE & #=&H O RE =R

# || pADownloads\EE\Gerena fBi2513% v1.29.1.2_apkpure.com.xapkicom.garena.game kgtw.apk\

=B F HEERN
asset: 47 207 961 15198933
com 17354 4101
lib 42 457 676 18031 607
META-INF 258768 81032
org 28755 11103
res 2200680 1959919

Ell AndroidManifestxml 30 648 8012

| classes.dex 7221448 2928 941

[ resources.arsc 837 464 837 464

FIGURE 5. Anatomy of an Android app.

Figure 6 illustrates a sample of de-compilation. Each step
of de-compilation loses some important information; trans-
forming Dalvik bytecode to java bytecode loses important
metadata. Therefore, the next phase of the proposed approach
reestablishes the missing relationships among classes, meth-
ods, and data objects.

Phase 2 (Building Data Model): This phase examines
the source code obtained from de-compilation and creates a
data model that builds the relationships among the objects
accessed by the code. Based on the object-oriented concept,
the proposed multi-level data model consists of three levels of
objects: class, method, and variable, as illustrated in Figure 7.
Each instance of an object is represented as a node; each level
of anode is associated with a set of attributes. The classes and

199844

-

Analysis & Detection

Taint Data Exploration

Send SMS Data Leakage
Execution

Taint Analysis

Remote

/

methods in the data model are those defined or accessed by
the target code; the variables represent the local variables and
parameters referenced by a given method.

New Android operating systems release frequently; new
API functions are defined and some dated ones might be
removed. To keep the API functions up to date, the pro-
posed method designs a crawler that automatically and peri-
odically fetches APIs from the official developer website,
develop.android.com. The crawler first creates a list of web
links obtained from the web page of the official online
Android documents, grabs the web page from a link in the list
recursively, and retrieves all links from each visited web page,
adds new unvisited links in the list for further exploration.
The API names can be captured from the link by removing
the predetermined prefix and postfix.

During the exploration of finding the relationships among
classes, methods, and variables, the proposed approach labels
sensitive data and sensitive methods in order to track the
movement at the next phase. Besides losing some impor-
tant information after de-compilation, the reverse-engineered
source code usually contains many ‘“‘goto” statements as
illustrated in Figure 8. Even though it loses the sequence of
the control flow, but the relationships among nodes remain
and can be discovered from the code.

To build the relationships among the three levels of nodes
in the data model, the proposed approach concludes the
following three cases of code execution action: 1. method
invocation; 2. variable assignment; 3. flow control. In the
case of method invocation, the proposed approach adopts
regular expression representation approach to extract method
invocation, then examines the parameters and variables of the
method. Figure 9 illustrates a case of method invocation; in
this sample, the proposed detection approach locates method
node mthdB and builds the linkages between variable nodes
a,b,candd, e, f.

In some cases of variable assignments, it is performed
through method invocation, as shown in Figure 10. Besides
building the linkage of method invocation, the proposed
approach also establishes that of the return value of the
method with the target variable node. The above two
cases (method invocation and variable assignment) might
interleave with the control flow statement, as illustrated
in Figure 11. Regular expressions are applied to identify this

VOLUME 8, 2020



C.-M. Chen et al.: Power-Efficient Approach to Detect Mobile Threats on the Emergent Network Environment

IEEE Access

G+ W0 wncmis) ¢ sk + spifoir + AR + A TR R | o 3 o § o § public boolean onOptionsItemSelected(Menultem menuitem)-
arE-  mATeWS-  AEES-  eEEGE
-t {
- menuitem.getltemId();-
. JVM INSTR tableswitch 1 2: default 28.
- /" 132
- " | 2455
’ goto L1 _L2 _L3.
- Ll
= boolean flag = false;-
= 15
return flag;.
o 12
SaveSettings();-
- finish();
77 a flag = true;
continue; /* Loop/switch isn’t completed */.
(a) List of files generated (b) Source code
FIGURE 6. An illustration of de-compilation result.
APK ‘
Class Name l l l l
v
el Ea ‘ Class A ‘ Class B ‘ Class C ‘ ClassD L]
Attribute .
Method
Method Name | Parameters
nnn Public Variables=—  Atribute Bb AtrbutcBa B B B MethodBa Method Bb Method Be — Raw Code Variables "
— — ResultList | Parent Node
Type Variable Name l J ‘
Taint Tags Ancestors x
i dam' 'Gmun 4 apr | Variable Baa Variable Bap Variable Bay Variable Bad LI ]
Parent Nede
FIGURE 7. The proposed multi-level data model.
public boolean onCptionsItemSelected (MHenultem menuitem) .
p Sample code Comment
e e ) L 4. derouie 28 mthdB(a,b,c); Define method mthdB which passes a. b, ¢ as
2 e parameters.
gove _L1 _L2 _L3
[ r1:
boolean flag — false: public void mthdB(obj d,obj e,obj f) Invoke method mthdB and pass d, e, f as
Ls:
B recurn flag: parameters.
L2
SawveSettings () -
P FIGURE 9. A sample of method invocation.
continme: /* Loop/switch isn't completed =/
Ls:
SawveSettings () -
Ao oo comer () £ Sample code Comment
finishi): varA = mthdB(a,b,c); Method methdB passes a, b, ¢ as parameters
fiag = crue:
e if(rrue) goro _LS: else goto L4 and the result is assigned to variable varA.

FIGURE 8. A piece of decompiled sample code with many goto
statements.

case and then the linkages among the nodes are constructed
accordingly.

Extracting method invocation or API calls is an impor-
tant part of the proposed static taint analysis. There
are 3 types of method invocations: methodA(a,b,c),
objectA.methodA(a,b,c), and methodA(methodB()), where a,

VOLUME 8, 2020

varD = objB.mthdC(d,e,f); Method methdC of object objB passes d, e, fas
parameters and the result is assigned to

variable varD.

FIGURE 10. A sample of variable assignment.

b, and c are method parameters, methodA and methodB rep-
resent a method (API function call), and objectA represents
an object. The first type, methodA(a,b,c), is a static
method invocation; the second type, objectA.methodA(a,b,c),

199845



IEEE Access

C.-M. Chen et al.: Power-Efficient Approach to Detect Mobile Threats on the Emergent Network Environment

Sample code Comment

for (int i=0;i<n;i++) arrayA[i]=arrayB[i]; | Variable assignments in a for loop.

While (doSomething()); Method invocation in a while loop

FIGURE 11. A sample of control flow.

is invoking a method from an object; the third type,
methodA(methodB()), is a recursive invocation. To extract
API calls from a target application efficiently, the proposed
method adopts regular expression to discover the invocations,
and the algorithm is outlined in Figure 12.

nString = "a-zA-Z_$0-9"
oString = "\+\-\*\/"

pattern = '['+ nString +']+(\.["+ nString +']+)*\([ '+ nString +

ostring +'().\'", J+\);?'

objectA.methodA(parameter);

for sourceCode in Application:
for line in sourceCode:
if regex(line, pattern):
methodCalls.append(line)

FIGURE 12. Algorithm of API cal extraction.

The parameter list of a method is important for taint
analysis. Hence, the proposed method extract method decla-
ration (definition) in order to understand the method param-
eters. The syntax of method declaration (definition) begins
with the prefix of “public/protected/private” and the rest
is similar to that of invocation. The algorithm of extracting
method declaration is outlined in Figure 13; like the method
invocation, the algorithm scans the code line by line and
searches for the matched patterns.

Fe

for method in methodCalls:
if “public/protected/private” in method:
methodDeclaration.append(method)

FIGURE 13. Algorithm for extracting method declaration.

Phase 3 (Taint Analysis): Taint analysis [45] can be seen as
a form of information flow analysis and tracks information by
the concept of source to sink. Information flows from node
X to node y, denoted x—y, when information stored in x
is transferred to y, as depicted in Figure 14. It uses tags or
labels to track the flows. If an operator uses the value of a
tagged node x to derive a value of another node y, y becomes
“tainted”’. Taint operator is denoted as t(); x—t(y) represents
node x taints node y. Taint operation is transitive; if x—t(y)
and y—t(z), then x—t(z).

Most taint analysis addresses information leakage by its
nature concept. The proposed approach extends it by tracking
data as well as methods so that untrusted external execu-
tion can be captured. The proposed approach generalizes
the concept of information flow by tracking the movement

199846

Node X

]

Information

Operation

Node Y ‘—‘

Value derived from X

FIGURE 14. Information flow.

of sensitive data and the invocation of sensitive methods.
Tainted sensitive nodes in the proposed data model can be
data or method. In this research, all the sensitive data and
methods are tagged, where tags are used to track the influence
of tagged nodes.

The taint operators defined in the proposed research
include assignments and sensitive methods. Three types of
malicious behaviors are considered in the proposed research:
sending an SMS message, executing an external application,
and information leakage; the associated methods and data
sources are summarized in Table 1.

TABLE 1. Taint analysis.

Sending an SMS message

Threat Source data Sensitive method

Send messages to a|Constant
fixed number|(String)
(String)

variables|send TextMessage()
sendMultipartTextMessage()

Send messages to a|Constant variables|
fixed number (Int) |(Integer)

toString()

Send messages|HttpClient.execute()

from a URL

HttpResponse.getEntity()

toString()

Executing an external application

Threat Source data Sensitive method
Execute  externallAssetManager.getAssets( |Runtime.exec()
[program )

AssetManager.open()
FileOutputStream. write()

Information leakage

eviceSoft wareVersion()
TelephonyManager.getLi
ne I Num ber()
TelephonyManager.getSu
bscriberID()

Threat type Source data Sensitive method

subscriber info TelephonyManager.getSi |HttpClient.execute()
mSerial Number() [URL.openStream()
TelephonyManager.getD |[URL.openConnection()

[URL.getContent()

TelephonyManager.getD
eviceID()
call history getContentResolver()
contact info getContentResolver()

(ContactsContract.*

message info

getContentResolver()
(ContentResolver.query()

VOLUME 8, 2020




C.-M. Chen et al.: Power-Efficient Approach to Detect Mobile Threats on the Emergent Network Environment

IEEE Access

In this phase, the proposed approach scans the tagged
(tainted) nodes of the data model based on the data sources
listed in Table 1 and propagates the tainted nodes through-
out the data model by bread-first search. The taint analysis
algorithm is explained in Figure 15. Visiting every method
node in the data model, this phase inspects if a variable
node of a sensitive method is tainted. The proposed taint
analysis-based approach tracks the data and function calls
accessed by a mobile application; therefore, it could identify
if the target mobile application contains the potential security
threats mentioned above.

Input:
taintEntrylList - a set of tainted variables.

while taintEntryList not empty:
taintEntry = taintEntrylList.pop()
for descendant in taintEntry.descendantlLt:
if descendant.taintTaglList != taintEntry.taintTaglList:
descendant.taintTaglist = taintEntry.taintTaglList

taintEntrylList.append(descendant)

FIGURE 15. Taint analysis algorithm.

As for the time complexity, the proposed system consists of
de-compilation, API invocation extraction, and tainted anal-
ysis. It parses the code line by line three times to reconstruct
the source code, builds the data model, and extract API calls.
Therefore, the time complexity of the first two parts is O(n?).
The time complexity of taint analysis is O(n*), according
to the original study of taint analysis [46]. The taint analysis in
the proposed method involves the relationships among vari-
ables, methods, and objects, so the time complexity of taint
analysis is O(n?) as well. In summary, the time complexity of
the proposed malware detection method is O(1°).

IV. PERFORMANCE EVALUATION

This study conducted three experiments for system validation
and performance evaluation. The purposes of the experiments
are stated as follows: (1) to evaluate if the proposed detection
approach can identify malware correctly and efficiently; (2)
to evaluate if the proposed detection approach could identify
benign applications correctly; and (3) to compare the detec-
tion performance of new malware variants with the commer-
cial anti-virus software.

The malware samples were extracted from Zhou et al.’s
research [47], which were collected for more than one-year
effort including manual or automated crawling from a vari-
ety of Android Markets. 26 malware families with a total
of 305 samples were included in this evaluation. The research
categorized the malicious behaviors of each family including
privilege escalation, remote control, and information leakage
as summarized in Table 2. The benign samples were retrieved
from Google Play Market with the most popularity from
various types of mobile applications, ranging from games,
reader tools, translators, and photographic tools.

VOLUME 8, 2020

TABLE 2. The profile of the tested malware families.

Malware Privilege Remote control Info
family Escalation (SMS/net/phone) leakage
ADRD N
Asroot v
BeanBot v y
Bgserv v V
CoinPirate v V
CruseWin v V
DogWars v
Endofday \ N
FakePlayer v
Geinimi v \/
GGTracker N ~
GingerMaster v v V
GoldDream v N
Gone60 v
GPSSMSSpy v
HippoSMS v
Jifake \/
NickiSpy \/ \/
Pjapps \ v
RogueLemon \/ v
RogueSPPush v v
SndApps \/ V
Spitmo v V
Walkinwat v
YZHC V v
Zsone v

TABLE 3. The results of Experiment 1.
Malware family Detected/Samples  Detection rate
Total Average 290/305 95.1%
ADRD 22/22 100%
Asroot 7/8 87.5%
BeanBot 8/8 100%
Bgserv 9/9 100%
CoinPirate 171 100%
CruseWin 2/2 100%
DogWars 11 100%
Endofday 1/1 100%
FakePlayer 6/6 100%
Geinimi 65/65 100%
GGTracker 11 100%
GingerMaster 4/4 100%
GoldDream 35/42 83%
Gone60 9/9 100%
GPSSMSSpy 6/6 100%
HippoSMS 4/4 100%
Jifake 1/1 100%
NickiSpy 2/3 66%
Pjapps 50/56 89%
RogueLemon 1/1 100%
RogueSPPush 9/9 100%
SndApps 10/10 100%
Spitmo 11 100%
Walkinwat 11 100%
YZHC 22/22 100%
Zsone 12/12 100%

Experiment 1: Experiment 1 consists of two parts: the first
part evaluates the detection efficiency of the proposed solu-
tion against a malware data set and the second part validates
the detection correctness by examining two malware samples
manually. According to the detection results delineated in
Table 3, the proposed approach could identify the malware

199847



IEEE Access

C.-M. Chen et al.: Power-Efficient Approach to Detect Mobile Threats on the Emergent Network Environment

efficiently with the detection rate of 95.1% and could detect
the variances efficiently in most cases.

To further validate the correctness of the proposed detec-
tion approach, two samples were inspected manually and
examined by the proposed system. Malware sample 1 sends
out information through SMS message; sample 2 leaks pri-
vate information through the network. The graphic explana-
tion of the two samples is depicted in Figures 16 and 17.
Malware sample 1 first defines a method ‘“‘sendsms” that
invokes an Android API method “‘sendTextMessage” to send
out information through SMS message. Another user-defined
method “onStart” is an entry point of the malicious behavior
that accesses a sensitive tainted data source. By tracking the
information flow to the invocation of the method “‘sendsms”
and then “sendTextMessage”, the proposed system identifies
the misbehavior correctly.

sendsms(String s, String s1, String s2. Context context)

SmsManager. getDefault().send TextMessage(s, null, s1,
PendingIntent.getBroadeast(context, 0, new Intent("SMS_SENT"), 0),
PendingIntent.getBroadeast(context, 0, new Intent("SMS_DELIVERED"), 0)).// Send

SMS.

nction onStart

"1066156686", "8", "", this).//call sendsms function

FIGURE 16. Malware sample 1.

/fereate a HitpClient ~ HttpPostabject and get teley
HttpClient httpclient = new DefaultHttpClient();
TelephonyManager telephonyManager = getSystemService(Context. TELEPHONY _SERVICE);

HttpPost httppost = new HttpPost("http:/target.php");

try
//insert information into httppost object
List<NameValuePair> nameValuePairs = new ArrayList<NameV;

nameValuePairs.add(new BasicName ValuePair("deviceld" telephonyManager.getDeviceld()));

httppost.setEntity(new UrlEncodedFormEntity(nameValuePairs)
// use HtipClient to send out information by h

h(tpclienLexecule(hllppoat);}

FIGURE 17. Malware sample 2.

Figure 17 outlines how malware sample 2 sends out con-
fidential information via the HTTP protocol. It fills in the
content of an HTTP POST by creating an object Httpclient
whose parameter invokes the method ‘‘TelephonyManager.
getDeviceID()” to get the device ID, sensitive tainted data.
By tracking the source of the tainted data, the information
leaks out by invoking the method ‘“‘HttpClient.execute()”.

199848

TABLE 4. The results of Experiment 2.

Mobile application IMEI info leak
akunososhiki.app.flyyyHero-13
BattleCats Y
com.adobe.air-3500106
com.adobe.reader-69805
com.ainput.activity0-6
com.catstudio.littlesoldiers-11
com.devuni.flashlight-139
com.dreamstudio.bubblebear-6
com.droidhen. fruit-46
com.estrongs.android.pop-103
com.fairytale.yule-2001
com.fingersoft.hillclimb-27
com.game.JewelsStar-21
com.gamestar.pianoperfect-609
com.halfbrick.fruitninjafree-1603
com.hotdog.maze-11
com.igs.mjstar31-19
com.imangi.templerun-11
com.jumplife.tvdrama-17
com.jumplife.tvvariety-9
com.kfactormedia.mycalendarmobile-74
com.king.candycrushsaga-81
com.missingames.rescueroby.lite-7
com.mt.mtxx.mtxx-160
com.jin.games.cleverblocks-2
com.mufumbo.android.recipe.search-116
com.mxtech.videoplayer.ad-46
com.mybook.jpbookTY-1
com.nextmediatw-70
com.noodlecake.happyjump-4
com.orangefish.app.delicacy-1069
com.outfit7.talkingtom2free-2 1
com.pipcamera.activity-5
com.roidapp.photogrid-85
com.rovio.angrybirds-3000
com.shaun.emoticon-6
com.softstar.Richman-4
com.surpax.ledflashlight.panel-3
com.ted.android-18
com.vectorunit.yellow-7
com.wooga.diamonddash-102142
com.xidea.ChineseDarkChess2-44
com.zdworks.android.toolbox-263
idv.nightgospel. TWRailScheduleLookUp-108 Y
invoice.cof.tw-82
jp-co.ponos.battlecats-8 Y
la.droid.qr-532

Y

Y

<

o I e L ~

= ~< =

=

=

opop.phind.twcoupon-16
RailRush
com.webprancer.google.garfieldCoins-7

Untrusted network connections will be captured by the pro-
posed approach. The detection results of the tested malware
samples and the above two case studies conclude that the
proposed approach could detect mobile malware correctly
and efficiently.

Experiment 2: Experiment 2 is to evaluate if the proposed
approach classifies benign applications correctly. Fifty popu-
lar free applications were collected from Google Play, rang-
ing from games, reader tools, translators, and photographic
tools. The results show that 24 mobile applications (48%)
were considered as malicious. These applications leak device
information, such as IMEI number for advertisement pur-
poses after manual investigation. Some marketing companies
count the number of collected device information to evaluate

VOLUME 8, 2020



C.-M. Chen et al.: Power-Efficient Approach to Detect Mobile Threats on the Emergent Network Environment

IEEE Access

TABLE 5. The results of Experiment 3.1.

TABLE 5. (Continued..) The results of Experiment 3.1.

alware Name Norman
Modified Modified Asroot |Modified Sndapps nProtect
Antivi HippoSMS
ntivirus
Engine Name Panda
Sending premium |Execute External |Stealing device Id
Proposed Approach SMS by String  |Binary by java API PCTools
Agnitum Rising
AhnLab-V3 Sophos Andr/DroidRt-F
AntiVir Fip/ Linux.Lotoo SUPERAntiSpyware
Antiy-AVL Ezfloit/Linux.Lot Symantec
ELF:Lootor-G TheHacker
Avast [PUP]
AVG Android_¢.IIM TotalDefense
- - . AndroidOS_ROO
. Android.Exploit. TrendMicro -
BitDefender Asroot A i TCAQE.B
TrendMicro- AndroidOS_ROO
ByteHero HouseCall TCAGE.B
CAT-QuickHeal llij‘(plon.Lotoor.C VBA32
Exploit.Linux.Ge
ClamAV VIPRE neric.EIf
Commtouch ViRobot
Comodo
DrWeb Android.SmsSend | Android.Gingersp
.351.origi loit.3 Experiment 3: Malware writers tend to make changes in
. Android.Exploit. . .
Emsisoft PN (’ép) o malware in order to evade detection. To evaluate the detec-
eSafe tion performance on malware variants, Experiment 3 com-
P Android/Exploit pares the proposed approach with the commer01al antl-Vl.l"LIS
) Lotoor.AG software, which consists of two sub-experiments: the first
F-Prot one evaluates the variants of the malware families from the
F-Secure Exploit: Android/ dataset [39] and the second one evaluates new malware fam-
5;;’;‘;5";“"‘5' ilies which are not in the dataset.
. otoor.U:ex . .
Fortinet ploit In Experiment 3.1, the new variants were created from the
GData Android.Exploit. following three malware families: Asroot, HippoSMS, and
Asroot. A o . . R
[ S—— Sndapps. The modified misbehaviors are explained below.
Ikarus XpRottLnux. Lo . .o
oor « Modified Asroot: The modified Asroot performs the
Jiangmin Exploit.Linux.t same behaviors as original malware as well as executes
K7 AntiVirus an embedded malware at a specific time of each month.
IGW « Modified HippoSMS: The modified performs the same
R malicious behaviors as the original malware as well as
Xploit.Limux.Lo .
Kaspersky oot sends SMS messages to premium-rate numbers one day
Kingsoft after the malware is installed.
o Modified Sndapps: The modified Sndapps sends out
Malwarebytes . . . .
device information to an external web site through
MeAfee HTTP GET when the user clicks a button 50 times.
McAfee-GW- . . .
Edcitioie The experimental results are summarized in Table 5. The
Microsoft proposed approach detects the variants efficiently, while
some commercial software could not identify them. The pro-
MicroWorld-eScan . . . . . .
—— posed taint analysis approach can identify the misbehaviors
- Exploit.Lotoor. ot e e
NANO-Antivirus xp otl-Lotoor regardless of the variations as long as they exhibit similar

the effectiveness of a certain type of marketing campaign.
Excluding the benign samples with such information leak-
age, the proposed approach identifies the benign correctly,
as delineated in Table 4.

VOLUME 8, 2020

misbehaviors, while signature-based might not be able to
identify the variants efficiently.

Experiment 3.2 evaluates if the proposed approach could
identify new malware efficiently. New malware samples
were collected including Trojan, adware, toolkit, and ran-
somware, as listed in Table 6. The misbehaviors of the

199849



IEEE Access

C.-M. Chen et al.: Power-Efficient Approach to Detect Mobile Threats on the Emergent Network Environment

abovementioned malware include background execution
without user approval, downloading malware, sending sen-
sitive data to and receiving commands from command and
control server, and launching attack according to the com-
mand received. The results show that the proposed detection
method could identify the new malware efficiently as the
proposed taint analysis can identify the misbehaviors by taint
patterns, not by signatures.

TABLE 6. Malware evaluated by Experiment 3.2.

Malware family Misbehaviors

download malware
get root privilege
pop up malicious URLs

Trojan: Android-PUP/Agent

download and install malware

AdWare.AndroidOS.PushAd| =~ .
uninstall software

retrieve MAC address, ISP information,
and device ID

RiskTool:Android/Dnotua | access external storage device such as SD
card.
execute commands
Ransom:Android/Agent execute code after reboot

V. CONCLUSION

IoT devices have integrated with smartphones by using
mobile applications, in which users access or control IoT
devices remotely through their smartphones in the emergent
network environment. Malicious mobile applications may
compromise IoT devices, steal confidential information, and
penetrate the network environment. Therefore, mobile appli-
cation security should be ensured to protect the breaches.

This study proposes a power-efficient mobile malware
detection method based on static taint analysis and hierar-
chical data model. The experimental results show that the
proposed method can distinguish malware as well as benign
applications effectively. It consumes fewer power and com-
puting resources than dynamic analysis, so it is suitable for
massive malware detection or anti-virus software installed
on smartphones or IoT devices. The experimental results
indicate that it can identify new malware and malware vari-
ants, while the commercial anti-virus cannot identify them
effectively as the proposed solution is based on misbehavior
patterns, not signatures.

In the future, the adaptation of IoT networks and 5G tech-
nologies would make mobile attacks even more prevailing.
An automated threat pattern generation is needed to provide
a better defense of the diversified attacks across multiple
heterogeneous networks.

REFERENCES

[1]1 R. Best. Converged OT/IT Networks Introduce New Security Risks.
Accessed: Dec. 12, 2019. [Online]. Available: https://www.infosecurity-
magazine.com/opinions/ot-it-networks-risks/

[2] C.-S. Shih, J.-J. Chou, and K.-J. Lin, “WuKong: Secure run-time envi-
ronment and data-driven IoT applications for smart cities and smart build-
ings,” J. Internet Services Inf. Secur., vol. 8, no. 2, pp. 1-17, May 2018.

199850

[3]

[4]

[5]

[6]

[71

[8]

[9]

(10]

(1]

[12]

[13]

[14]

(15]

(16]

[17]

(18]

(19]

(20]

(21]

(22]

(23]

[24]

(25]

(26]

IDC Forecasts Worldwide Technology Spending on the Internet of Things to
Reach $1.2 Trillion in 2022. Accessed: Jun. 29, 2019. [Online]. Available:
https://www.idc.com/getdoc.jsp?containerld=prUS43994118

M. Park, J. Seo, J. Han, H. Oh, and K. Lee, ‘““Situational awareness frame-
work for threat intelligence measurement of Android malware,” JoWUA,
vol. 9, no. 3, pp. 25-38, 2018.

Z. B. Celik, L. Babun, A. K. Sikder, H. Aksu, G. Tan, P. McDaniel,
and A. S. Uluagac, “Sensitive information tracking in commodity IoT,”
in Proc. 27th Secur. Symp. (Security), 2018, pp. 1687-1704.

The 5 Worst Examples of IoT Hacking and Vulnerabilities in Recorded His-
tory. Accessed: Jun. 27, 2019. [Online]. Available: https://www.iotforall.
com/5-worst-iot-hacking-vulnerabilities/

500, 000 Belkin WeMo Users Could Be Hacked; CERT Issues Advisory.
Accessed: Jun. 23, 2019. [Online]. Available: https://www.csoonline.
com/article/2226371/500-000-belkin-wemo-users-could-be-hacked—cert-
issues-advisory.html

A. Arabo and B. Pranggono, ‘““Mobile malware and smart device security:
Trends, challenges and solutions,” in Proc. 19th Int. Conf. Control Syst.
Comput. Sci., May 2013, pp. 526-531.

R. R. M. Chau. Smartphone Market Share. Accessed: Jun. 23, 2019.
[Online]. Available: https://www.idc.com/promo/smartphone-market-
share/os

McAfee Lab. Fakelnstaller’ Leads the Attack on Android Phones.
Accessed: Jun. 23, 2019. [Online]. Available: https://blogs.mcafee.
com/mcafee-labs/fakeinstaller-leads-the-attack-on-android-phones

D. G. Bilic¢. Semi-Annual Balance of Mobile Security.
Accessed: Jun. 23, 2019. [Online]. Available: https://www.welivesecurity.
com/2018/08/29/semi-annual-balance-mobile-security/

McAfee Mobile Threat Report. Accessed: Jun. 23, 2019. [Online]. Avail-
able: https://www.mcafee.com/enterprise/en-us/assets/reports/rp-mobile-
threat-report-2019.pdf

S. Arzt, S. Rasthofer, C. Fritz, E. Bodden, A. Bartel, J. Klein, Y. Le Traon,
D. Octeau, and P. McDaniel, “Flowdroid: Precise context, flow, field,
object-sensitive and lifecycle-aware taint analysis for Android apps,” ACM
SIGPLAN Notices, vol. 49, no. 6, pp. 259-269, 2014.

T. Isohara, K. Takemori, and A. Kubota, “Kernel-based behavior analysis
for Android malware detection,” in Proc. 7th Int. Conf. Comput. Intell.
Secur., Dec. 2011, pp. 1011-1015.

T. Bldsing, L. Batyuk, A.-D. Schmidt, S. A. Camtepe, and S. Albayrak, “An
Android application sandbox system for suspicious software detection,” in
Proc. 5th Int. Conf. Malicious Unwanted Softw., Oct. 2010, pp. 55-62.

S. Igbal and M. Zulkernine, “SpyDroid: A framework for employing
multiple real-time malware detectors on Android,” in Proc. 13th Int. Conf.
Malicious Unwanted Softw., 2018, pp. 1-8.

A. Shabtai, U. Kanonov, Y. Elovici, C. Glezer, and Y. Weiss, ““Andromaly’:
A behavioral malware detection framework for Android devices,” J. Intell.
Inf. Syst., vol. 38, no. 1, pp. 161-190, 2012.

G. Dini, F. Martinelli, A. Saracino, and D. Sgandurra, “MADAM:
A multi-level anomaly detector for Android malware,” in Proc. Int. Conf.
Math. Methods, Models, Archit. Comput. Netw. Secur. Cham, Switzerland:
Springer, 2012, pp. 240-253.

G. Claudiu. Obfuscapk. Accessed: Jul. 25, 2020. [Online]. Available:
https://github.com/ClaudiuGeorgiu/Obfuscapk

SRILAB. Deguard. Accessed: Jul. 25, 2020. [Online]. Available:
https://eth-sri.github.io/deguard

Gyoonus. Accessed: Jul. 25, 2020. [Online]. Available: https://github.
com/Gyoonus/deoptfuscator

F. Di Cerbo, A. Girardello, F. Michahelles, and S. Voronkova, ‘Detection
of malicious applications on Android OS,” in Proc. Int. Workshop Comput.
Forensics. Cham, Switzerland: Springer, 2010, pp. 138-149.

T. Matsudo, E. Kodama, J. Wang, and T. Takata, ““A proposal of secu-
rity advisory system at the time of the installation of applications on
Android OS,” in Proc. 15th Int. Conf. Network-Based Inf. Syst., Sep. 2012,
pp. 261-267.

S. B. Almin and M. Chatterjee,
Android malware,” Procedia Comput. Sci., vol.
Jan. 2015.

D. O. Sahin, O. E. Kural, S. Akleylek, and E. Kili¢, “New results on
permission based static analysis for Android malware,” in Proc. 6th Int.
Symp. Digit. Forensic Secur. (ISDFS), Mar. 2018, pp. 1-4.

C. Urcuqui-Lépez and A. N. Cadavid, “Framework for malware anal-
ysis in Android,” Sistemas Y Telemdtica, vol. 14, no. 37, pp. 45-56,
2016.

“A novel approach to detect
45, pp. 407417,

VOLUME 8, 2020



C.-M.

Chen et al.: Power-Efficient Approach to Detect Mobile Threats on the Emergent Network Environment

IEEE Access

[27]

[28]

[29]

[30]

[31]

[32]

[33]

[34]

[35]

[36]

[37]

[38]

[39]

[40]

[41]

[42]

[43]

[44]

[45]

[46]

[47]

S. Rosen, Z. Qian, and Z. M. Mao, “AppProfiler: A flexible method of
exposing privacy-related behavior in Android applications to end users,”
in Proc. 3rd ACM Conf. Data Appl. Secur. Privacy (CODASPY), 2013,
pp. 221-232.

A. Feizollah, N. B. Anuar, R. Salleh, G. Suarez-Tangil, and S. Furnell,
“AndroDialysis: Analysis of Android intent effectiveness in malware
detection,” Comput. Secur., vol. 65, pp. 121-134, Mar. 2017.

M. C. Grace, Y. Zhou, Z. Wang, and X. Jiang, “Systematic detection of
capability leaks in stock Android smartphones,” in Proc. NDSS, vol. 14,
2012, p. 19.

A. Firdaus, N. B. Anuar, A. Karim, and M. F. A. Razak, “Discovering
optimal features using static analysis and a genetic search based method
for Android malware detection,” Frontiers Inf. Technol. Electron. Eng.,
vol. 19, no. 6, pp. 712-736, Jun. 2018.

S. Y. Yerima, S. Sezer, G. McWilliams, and 1. Muttik, “A new Android
malware detection approach using Bayesian classification,” in Proc. IEEE
27th Int. Conf. Adv. Inf. Netw. Appl. (AINA), Mar. 2013, pp. 121-128.
D.-J. Wu, C.-H. Mao, T.-E. Wei, H.-M. Lee, and K.-P. Wu, “DroidMat:
Android malware detection through manifest and API calls tracing,” in
Proc. 7th Asia Joint Conf. Inf. Secur., Aug. 2012, pp. 62-69.

N. Milosevic, A. Dehghantanha, and K.-K. R. Choo, “Machine learning
aided malware classification of Android applications,” Comput. Electr.
Eng., vol. 61, pp. 266-274, 2017.

E. J. Schwartz, T. Avgerinos, and D. Brumley, “All you ever wanted to
know about dynamic taint analysis and forward symbolic execution (but
might have been afraid to ask),” in Proc. IEEE Symp. Secur. Privacy,
May 2010, pp. 317-331.

T. Lie and P. Ellingsen, “Integrating static taint analysis in an iterative
software development life cycle,” presented at the 3rd Int. Conf. Adv.
Trends Softw. Eng., 2017.

W. Enck, P. Gilbert, S. Han, V. Tendulkar, B.-G. Chun, L. P. Cox, J. Jung,
P. McDaniel, and A. N. Sheth, “TaintDroid: An information-flow tracking
system for realtime privacy monitoring on smartphones,” ACM Trans.
Comput. Syst., vol. 32, no. 2, pp. 1-29, Jun. 2014.

R. Hou, Z. Jin, and B. Wang, “Investigation of taint analysis for
smartphone-implicit taint detection and privacy leakage detection,”
EURASIP J. Wireless Commun. Netw., vol. 2016, no. 1, p. 227, Dec. 2016.
J. Lim, Y. Shin, S. Lee, K. Kim, and J. H. Yi, “Survey of dynamic anti-
analysis schemes for mobile malware,” JoWUA, vol. 9, no. 3, pp. 39-49,
2018.

K. Cao, J. He, W. Fan, W. Huang, L. Chen, and Y. Pan, “PHP vulner-
ability detection based on taint analysis,” in Proc. 6th Int. Conf. Rel.,
Infocom Technol. Optim. (Trends Future Directions) (ICRITO), Sep. 2017,
pp. 436-439.

X.-X. Yan, Q.-X. Wang, and H.-T. Ma, ‘“‘Path sensitive static analysis of
taint-style vulnerabilities in PHP code,” in Proc. IEEE 17th Int. Conf.
Commun. Technol. (ICCT), Oct. 2017, pp. 1382-1386.

C. Gibler, J. Crussell, J. Erickson, and H. Chen, “AndroidLeaks: Automat-
ically detecting potential privacy leaks in Android applications on a large
scale,” in Proc. Int. Conf. Trust Trustworthy Comput. Cham, Switzerland:
Springer, 2012, pp. 291-307.

P. P. F. Chan, L. C. K. Hui, and S. M. Yiu, “DroidChecker: Analyzing
Android applications for capability leak,” in Proc. 5th ACM Conf. Secur.
Privacy Wireless Mobile Netw. (WISEC), 2012, pp. 125-136.

M. L. Gordon, D. Kim, J. Perkins, L. Gilham, N. Nguyen, and M. Rinard,
“Information-flow analysis of Android applications in DroidSafe,” in
Proc. NDSS, vol. 15, 2015, p. 110.

P. O. Fora. Beginners Guide to Reverse Engineering Android Apps.
Accessed: Jun. 23, 2019. [Online]. Available: https://www.rsaconference.
com/writable/presentations/file_upload/stu-w02b-beginners-guide-to-
reverse-engineering-android-apps.pdf

D. E. Denning and P. J. Denning, “Certification of programs for secure
information flow,” Commun. ACM, vol. 20, no. 7, pp. 504-513, Jul. 1977.
J. Palsberg, “Efficient inference of object types,” Inf. Comput., vol. 123,
no. 2, pp. 198-209, Dec. 1995.

Y. Zhou and X. Jiang, “‘Dissecting Android malware: Characterization and
evolution,” in Proc. IEEE Symp. Secur. Privacy, May 2012, pp. 95-109.

VOLUME 8, 2020

-~
-
-

-
1

a_ A

CHIA-MEI CHEN has been with the Department
of Information Management, National Sun Yat-sen
University, since 1996. She was a Section Chef
of the Network Division and the Deputy Direc-
tor, Office of Library and Information Services,
from 2009 to 2011. She has served as a Coordi-
nator of Taiwan Computer Emergency Response
Team/Coordination Center (TWCERT/CC), from
1998 to 2013, and then serves as a Consultant.
Based on her expertise, she established Taiwan

Academic Network Computer Emergency Response Team (TACERT),
in 2009. She is the Deputy Chair of TWISC@NCKU, a branch of Taiwan
Information Security Center. She continues working for the Network Secu-
rity Society. Her current research interests include anomaly detection,
malware analysis, network security, and cloud computing.

YI-HUNG LIU received the Ph.D. degree in infor-
mation management from National Central Uni-
versity, Taiwan, in December 2014. Since 2020,
he has been with the Department of Computer
Science and Information Management, Soochow
University, Taipei, Taiwan, where he is currently
an Assistant Professor. He has been a Visit-
ing Scholar with the Department of Management
Information Systems, University of Arizona, USA,
in 2013. His research interests include text mining,

machine learning, e-commerce, social networks, and e-health.

ZHENG-XUN CAI received the master’s degree
from National Sun Yat-sen University, Kaohsiung,
Taiwan, in 2017, where he is currently pursuing the
Ph.D. degree. His research interests include digital
forensics, network analysis, and process analysis.

GU-HSIN LAI received the Ph.D. degree from
National Sun Yat-sen University, Kaohsiung,
Taiwan, in 2008. He is currently an Associate
Professor with the Department of Technology
Crime Investigation, Taiwan Police College,
Taipei, Taiwan. His research interests include
cyber security and cloud computing.

199851



