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ABSTRACT Measuring the material, geometry, and ambient lighting of surfaces is a key technology in the
object’s appearance reconstruction. In this article, we propose a novel deep learning-based method to extract
such information to reconstruct the object’s appearance from an RGB image. Firstly, we design new deep
convolutional neural network architectures to improve the performance by fusing complementary features
from hierarchical layers and different tasks. Then we generate a synthetic dataset to train the proposed model
to tackle the problem of the absence of the ground-truth. To transfer the domain from the synthetic data to
the specific real image, we introduce a self-supervised test-time training strategy to finetune the trained
model. The proposed architecture only requires one image as input when inferring the material, geometry,
and ambient lighting. The experiments are conducted to evaluate the proposed method on both the synthetic
data and real data. The results show that our trained model outperforms the existing baselines in each task
and presents obvious improvement in final appearance reconstruction, which verifies the effectiveness of the
proposed methods.

INDEX TERMS Inverse rendering, attention, feature fusion, lighting recovery, material estimation, deep
learning, image-based rendering.

I. INTRODUCTION
An object’s appearance is determined by the ambient light,
geometry, and material of its surfaces. Acquiring them is
very important for the appearance reconstruction that has
wide applications in such fields as mixed reality, robotics,
and artistic creation, which generally requires complex opti-
cal devices to conduct dense measurements of the target
object [1]. However, usually, such devices can only be used
for a certain class of objects and the measurements need an
extremely strict experiment environment, which is a costly
effort and merely used under limited scenarios.

A more general and efficient method is to infer these
properties from the objects’ images [2], namely the inverse
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rendering. However, it is a highly ill-posed problem as quite
a few combinations among the inferred factors may lead to
the same observed image. How to address this issue is the
key to acquire these properties from images.

In this article, we extract these properties from an object’s
image using Deep Convolutional Neural Networks (DCNNs).
The object has variable materials and complex shapes. The
image is captured under natural illumination. We present
an end-to-end learning architecture with feature fusion and
transformation to regress material, geometry, and ambient
light from a single image of an object. Our design is com-
posed of the geometry material regression module and illu-
mination inference module.

Training such modules requires large amounts of labeled
data that are extremely difficult to acquire in practice. There-
fore, we generate a synthetic training corpus consisting
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of rendered object images, their corresponding ground
truth.

However, the model trained with synthetic data cannot be
directly applied to real image data and requires a domain
adaption procedure. Hence, a self-supervised test-time train-
ing strategy is introduced to transfer the domain.

In summary, we make the following three main
contributions:

• We propose an attention-based feature fusion unit to
improve the accuracy of the geometry and material
prediction. This unit is composed of existing DCNN
components and ensures the end-to-end training.

• We design a feature transformation module to intro-
duce skip connections into the basic encoder-decoder
architecture when inferring the ambient light from the
object’s image. The feature transformation block con-
verts the learning from the object’s low-level space to
the semantic illumination space and enables the skip
connection between these levels.

• We also introduce a self-supervised test-time training
strategy to finish the domain adaptation and the appear-
ance reconstruction is dramatically improved by this
method. This strategy finetunes the model by comparing
the output with the corresponding input without the
ground-truth.

The remaining parts of this article are organized as follows:
in section 2, we introduce the related works. In section 3, the
overview of our proposed system is presented. In section 4,
we describe the designed architectures in detail. In section
5, the self-supervised test-training strategy is explained.
In section 6, the evaluation and analysis of our methods are
presented. In section 7, we make a summary and conclusion.

II. RELATED WORK
Inverse rendering is a fundamental problem in computer
vision and graphics. Certain existing methods solve such a
challenging problem by constructing a set of priors over the
constituted properties or assuming one of such the compo-
nents as the object’s geometry and the lighting condition
being known, and then iteratively optimize a hand-crafted
mathematical model to find the solutions [3]–[5]. Geometry
is relatively simple to capture as a result of the availability of
depth sensors [6]. The illumination also can be approximated
by inserting a light probe into the scene [7], [8] or low-
dimensional representation based lighting model [9]. The
lighting condition also could become a controllable factor
such as image sequences under static illumination or varying
illumination [10], [11]. Besides, the user input can also be
used as an additional prior to guide the intrinsic decomposi-
tion [12]. However, these approaches need either the depth
sensor or image sequences from different illuminations and
viewpoints as well as inputs from the user, and cannot solve
the problem from a single image automatically.

Compared with the above-mentioned methods, recently
DCNNsmake great progress in this task. Tang et al. propose a

deep lambertian model to predict diffuse material, point light
direction, and orientationmap from a single imagewithGaus-
sian Restricted Boltzmann Machines [13]. Georgoulis et al.
predict the normal maps and reflectance maps from a sin-
gle image with the designed DCNNs [14]. They propose a
direct architecture and an indirect architecture respectively
to regress the reflectance maps. Both architectures are based
on encoder-decoder strategies developed to regress dense
label maps [15], [16]. Particularly, in the indirect way, they
stack two networks to infer the reflectance map by using
the output of the first network as the input of the followed
one. Liu et al. design three separate DCNNs to predict the
material parameters, normal maps as well as environment
maps from a single image, which is followed by a differen-
tiable rendering layer [17]. In these works, they either use
the stacked way or consider the task separately. All of them
neglect that fusing intermediate related features would benefit
the performance of all tasks, which have been verified by
various tasks [18]–[20]. Besides, these methods tackle this
problem under the assumption that the objects are covered by
only one kind of material. However, it should be noticed that
many objects in the real world are covered by several different
materials. Moreover, these methods use synthetic data to train
their model, which makes the model trained suffers from a
domain gap.

Besides, the differentiable renderer is often embedded in
the DCNNs to construct the perceptual reconstruction loss
between the input and the output as an additional constraint to
generate a result of higher quality in the view of perception
for inverse rendering [21], [22]. Such a reconstruction loss
can not only enable the learning from a mixture of labeled
synthetic data and unlabeled real image data and approaching
the physical image generation model [23] but also, more
importantly, make the unsupervised learning more effective
with Siamese architecture from a single images or images
sequences [24], [25].

III. OVERVIEW OF THE PROPOSED SYSTEM
In our study, the DCNNs infer the material, geometry, and
ambient light simultaneously from a 2D image of an object.
Such inverse rendering is the inversion of the real world image
formation which can be formulated as:

(M,N,L) = F−1(I) (1)

where the function F−1 represents the inverse rendering that
obtains the object’s materialM, geometry N and the ambient
light L from its image I without any prior.
In order to train a DCNN to learn these properties from

an image, the material, geometry, and illumination are repre-
sented as the learnable forms.

A. MATERIAL REPRESENTATION
In this work, we focus on opaque objects without consid-
ering transmitted and scattered light, so the material can
be represented by the reflectance properties that can be
fully formulated as the bidirectional reflection distribution

201862 VOLUME 8, 2020



T. Bi et al.: SIR-Net: Self-Supervised Transfer for Inverse Rendering via Deep Feature Fusion and Transformation

function (BRDF). BRDF directly describes how the incident
light is reflected off the surface rather than limits the appear-
ance of a fixed material under a fixed illumination and it can
be defined as:

f (x, ωi, ωo) =
dLo(x, ωo)
dE(x, ωi)

(2)

which is the ratio of the radiance Lo leaving the surface at
point x in direction ωo and irradiance Ei arriving at x from
direction ωi.

Non-parametric models adopt a lookup table to store the
reflectance information with high accuracy, but they are gen-
erally more computationally intensitive [1]. Besides, they
are not differentiable as to support the back-propagation
in deep learning. Consequently, in this article, we use the
directional statistics BRDF (DSBRDF) to physically describe
the reflectance in the real world [26]. It has a small set of
parameters and an analytic expression to model a wide range
of real-world isotropic BRDF accurately. Compared with
the existing micro-facets based models, DSBRDF achieves
higher accuracy without the linear combination of differ-
ent parametric models [27], [28]. Specifically, the DSBRDF
model is composed of a set of hemispherical exponential
power distributions known as lobes that enable encoding a
variety of the BRDFs. In a typical setting, the number of the
lobes is 3 and there are 108 coefficients in total in such a
model. Because we extend the scenario to an extreme condi-
tion in which each pixel can own its material, the correspond-
ingmaterial tensorM has a dimension of height×width×108.

B. GEOMETRY REPRESENTATION
We adopt the normal map to represent the geometry informa-
tion N of the object. Specifically, N is a height × width × 3
map of which each channel stores the x, y, and z coordinate
respectively of the point on the object. During the training and
testing stage, the normal map is normalized to [−1, 1].

C. ILLUMINATION REPRESENTATION
In this article, the widely used high dynamic range (HDR)
environment map is considered as the illumination represen-
tation [17], [29]. We assume distant lighting and the absence
of self-shadowing, and there is no emitted or reflected light
from the object to the environment. Each pixel in the envi-
ronment map can be transferred to spherical coordinates and
thus represents an incoming light direction. The value of each
pixel represents the intensity of the light from this direction.
Note that we only regress the light intensity instead of the
direction of light sources. Since the object is not a light
source, i.e., it is not emitting light, we only model global
changes in scene brightness. The interreflections accounting
for the energy exchange within the object itself are typically
ignored.

Finally, a differentiable renderer is inserted after the
DCNNs to accept the material tensor, normal map, and envi-
ronment map for the self-supervised test-time training strat-
egy. The system diagram is shown in Fig. 1.

IV. DESIGNED NETWORK ARCHITECTURE
Under the above assumption, we design an end-to-end learn-
ing architecture to regress material tensor, normal map, and
environment map from a single image of an object. Neither
empirically considering separate network architectures [17]
nor heuristically sharing the layers from different networks
[23], we propose a fusion unit and a transformation module
that can automatically learn how to fuse and how to transfer
the feature. Our whole system is composed of the geometry
material regression part and the illumination inference part.

A. INTERMEDIATE FEATURE FUSION BETWEEN MATERIAL
AND GEOMETRY
Our motivation is to fuse the features from the geometry
network andmaterial network to improve respective accuracy
[30], which can be implemented by stages of feature fusion
and recalibration. The feature fusion takes the learned fea-
ture maps from layers of two networks and then fuses them
to learn a global feature over these two tasks. To improve
the performance, the new feature should keep the original
characteristics of the taskwhile absorbing the complementary
information from the other task. Consequently, after learning
the global feature, the global feature needs to be further
recalibrated according to the specified task.

We denote the normal feature in the jth block of the normal
network as n(j), and the material feature in the jth block of the
material network as m(j). Then the fused global feature g(j) of
this block is:

g(j) = u(j)([n(j);m(j)]) (3)

where u(j) represents the fusion operation and [n(j);m(j)] is
a concatenation of the normal feature and material feature.
Here, u(j) is convolutional layers with batch normalization,
followed by a non-linear ReLU activation, which is composed
of [1 × 1] kernels representing the feature fusion in the jth

block.
The purpose of recalibrating the global feature is to screen

the task-related information. To keep the spatial correspon-
dence between the geometry feature and material feature,
we introduce squeeze and excitation (SE) mechanism [31] to
implement channel-wise attention to refine the global feature
to generate the new normal features n̂(j) and the material
features m̂(j):

n̂(j) = g(j) � a(j)n (4)

m̂(j)
= g(j) � a(j)m (5)

where a(j) is the learned attention weights of different tasks
and � means element-wise multiplication.

Channel attention can automatically learn to recalibrate
channel-wise feature responses, which models the inter-
dependencies between tasks. Here the SE is implemented by
a global pooling layer and two convolutional units. The con-
volution is implemented by [1 × 1] kernels and followed by
a sigmoid activation function that limits the learned attention
maps a(j) ∈ [0, 1], which ensures that the performance will
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FIGURE 1. Our system takes an RGB image as input and predicts its normal, material, and environment map. Combined with the differentiable
renderer, self-supervised learning can be used to finetune the model to transfer the domain and improve the performance over a specific target.

not be worse. The details of this feature fusion operation is
shown in Figure. 2
Finally, we adopt two U-nets as the backbone [32] to

construct the overall framework for geometry and material
regression and insert this unit after the down-sampling group
as shown in Fig. 3.

B. FEATURE TRANSFORMATION FOR ILLUMINATION
INFERENCE
When inferring the illumination, Gardner et al. uses an end-
to-end network to regress the panoramic illumination images
[33]. Weber et al. propose a ‘‘T-network’’ to estimate the
panoramic map from a 2D image of 3D objects given the
geometry information [29]. These works simply try to learn
the latent feature vectors from the images and convert them
to the desired lighting information without considering the
fusion of the features from hierarchical layers, which ignores
the fact that pixel-wise accuracy can be improved by suf-
ficient fusing low-level spatial information and high-level
semantic information [34], [35].

Therefore, our method takes the feature fusion and trans-
formation into consideration to improve the regression perfor-
mance, while avoiding themismatch from the different spatial
scales between the 2D image input and the panoramic output.
Specifically, in our system, the illumination module predicts

FIGURE 2. Details of our feature fusion unit.

a panoramic image from an object’s image, which infers the
light intensity from the image pixel while recovering the
panoramic scene structure.

To introduce multi-scale feature fusion into this problem,
a feature transformation block is proposed to transfer the
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FIGURE 3. Our feature fusion unit fuses the features from two networks to learn a global feature and then recalibrate it according to the task-specific
property. The illumination module is composed of a feature transformation unit and a backbone network. The transformation unit learns the lighting
information from low-level features and then warps the feature scales.

learned low-level information from the object’s image to its
ambient lighting space. Such a transformation not only learns
to transfer the feature space but also warps the feature map to
the available scale for the subsequent fusion, which converts
the learning from the object’s low-level feature space to the
illumination space and bridges the skip connection between
the different levels.

The illumination module is composed of the transforma-
tion block and the backbone which takes as input the output
of the transformation block. Furthermore, the transformation
block can be simply implemented with two convolution units
in our architecture. Fig. 3 shows the details of the architecture.

C. LOSS FUNCTIONS
The geometry material module can be evaluated by L1 or L2
loss. To balance the material loss and geometry loss, the L1
loss is used for material:

lmaterial =
∑
x

|mx −m′x | (6)

where m′x is the predicted material and mx is the material
ground-truth at point x on the object.

L2 loss is used for normal:

lnormal =
∑
x

(nx − n′x)
2 (7)

where n′x represents the predicted normal and Nx is the nor-
mal ground-truth at point x on the object.
The total loss function for the material geometry module

is:

l = λ1lmaterial + λ2lnormal (8)

where λ1 and λ2 are weights of the two losses. Empirically,
we set λ1 = 1, λ2 = 10000.

Because the environment maps are in the HDR domain,
we use the log to compress the potentially very high dynamic
range of lighting to alleviate fluctuations from the errors. The
Euclidean distance is defined in the log domain to constrain
the illumination module:

lillumination =
∑
i

(log(1+ Li)− log(1+ L ′i ))
2 (9)

where Li and L ′i are the ground-truth and inferred environment
maps of the ith pixel in the environment map respectively.
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V. SELF-SUPERVISED TEST-TIME TRAINING STRATEGY
Learning the material, normal and environment maps from
images requires amounts of labeled data in a supervised way.
However, it is extremely difficult or even impossible in prac-
tice to acquire these data. For example, to obtain the object’s
reflection properties, it generally requires complex optical
devices to conduct a great dense measurement represented by
a set of BRDF samples at a specified incident and outgoing
directions of the target object [1]. Consequently, synthetic
data is widely adopted to address this problem, which can
provide available labels to supervise the training procedure.
However, the synthetic data is not the same as the real one,
which is not obtained by the real image formation process.
So the model trained by synthetic data cannot be directly per-
formed on real data and the model needs further finetuning.

It can be seen from certain some previous self-supervised
learning works [36]–[39] that a self-supervised task could be
solved by test-time training. In our system, a differentiable
renderer can be inserted after the geometry material and
the illumination modules to implement the self-supervised
learning while combining with the test-time training to trans-
fer the domain. Specifically, the geometry material and the
illumination modules first infer the material tensor, normal
map, and environment map from an input image, and the ren-
derer accepts such predicted elements to generate an input-
like image. We then define a pixel-wise Euclidean distance
over the input image and the generated one as an original
constraint. Afterward, we finetune the model on this input
image until the loss is small enough. This test-time training
procedure can transfer the model trained on synthetic data to
the real test image and avoid an additional post-optimization.

A. PHYSICALLY BASED RENDERER
Our renderer obeys the physical image formation theory [40],
which can be formulated as:

Lo(x, ωo)=Le(x, ωo)+ Lr (x, ωo)

=Le(x, ωo)+
∫
�

f (x, ωi, ωo)Li(x, ωi)(ωi,nx)dωi

(10)

where Lo expresses the radiance leaving the point at x with
normal n in direction ωo as the emitted Le and reflected
radiance Lr which is a function of incoming light Li over
the hemisphere from directionωi. f represents the reflectance
describing the material.

The rendering equation in the discrete domain can be
formulated as:

I(x, ωo) =
m∑
i=1

f (x, ωi, ωo)Limax(0, ωi · nx)wi (11)

where I is the pixel value in the image and m is the number
of pixels and Li represents the intensity of the ith pixel in
the environment map. The weights wi describe the contribu-
tion of the pixels at the different longitude of the spherical

coordinates, which can be computed by:

wi = sin
bi/WLic

HLi
(12)

where WLi and HLi represent the width and height of the
environment map respectively.

B. DYNAMIC RANGE-DEPENDED SELF-SUPERVISED LOSS
FUNCTIONS
The differentiable renderer as a layer of the neural network
accepts the material tensor, the normal map, and the envi-
ronment map to generate an image, then the errors can be
back-propagated through it. In our framework, the physically-
based rendering layer computes how much light is reflected
by the object’s surface. And the pixel on the surface con-
tains the physical lighting intensity. When defining the loss
function between the output image and the input one for self-
supervised training, both input cases should be considered:
i.e. low dynamic range (LDR) input and HDR input.

When the input is an HDR image, both the input and
output include rich physical information. So we can directly
define the image reconstruction loss using the output of the
rendering layer as the self-supervised loss function in log
domain:

lHDRrec =
∑
x

(ln(β+α ∗ F(m′x ,n
′
x ,L
′))−ln(β+α ∗ I inputx ))2

(13)

where, on a specific point x, m′x ,n
′
x ,L
′ are the predicted

material tensor, normal map and environment map, I input is
the input image. We set β = 1 to ensure the pixel value not to
be negative in log domain and α = 1 to benefit the learning
by not over-scaling the data.

For the more general LDR input, it is transformed from the
HDR version by many operations, for example, gamma cor-
rection, which loses its original physical property. Using such
input to constrain the self-supervised learning could force
the network system to learn an additional inverse mapping
from LDR to HDR. Consequently, to keep the learning stable
and converging, the output HDR image should be normalized
to the corresponding range. Here, the linear normalization
is used to compress the range while keeping the physical
property:

lLDRrec =
∑
x

(λF(m′x ,n
′
x ,L
′)− I inputx )2 (14)

where λ represents a channel-wise normalization factor to
scale the rendered image. It can be written as:

λk =
255 ∗ Fk (Mk ,N,Lk )
maxFk (Mk ,N,Lk )

(15)

where k = 1, 2, 3 means the color channels.

VI. EXPERIMENTS AND DISCUSSIONS
We implement the whole system on Caffe with a GTX 2080Ti
graphics card from scratch [41]. The back-propagated gradi-
ents are obtained by AdaDelta with delta parameter δ = 1e-6
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and momentum parameter β = 0.9 [42]. We set the original
learning rate according to the specified tasks.

A. DATASET
To evaluate our model, we synthesize a dataset containing
complicated shapes covered by multi-materials under differ-
ent illuminations. Specifically, we use the normal maps in
[14] and split the data into training and testing sets according
to the original definition. The size of the normal map is
256 × 256 × 3 which leads to the synthetic image with
the same dimension. 60 DSBRDFs fitted from the MERL
dataset [4] are used for training and 20 are used for testing.
To cover different materials over the objects, we use k-means
to cluster the normal maps for 3 categories. For each category,
we randomly choose one material in the DSBRDF dataset.
The illumination is composed of 100 free HDR outdoor
environment maps of 512 × 1024 × 3 downloaded from
the Internet. The high resolution of the environment maps
can generate better rendering results, but it also reduces the
training efficiency due to the traversing the environment map
during the rendering. Empirically, we scale the downloaded
environment map to the size of 64× 128× 3 to make a trade-
off between efficiency and effectiveness. We define a split
to classify the environment maps into 80 training samples
and 20 testing samples according to their scenes. Moreover,
random rotation is adopted to augment the lighting data.
Finally, a total of 50,440 training images and 9,930 testing
images is generated and no materials, normal maps, and
environment maps are shared between them. The visualized
examples from our synthetic dataset are shown in Fig. 4.

FIGURE 4. Two examples from our synthetic dataset (from left to right):
image I, segmentation mask, normal map N, and environment map L.

B. EVALUATION FOR THE INTERMEDIATE FEATURE
FUSION
We evaluate our proposed feature fusion method on the syn-
thetic data and compare it with the baseline approach as well
as several previous works, which are briefly discussed below.

U-net. Our first baseline architecture is the U-net archi-
tecture, which is widely used in the image-to-image transfor-
mation task. Its skip connections allow sharing the different
level’s features in the encoder with corresponding layers in
the decoder. Specifically, we design 4 down-sampling and up-
sampling groups. Each down-sampling group is composed
of 2 convolution units including a convolution layer and a
ReLU activation layer, followed by a MAX pooling layer.

TABLE 1. Comparison between our approach and the two related
baseline methods for geometry material model.

The up-sampling group contains 2 convolution units and an
up-sampling unit including a deconvolution layer and a ReLU
layer, which also concatenates the features from the previous
layers by the skip connection. It is trained with the synthetic
ground truth from scratch.

Liu’s net. The second baseline is inspired by the work of
Liu et al. [17] which predicts normal, material, and illumi-
nation with three individual networks from a single image.
However, baseline 2 can only address the object covered
by one material, which means that their material network
maps the image to a feature vector representation rather than
generates ourmaterial tensors. Consequently, wemodify their
material network to adapt to our scenario by adding some up-
sampling groups. Furthermore, to make it comparable with
ours, we train their networks with our synthetic dataset from
scratch.

SETD-net. The heuristic shared model is often used in
inverse rendering paper [25]. This model generally adopts
a single encoder to learn shared information and then two
decoders convert the shared feature to different seman-
tic targets. In our evaluation, a single encoder and two
decoders (SETD) is constructed to infer material and normal.
We use U-net architecture as the backbone. The encoder
extracts shared information of material and normal as well
as the two decoder output material tensor and normal map
respectively. The skip connections between the encoder and
decoders fuse the high-level and low-level features.

For comparison, we train our network with the same syn-
thetic dataset. The quantitative and visual results are provided
in Table 1 and Fig. 5. For the quantitative results of normals,
we compute the mean and median error over the angular error
between the predicted normals and ground-truth. The mean
square error (MSE) is used to evaluate the accuracy of the
materials. We rendered the images with the inferred material
to present the visual difference from the material error, given
the ground-truth normal and environment map. Then we
compute the MSE and the structural similarity (SSIM) [43]
metrics between the rendered image and the ground-truth to
show the visual error quantitatively. SSIM is a widely used
metric to evaluate the similarity between two images, whose
value is between 0 and 1. The higher the value of SSIM, the
more similar the two images.

It can be seen from the experimental results that the mate-
rial of Liu’s net fails to predict the correct material, which
verifies that a low dimensional feature vector cannot contain
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FIGURE 5. Qualitative comparison of our approach on synthetic data. Each result shows (a)the input image; (b) the ground-truth normal; the estimated
normal map and rendered images with the output of (c) U-net, (d) Liu’s net, (e) SETD-net, and (f) our method.

the complete information of the pixel-wise materials and
therefore results in poor performance. Compared with our
backbone network that fuses the low-level and high-level
features with skip connections, the proposed geometry and
material regression module further improves the performance
by learning how to fuse and share features from the layers
of two tasks automatically. This result also shows that these
tasks indeed have relationships that can be used to improve
accuracy.

C. EVALUATION FOR THE ILLUMINATION MODULE
We compare our illumination module with the other three
methods: 1) T-net 2) encoder-decoder net 3) U-net. All of
them learn a latent feature vector encoding the environment
maps from the object’s image.

SESD-net. The first compared baseline is the lighting
prediction branch from Liu’s work [17], namely the single
encoder and single decoder (SESD) net without skip con-
nections. Specifically, the encoder maps the image of an
object to a feature vector and the decoder uses this vector
to generate an environment map of size 64 × 128 × 3.
The encoder includes 7 convolutions followed by the ReLU
activation functions and 2 fully connected layers. The decoder
is composed of a sequence of deconvolutional layers.

T-net. T-net is inspired by the work of Weber et al. [29],
which solves this problem through two stages. They first train
an auto-encoder to learn to compress the image to a latent
vector compactly modeling the indoor lighting then use a
DCNN to generate the environment maps based on the latent
feature space. The DCNN takes as input a single image of an
object and its normal map. Besides, the DCNN and the auto-
encoder share the same decoding part. The original system
is performed over an indoor lighting dataset and we retrain
it with our outdoor environment maps. The auto-encoder is
firstly trained on our data to converge and then the DCNN
composed of an encoder network and the trained decoder
of the auto-encoder are trained again. Note that the same

TABLE 2. Comparison between our proposed architecture and the related
networks for illumination module.

encoder and decoder network architecture with SESD-net is
adopted to eliminate the effects from the depth of the network
and ensure that the results are comparable.

U-net. U-net is the backbone of our proposed architecture.
It is considered as a baseline to show the advantages of the
feature transformation block. In this experiment, the same
U-net structure with the material geometry module is adopted
and more details can be found in the section of evaluation
for the intermediate feature fusion. Besides, we adjust the
last 3 layers of the U-net to match the resolution of the
environment map.

Our proposed network is composed of the feature transfor-
mation block and the U-net. All the networks are trained with
the same data for comparisons. The rendering results with the
predicted environment maps are generated to show the effec-
tiveness. The quantitative and qualitative results are provided
in Fig. 6 and Table 2. Both the mean absolute error (MAE)
and the SSIM metric between the inferred illumination and
the ground truth are computed. Given the ground-truth nor-
mal and material, we also present the SSIM and MSE error
between the rendered image with the predicted environment
maps and the original one.

It can be seen from the experimental results that our pro-
posed method outperforms the others. With the proposed
feature transformation block, the learned feature maps of
the objects in the image are successfully transferred to the
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FIGURE 6. Qualitative comparison of our approach on synthetic data. Each result shows (a)the input image; (b) the ground-truth lighting; the rendered
images with predicted environment maps of (c) T-net, (d) SESD-net, (e) U-net, and (f) our method.

lighting space. Moreover, the following layers learn the
related feature from the transferred information and improve
the performance by fusing the low-level and high-level fea-
tures. The experiments show that the fusion of different hier-
archical features is indeed helpful to recover the environment
maps from a single image of an object.

Compared with the other baselines’ methods, the T-net has
a better decoder due to the previous training with an auto-
encoder, but its recovered environment maps are not smooth
enough as shown in the qualitative results. Our approach
eliminates the trellis effect in the transformation and therefore
obtains better visualization. SESD-net intuitively maps the
image to a latent vector to generate an environment map, but
because of the ambiguities of such a problem, the learned
vector usually includes more information about the object,
which results in poor performance of the predicted envi-
ronment map. U-net fuses the hierarchical features by skip
connections, but these features are more related to the low-
level information rather than the semantic one. On contrary,
our feature transformation block can automatically choose
the illumination information, and then the U-net can use such
features to improve the performance.

D. EFFECTIVENESS OF SELF-SUPERVISED TEST-TIME
TRAINING
We insert the differentiable rendering equation (11) with the
DSBRDF as the renderer of the proposed architecture. Note
that this is different from the work in [17], we further extend it
to support the per-pixel material rendering. In such a setting,
the errors can be back-propagated to each channel of one pixel
for updating the weights, which allows our model to learn to
predict multi-materials.

It is well known that acquiring large amounts of labeled
data is extremely infeasible in practice and, on the other

side, training the network with the differentiable renderer
from scratch results in the collapse among the elements.
Consequently, we first train the system with our synthetic
data to initialize the learning to the desired direction. Because
the synthetic data is generated by a simplified physically
based rendering procedure, the rendered images are different
from the real images captured by the camera. The different
distributions of such two datasets lead to the domain gap
which the model has to overcome if we want to perform the
trained model on the real images.

As a result, we exploit the test-time training strategy to
finish the domain adaption and improve the performance in a
self-supervised way. We use the single material images [14]
and multi-material images [44] to finetune our model trained
on the synthetic data. A combined subset from these two
datasets is extracted as our self-supervised test-time training
dataset. The images in this dataset are captured by a camera
in a natural scene.

Because the dataset is purely LDR images, we use the
deep learning-based method [45] to preprocess the LDR data
to transfer them to HDR images. Such a method proposes
a reverse tone mapping based on deep learning to recover
the lost information caused by camera sensors and generate
visually convincing HDR results. After the preprocessing, the
self-supervised learning uses (13) as the loss function.

We show the performance of our proposed method by
comparing it with the other baseline. Because of lacking
the normal and light ground-truth of the real images, the
SSIM and MSE metrics on the final rendered images are
used as quantitative results. The inferred normal map, envi-
ronment map, and the rendered input image are provided as
the qualitative results. The rendered image with the predicted
normal map, environment map, and material tensor shows the
qualitative material and final appearance reconstruction.
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FIGURE 7. Qualitative comparison of our method on real data. Each result shows (a)the input image; (b) the
output of SIR-net and the rendered image with the output; (c) the estimated normal map, environment map
of SYN-net, and the rendered image with the output elements.

TABLE 3. Difference between the baseline and our method.

SYN-net. SYN-net is the model completely trained with
synthetic data in a supervised way. We directly use real test
images to evaluate its performance.

SIR-net. SIR-net is the proposed network finetuned by
the test-time training with the real images. During the test-
time training, we firstly keep the weights of the illumination
module fixed and train the geometry material module inde-
pendently. After converging, the modules are combined to be
trained for a few iterations.

The qualitative and quantitative results are presented in
Fig. 7 and Table 3. respectively. It can be seen from the
experimental results that the proposed SIR-net achieves a
dramatic improvement, which also implicitly shows the huge
gap between the synthetic data and the real one. In contrast,
SYN-net generates many wrong inferences and loses the
specular property of the material. For all the samples our
SIR-net can recover both the multi-materials and the single

material, which shows the advantages of the extended multi-
material form. Besides, because the image reconstruction loss
constrains the network in terms of the perception consistency,
it may result in some intermediate errors to mislead the
inferred material, normal, and illumination.

E. DYNAMIC RANGE FOR INVERSE RENDERING
As what is explained in section V-B, the dynamic range of
input images could affect the performance, we provide a com-
parison to show the importance of the dynamic range. Here
the geometry material model and the illumination model are
trained with the corresponding LDR version of the synthetic
data to reveal how the accuracy changes with the dynamic
range in supervised learning. The learning procedure uses
(14) as the loss function. Both the quantitative and qualita-
tive results are presented in Table 4 and Fig. 8. We also
provide the qualitative result from the self-supervised test-
time training on real images in Fig. 9. Besides, we present the
corresponding HDR results to show the difference explicitly.

We conclude that the HDR data contains most brightness
information which contributes to recovering the environment
map, so the DCNN is feasible to learn the correct illuminance
intensity from such data. The LDR input has lost the most
original properties of the scene, thus it is more difficult to
infer the physical results.
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TABLE 4. The comparison between different dynamic ranges for the geometry, material, and environment map on the synthetic dataset.

FIGURE 8. Qualitative comparison of input with different dynamic ranges on synthetic data. Each result shows (a)the input image; (b) the rendered
image; (c) the estimated normal map and (d) the inferred environment map under the different dynamic range.

FIGURE 9. Qualitative comparison of input with different dynamic ranges on real data. Each result shows (a)the input image; (b) the rendered image;
(c) the estimated normal map and (d) the inferred environment map under the different dynamic range.

For the geometry material module, the normal map is
mainly related to the scene’s structure feature, but the high
light intensity may cover this feature in images. Conse-
quently, the result shows that the accuracy of normal maps
changes with the dynamic range. For the material, it can
be found that LDR input loses the specular property, which
reveals that the lower dynamic range sets an obstacle for
learning the high reflectance. Overall, for a stable scene, both
the HDR input and LDR input can generate similar material
and normal, which shows the dynamic range-invariant char-
acteristics of the geometry material module.

It can also be found from the above results that the HDR
input provides more information and thus decreases the error
from the brightness. However, capturing an HDR image is
infeasible in most scenarios. Furthermore, it is impossible to
transfer the existing LDR images to their real HDR version.
Although some algorithms can finish this task in terms of
better visualization, the original physical lighting intensity
cannot be recovered. In comparison, the LDR data lacks
physical information and therefore the self-supervised train-
ing could impose an additional mapping from LDR to HDR
on the learning procedure. Consequently, it decreases the
performance of the whole system and leads to more visual
incredibility. In summary, HDR input can provide better
results than LDR, but it is more difficult to capture.

VII. CONCLUSION
In this article, a designed DCNN is utilized to obtain the
material, the geometry, and the ambient light of an object
from a single image. Based on these acquired elements, the
proposed architecture can reconstruct an object’s appearance
in a self-supervised test-time training way. The BRDF and
the normal map are introduced to represent the material and
geometry. A feature fusion unit with a channel-wise attention
mechanism is proposed to improve their accuracies. The
HDR environment maps describe the ambient light and the
feature transformation block is adopted to fuse the low-level
and high-level features of the illumination module. To tackle
the absence of labeled data, the synthetic data is generated to
train the DCNN, and then a self-supervised test-time train-
ing strategy is adopted to transfer the domain by inserting
a differentiable renderer after the proposed modules. The
designed architectures are evaluated and the results show that
our methods outperform the other baselines.

In our system, the geometry is related to the depth infor-
mation. Consequently, this model could be further combined
with the depth estimation or even 3D reconstruction. Apart
from the absence of labeled data, direct self-supervised train-
ing from scratch could result in the collapse of each element,
so how to solve this problem and constructing a large dataset
are promising directions in the future.
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