IEEE Access

Multidisciplinary : Rapid Review : Open Access Journal

Received October 3, 2020, accepted October 26, 2020, date of publication October 30, 2020, date of current version November 11, 2020.

Digital Object Identifier 10.1109/ACCESS.2020.3034937

JSON-LD Based Web API Semantic Annotation
Considering Distributed Knowledge

XIANGHUI WANG ', (Member, IEEE), QIAN SUN', AND JINLONG LIANG2

! Department of Computer Science and Technology, Shandong Jianzhu University, Jinan 250101, China
2Information Center, Shandong Provincial Qianfoshan Hospital, First Affiliated Hospital of Shandong First Medical University, Jinan 250100, China

Corresponding author: Xianghui Wang (wxh_225@163.com)

This work was supported in part by the National Natural Science Foundation of China under Grant 61902221, in part by the Project of
Shandong Province Higher Educational Science and Technology Program under Grant J1I8KA364, in part by the Doctoral Fund of
Shandong Jianzhu University under Grant X19045Z, and in part by the Shandong Provincial Natural Science Foundation under Grant

ZR2018MFO012.

ABSTRACT Based on semantically annotated Web APIs, automatic Web API composition can be imple-
mented easily. The operation can greatly improve efficiency of building a software system. However, in real
world, semantic annotation for Web APIs will encounter various difficulties, because of their distribution
and function diversity, such as disunited API description formats, response result with complex structure,
shortage of business domain ontologies, semantic conflicts among distributed knowledge, and so on. To solve
these difficulties, we propose a JSON-LD based Web API semantic annotation approach (JWASA). JWASA
can assist professional developers to semi-automatically complete semantic annotation of Web APIs. A com-
mon Web API description ontology is firstly defined, including necessary vocabularies about invocation
information, functional semantics, and non-functional features. Then, JWASA automatically converts a Web
API description into a document in an united JSON format, and assist developers to semi-automatically
embed semantic information of crucial elements of the API by means of a lightweight Linked Data format
JSON-LD. Meanwhile, a semantic annotation specification is proposed to deal with various complex
situations in Web API description, e.g: too many response parameters, no request parameters, etc. In addition,
to improve efficiency of annotation, JWASA provides some extra operations, including automatic new
ontology or vocabulary creation, automatic functional semantics extraction etc. Also, JWASA provides semi-
automatically bridge rule generation algorithm, which can infer implied relationships among vocabularies
(e.g: sub-class, super-class, equality). JWASA focuses on the semantic annotation of functionality of Web
APIs, and can create effective semantic Web APIs for future API automatic composition. We implement a
prototype system and carry out a series of experiments to evaluate JWASA on real Web APIs crawled from

Internet. Experiments show that our approach is effective and efficient.

INDEX TERMS Web API, semantic annotation, JSON-LD, ontology creation, distributed knowledge.

I. INTRODUCTION

Under micro service architecture [1], a software system can
be quickly constructed by integrating various existing Web
APIs from different providers. Some of them are from open
Web API platforms on Internet, such as programmableweb,!
juhe,? jisuapi.> Others are developed by internal developers.
Providers generally give descriptions about how to invoke

The associate editor coordinating the review of this manuscript and

approving it for publication was Francesco Tedesco
1 https://www.programmableweb.com 2020-08-27
Zhttps://www.juhe.cn/ 2020-08-27
3https://Www.jisuapi.com/ 2020-08-27

VOLUME 8, 2020

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

Web APIs according to their own custom formats, because
there is no widely accepted description language for Web
APIs. With the increase of Web APIs, it is tedious and time-
consuming for software system developers to manually find
and integrate suitable APIs.

To lighten burden of developers, researchers provided
some semantic annotation approaches for Web APIs [2], [3].
Based on semantically annotated Web APIs, developers
can rapidly find suitable APIs and automatically integrate
them with the help of service composition technologies [4].
In some approaches, specific semantic annotation languages
are utilized to annotate semantics of crucial elements in
HTML-based Web API description documents, such as

197203

https://orcid.org/0000-0002-5887-7775
https://orcid.org/0000-0001-5876-3711

IEEE Access

X. Wang et al.: JSON-LD Based Web API Semantic Annotation Considering Distributed Knowledge

SA-REST, Microdata, RDFa [5]-[7]. In other approaches,
Web APIs are described by existing API specifications with a
concise format, e.g: JSON, and custom semantic annotation
formats are proposed to embed semantic information in orig-
inal description documents [8]-[10]. However, in practice,
existing approaches would encounter five realistic problems.

Firstly, multiple types of request parameters make it diffi-
cult to decide which parameters need to be annotated. From
the perspective of necessity, the parameters may be required,
optional, or having default value. Specially, some APIs have
no request parameters, and they only provide all information
about specific data. Semantically, some are business param-
eters, for instance, City and Date in Query History Weather
API; others are result format parameters, e.g: Page No., Total
pages, etc. Secondly, response parameter descriptions from
providers are incomplete, and some details still need to be
parsed out of response result example in a text-based descrip-
tion document. Generally, the response results are in JSON
format, and data types of parsed parameters are multiple,
such as array, value, object, etc. Also, a response parameter
may be parsed out of a leaf node in a deep level of the
response results. All these factors determine that the parsing
operation is complex. Thirdly, a common Web API seman-
tic ontology, that mainly describes its invocation, function,
QoS, faults etc., is required to implement automatic invoca-
tion, discovery and composition. Although, existing seman-
tic annotation approaches provide some ontologies for Web
APIs, they usually aren’t incomplete. Some of them mainly
describe request/response parameters [5], [6], and are short of
description about other details, such as precondition, effects
etc. Others are used to annotate traditional WSDL-based web
services and aren’t for Web APIs [11]. Fourthly, there are few
available ontologies for specific domains. Lastly, semantic
conflicts among distributed knowledge from multiple used
ontologies can decrease recall ratio of discovery [12], such
as different name synonymous.

To solve the problems above, we propose a JSON-LD [13]
based Web API semantic annotation approach (JWASA).
It converts a Web API description document in informal
natural language into a document in an united JSON for-
mat, and can assist developers in semantically annotating
elements in the JSON document according to JSON-LD for-
mat. JSON-LD is a lightweight Linked Data format, and is
widely accepted by developers for semantically annotating
JSON data. Semantic information for JSON data can be
easily embedded in corresponding JSON document, and can
be parsed out of the document by means of ready-made
JSON-LD APIs. Therefore, JSON-LD is very suitable as a
semantic annotation format of Web API documents in JSON
format.

Furthermore, JWASA proposes a semantic annotation
specification to deal with various real complex situations
for Web API descriptions. During annotation, JWASA can
automatically extract functional semantic information from
semantically annotated JSON-LD documents, and automat-
ically generate or modify relevant ontologies according to

197204

new vocabularies used by developers. Also, IWASA provides
semi-automatic bridge rule generation algorithm to effi-
ciently solve semantic conflicts among distributed knowledge
from different ontologies.

The main contributions of this article are in the following
folds:

1) A common Web API description ontology is created
to provide various semantic vocabularies about Web
APIs, and a novel lightweight JSON-based Web API
description format is designed.

2) A semi-automatic JSON-LD based Web API semantic
annotation approach is proposed, where a semantic
annotation specification is designed and some effi-
cient assist operations are provided including automatic
ontology generation, bridge rule generation and func-
tional semantics extraction.

3) A prototype system is implemented, and, on real Web
APIs from Internet, a series of experiments are car-
ried out to evaluate effectiveness and efficiency of our
approach.

The remainder of this article is organized as follows.
Section II introduces related works. Section III describes an
overview of our semantic annotation approach. Section IV
presents formal definitions of Web API and Common Web
API Ontology. Section V presents implementation details
of the approach. Section VI reports the empirical results.
Section VII concludes the paper.

Il. RELATED WORKS

In recent years, researchers proposed some semantic anno-
tation approaches for Web APIs (or Web services). Accord-
ing to difference of Web API description formats, these
approaches mainly are divided into three categories: WSDL-
based, HTML-based, and API specification based.

A. WSDL-BASED APPROACH

Currently, available Web APIs most are restful style which
is resource-oriented [14]. Traditional web service descrip-
tion language (WSDL) provides support for restful APIs
in its version 2.0 [15]. Specific semantic annotation lan-
guages were used to annotate WSDL-based Web APIs, e.g,
SA-WSDL [16], OWL-S [11], etc.

SA-WSDL implemented semantic annotation through
adding extra XML attributes to current WSDL document
and associated XML schema document. Literature [17]
designed a semantic annotation tool for Web services based
on WSDL2.0 and SA-WSDL. The tool could assist users to
search semantic vocabularies and embed semantic informa-
tion in current documents.

Different from SA-WSDL, OWL-S described semantics of
every Web service through an independent XML document in
OWL-S format. The document not only described functional
semantics of a web service from four aspects: input, output,
precondition, and effect (called IOPE), but also described
other feathers, for instance, QoS (reliable, response time etc.)

VOLUME 8, 2020

X. Wang et al.: JSON-LD Based Web API Semantic Annotation Considering Distributed Knowledge

IEEE Access

and the category of a given service. These information were
enough for automatic service composition.

In these WSDL-based approaches, Web API description
documents and semantically annotated documents all are in
XML format, and their syntax is more complex for providers
and annotators than other popular formats, e.g: HTML and
JSON. Therefore, in practice, WSDL format rarely is used to
describe Web API by providers.

B. HTML-BASED APPROACH

Generally, providers offer human-readable Web API descrip-
tions according to custom formats on their official web-
sites. Therefore, descriptions for Web APIs are embedded in
HTML documents.

Based on HTML documents, some lightweight seman-
tic annotation languages were adopted to directly anno-
tate crucial elements of Web APIs in these documents
(e.g: access url, request method, request/response parameter
etc.), such as Microdata, hREST, SA-REST, MicroWSMO
and so on [6], [18], [19].

Literature [20] provided a meta model of restful API
description, and implemented semantic annotation by means
of Microdata. The model defined some vocabularies describ-
ing web services, including WebService, WSResource, WSAc-
tion, WSParam etc. Microdata is used to add additional
semantics of existing data in a HTML document on the
basis of the model. Literature [2] proposed a semantic
annotation tool SWEET, which used MicroWSMO and
hRESTS to implement annotation of Web APIs. The hRESTs
was adopted to identifying service properties (e.g, ser-
vice, method, input, output) by insert hREST tags in given
HTML document; the MicroWSMO was used to annotate
service properties with semantic information by means of
existing domain ontologies. Identifying service properties
from a HTML document is tedious, because they are put
together with other irrelevant HTML elements. Hence, liter-
ature [3] gave an automated semantic annotation approach,
which could automatically identify service properties in a
HTML document, and then annotate them with hRESTs or
SA-REST.

However, these approaches are limited when HTML doc-
uments for describing Web APIs are complex. For example,
multiple Web APIs are described in a HTML page; Web API
description contents aren’t embedded directly into a HTML
page, while they are obtained by asynchronous requests.
In these situations, extra operation is expected to extract a
valid HTML document for every Web API. Furthermore,
most of them focused on annotation for request/response
parameters, and ignored other functional semantics, espe-
cially precondition, effect and fault semantics of Web APIs.

C. API SPECIFICATION BASED APPROACH

In practice, various custom Web API description formats
from different providers make it difficult for API automatic
invocation and semantic annotation. Therefore, some concise
and easy-to-use metadata formats to describe Web API are

VOLUME 8, 2020

proposed, such as OpenAPI Specification (OAS),* REST-
ful API Modeling Language (RAML),> API Blueprint,’
and so on.

In recent years, on description documents of Web APIs
conforming to OAS, some semantic annotation approaches
have been proposed. OAS defines a standard, program-
ming language-agnostic interface description for REST APIs.
An OAS description is a YAML or JSON document that
consists in various elements for describing Web APIs and a
list of tags used by the specification with additional metadata.

Literature [10] extended OAS description to add seman-
tic annotation. New elements (classAnnotation and prop-
ertyAnnotation) were added in the description documents of
Web APIs, and a specific process was designed to identify
these annotation elements. Literature [8] and [9] utilized tag
elements in OAS to add custom semantic information, and
annotated description documents still conformed to OAS.
These approaches semantically annotated Web APIs in cus-
tom formats, thus, extra parsing processes are necessary to
turn semantic API description to semantic resource graph in
RDFE.

Considering that an OAS description document can be rep-
resented in JSON format, Literature [21] embedded semantic
information in OAS description documents for Web APIs by
mean of JSON-LD format [13]. JSON-LD is a lightweight
Linked data format, and provides a series of special elements
to semantically annotate a JSON document. Compared with
previous custom semantic annotation formats, JSON-LD for-
mat is more mature because ready-made APIs can be used to
parse semantics out of JSON documents.

These approaches only presented semantic annotation for-
mats, but didn’t illustrate concrete annotation specification.
For instance, which parameters can be annotated when a lot
of parameters are answered; how to annotate when a Web API
can have multiple request alternatives.

D. OUR APPROACH

All the previous approaches default that the used domain
ontologies always are available. However, in practice, two
main problems may occur for domain ontologies. The first
is that no suitable domain ontologies are available for some
Web APIs, and the second is that some semantic conflicts
among distributed knowledge in domain ontologies may
occur. No solution about the two problems is mentioned in
these approaches.

Our approach proposes a whole solution for Web API
semantic annotation. It learns from the advantages and over-
comes the shortcomings of the previous approaches. The
approach newly describes a Web API with a custom united
JSON format according to its original description document,
and uses JSON-LD to embed semantic information in the
JSON document of the Web API. The semantic information

4http://spec.openapis.org/oas/v3.0.3 2020-10-02
5https://raml.org/ 2020-10-02
6https://apiblueprint.org/ 2020-10-02

197205

IEEE Access

X. Wang et al.: JSON-LD Based Web API Semantic Annotation Considering Distributed Knowledge

TABLE 1. Comparison among existing approaches and our approach.

Literature | API format | Serialization | Annotation for- | Annotation |Annotation |Annotation |Ontology Distributed
mat mode elements specification knowledge
[17] WSDL XML SA-WSDL embedded 10 no available no solution
[11] WSDL XML OWL-S independent |IOPE no available no solution
[20] HTML XML Microdata embedded 10 no available no solution
21, [3] HTML XML hRESTs& embedded 10 no available no solution
MicroWSMO
[8]-[10] OAS YAML/JSON |OAS(extended) |embedded 10 no available no solution
[21] OAS JSON JSON-LD embedded 10 no available no solution
this paper | custom JSON JSON-LD embedded |IOPE specific available& |bridge
automatic rules&automatic
generation |inference

includes IOPE (just like in OWL-S), and other feathers
(e.g: QoS and faults). Also, a semantic annotation speci-
fication is designed to effectively handle various complex
annotation situations.

To solve shortage of domain ontologies and efficiently
eliminate semantic conflicts, our approach supports the auto-
matic creation of new ontologies and vocabularies during
semantic annotation, and semi-automatic bridge rule infer-
ence among multiple domain ontologies. It uses six types of
bridge rules defined in our previous work [22] to assist infer-
ence among domain ontologies. These types of bridge rules
respectively are intoc, ontoc, equalc, intor, ontor, equalr.
The first three types are used to define sub-class, super-
class, or equality relationship among two concepts from
different ontologies. And the last three types are for sub-
property, super-property, or equality relationship among two
properties (or predicates) from different ontologies. Gener-
ated ontologies and bridge rules are crucial elements for
future composition of Web APIs. Table 1 compares existing
main approaches and our approach from various perspectives.

Furthermore, our approach can semantically annotate vari-
ous faults in Web API descriptions by means of three defined
exceptions in our previous work [23]: UnPre (precondition
unsatisfied), UnExe (execution failure), and UnEff (unex-
pected execution effects). For example, no weather is return
is a fault description for Web API Weather Query, and then
the fault can be annotated as UnEff.

Ill. OVERVIEW OF JWASA

In this section, an illustrative example is described to show
semantic annotation process in JWASA, and then an archi-
tecture to implement JWASA is presented.

A. AN ILLUSTRATIVE EXAMPLE

In JWASA, the semantic annotation for a Web API fol-
lows five steps: collect description information of the API,
newly describe the API in an united format, annotate seman-
tics, update ontology, and generate bridge rules. The detail
description in each step is shown in the following.

1) COLLECT DESCRIPTION INFORMATION OF THE API
On an API open platform (https://www.jisuapi.com/), there
are about /30 types of APIs, and the number of APIs is

197206

TABLE 2. Description information of Weather Query API.

Item name Item Content

Interface URL https://api.jisuapi.com/weather/query
Return format JSON,JSONP

Request method |GET POST

Request example |https://api.jisuapi.com/weather/query?appkey=
yourappkey&city=real city name

Request parame- |5 business parameters are shown: city, cityid, city-
ters code, location, ip. The API can succeed to run when
one of them is input. Each parameter includes four
aspects: name, data type, isrequired, and meanings.
Response param-|7/ business parameters are shown. For instance,
eters weather base information (high/low temperature,
weed speed, etc.), air quality index (PM2_5, agqi
value, etc.), daily weather, hourly weather, etc. Each
parameter item includes three aspects: name, data
type, and meaning.

Response exam- | A JSON data shown in Fig. 1 where most parameters
ple are omitted due to limited space.

Exceptions 4 fault items on API level are shown. Each item
presents exception code and related meaning. For
example, exception code 202 means entered city
doesn’ t exist.

collection number: 1915, used number: 14060

Other features

about 300. All APIs have their own description documents.
The description information of Weather Query API on the
platform is shown in Table 2.

Specially, there are two types of request/response parame-
ters in the API: format parameter and business parameter. For-
mat parameters are used to specify invocation authorization
and returned result format. For example, parameter appkey
in the request example is a format parameter, and its value
can be applied by users. The parameter is required for every
invocation of the API. Furthermore, status, msg, result also
are format parameters, and respectively represent execution
status code, status text description, and response business
data. The three parameters are all returned after every invo-
cation of the API. Business parameters can really reflect
business function of the API, for instance, city, cityid in
request, weather, winddirect, aqi in response. The meaning of
every business parameter can be found from request/response
parameter list in the description document. However, the rela-
tionships among parameters at structure level only are shown
in the response example (Fig. 1). For example, pm2_5 is a
property of aqi.

VOLUME 8, 2020

X. Wang et al.: JSON-LD Based Web API Semantic Annotation Considering Distributed Knowledge

IEEE Access

"status": 0,
"msg": "ok”,
"result": {

"temp": "16",

"windspeed": "14.0",

"aqi": { ...
"pm2_5": "23",
"aqiinfo": {
"color": "#00e400",
}
b
"daily": [{

"sunrise": "07:39",
"sunset": "18:09",

"night": {
"templow": "9",
"img": "1",

b

"day": {

"temphigh": "18",
"img": "1",

3,
"hourly": [{...... | R PR 1

}

FIGURE 1. A response example of Weather Query API.

2) NEWLY DESCRIBE THE API IN AN UNITED FORMAT

In JWASA, through parsing the JSON data in response exam-
ple, the names of all parameters are described newly. New
names can reflect structure information of relevant param-
eters, such as result-weather, result-winddirect, result-aqi,
result-aqi-pm2_5, etc. In addition, complex data types are
introduced to further illustrate the structure of relevant param-
eter, including Object, Array of value, and Array of object.
For example, in Fig. 1, the data types of result-aqi and result-
daily respectively are Object and Array of object.

It is noticed that description contents of Web APIs on
other platforms are similar to that information in Table 2,
except some individual details. For example, on Juhe plat-
form, parameter appkey is named key, and parameter status,
msg are respectively named error_code, and reason. Also,
description details of request and response parameter lists are
a little different.

To automatically invoke a Web API, it is necessary to
provide an united description document format. In JWASA,
a Web API is described in an united JSON format, where
various well-defined common attributes are set. Fig. 2 shows
the description document with the JSON format of Weather
Query APIL. Here, apilD represents the unique identity given
by current user; regexam, respexam, qoS respectively repre-
sent request example list, response example list, and other
features in Table 2. Meanings of other attributes are as
their names suggest. Every parameter is expressed a JSON
object mainly including three aspects: name (paramname),

VOLUME 8, 2020

data type (datatype), and meaning (pararemark). In addi-
tion, every response parameter has a value example attribute
(valexmp), which value is obtained from response example.
The attribute can assist annotators to comprehend semantics
of current parameter. Meanwhile, every invocation exception
also is expressed a JSON object, and is described from three
aspects: errortype, errorcode, and errorcontent. Specially,
given description information in Table 2, the JSON document
can be automatically generated by JWASA.

3) ANNOTATE SEMANTICS

The semantics of Weather Query API are directly anno-
tated in its extended JSON document, shown in Fig. 3.
Some JSON-LD attributes (@ context, @id, @type) and other
attributes related to semantics (e.g: inputs, outputs, effects,
preconditions) are added in the document.

Here, The @context is used to introduce well-defined
semantics mapping files (jsonld as suffix) and declare various
name space prefixes. The @id is used to specify the URI
of current API or request/response parameter. The @type
is used to annotate semantics of current API or parameter.
Specially, in JIWASA, @type of all format parameters need to
be specified, because the information is key for automatically
invoking the API and parsing its response result. Only @id
and @type of those crucial parameters, that may interact with
other APIs, are specified.

Attribute domains and function respectively specifies the
business domains and function description details of cur-
rent AP, and they can facilitate API classification. Attribute
inputs, outputs, preconditions and effects provide IOPE fea-
tures in functional semantics of current API. Based on these
information, automatic composition of Web APIs can be
implemented easily.

Furthermore, the exception with api type means the fault
at business level, and it is necessary for automatic fault
recognition to distinguish different exceptions by annotation.
In JWASA, every exception with api type has attribute @type,
and the value may be UnPre, UnEff, or UnExe [23] according
to its errorcontent value.

In this step, an annotator needs to manually specify seman-
tics about crucial request/response parameters, every business
fault in exceptions, and to set preconditions and effects. The
inputs and outputs will be automatically extracted by JWASA
according to annotated information.

All in all, JWASA proposes a series of annotation specifi-
cations for Web APIs to make their semantics more complete
and effective.

4) UPDATE ONTOLOGY

JWASA not only supports sharing concepts in existing
ontologies, but also can dynamically create new ontologies
and vocabularies during annotation. For example, the ontol-
ogy for weather doesn’t exist when an annotator anno-
tates Weather Query APIL. He can declare a prefix ns for
a new name space (http://sdjzu.edu.cn/cs/onto/weather), and
then use a series of new vocabularies to annotate the API.

197207

IEEE Access

{"pname":"jisu","purl":"https://www.jisuapi.com/apil","premark":"BiRAP FFREE"}
{"typename":"£E X SFRIR", "aturl":"/api/weather/","atremark":"2E 3000 M Sh N A SFIREE, &

R

url "https://api.jisuapi.com/weather/query"

returnformat "JSON,JSONP"
requestmethod "GET POST"
ATk null

1991

"https://api.jisuapi.com/weather/query?appkey=yourappkey&city==22l1"
{"status";0,"msg":"ok","result":{"city":"=JIR","cityid":"111","citycode";"101260301","date";"2015-12-22" "

regexam
respexam
requestparas [{"paramname":"city","datatype":"string","isrequired":"25","pararemark":"igt "}, {"paramname":"cityid","¢
responseparas

[{"errortype™:"api","errorcode":"201" "errorcontent™: "t AN AL IDFD T (L S0 A="} {"errortype":"api"

_ {"clicknnum":111358,"collectnum":1915,"usenum":14060,"favoritenum™:0,"price":null}

FIGURE 2. Description document of Weather Query API in JSON format.

[{"paramname":"msg","datatype":"string","pararemark":null,"valexmp":"ok"} {"paramname™:"result","dat

["D+/seifadaptiwebapi/jsonid/api.jsonld" {"a":"http:/sdjzu.edu.cn/cs/onto/WebAPI/1991#" "ns":"http://sd]

CZI 't /sdjzu.edu.cn/csionto/WebAPI/1991"

@type "WebAPI"
provider. {"pname":"jisu","purl™:"https://www.jisuapi.com/api/","premark": "t iRAP T 35"}
apitype {"typename":"&EFSFE", "aturl":"/apiiweather/","atremark":"£E3000 8 M E TR SR EIE, &

TR

_ "https://api.jisuapi.com/weather/query"

" JSON,JSONP"

WEMETKS null

"hitps://api.jisuapi.com/weather/query?appkey=yourappkey&city=22/Ii"

respexam ["status™0,"msg":"ok","result":{"city": "= Ili","cityid":"111","citycode":"101260301","date":"2015-12-22" "
[{"@id":"a:cityname","@type":"ns:CityName","paramname":"city","datatype":"string", "isrequired":"&","¢
{"@id™" "@type":"Message","paramname";"msg","datatype":"string","pararemark":null} {"@id":"a:cun
[{"errortype":"api","errorcode":"201" "errorcontent" "I fOiE = I DA R SE0AZ", " @type":"UnPre"}

_ {"clicknnum":111356,"collectnum™:1915,"usenum": 14060, "favoritenum":0,"price":null}

["Weather","Weather forcast"]

function ["information providing”,"query weather information according to city name"]

m {"a:city":"ns:City","a:cityname":"ns:CityName"}
m {"a:temp":"ns:Temperature","a:date":"ns:Date","a:temphigh":"ns: TemperatureHigh","a:windpower":"ns:\

prec ["a:city-ns:hasCityName-a:cityname"]

T (- curveather-ns:hasAQl-a:aqit, "a:curweather-ns:hasDallyWeather-a:daily","a:curweather-ns:hasDate

FIGURE 3. Well annotated Weather Query API in JSON-LD format.

X. Wang et al.: JSON-LD Based Web API Semantic Annotation Considering Distributed Knowledge

When the well-annotated JSON-LD file is saved, an new
ontology for weather will automatically be generated and its
name space is http://sdjzu.edu.cn/cs/onto/weather. Other Web
APIs related to weather can use the ontology or add new
vocabularies into this ontology during annotation.

5) GENERATE BRIDGE RULES
Due to diversity of business domains, multiple domain
ontologies may be used in well-annotated Web APIs, such as

197208

weather ontology, vehicle ontology, book ontology, etc. Some
semantic conflicts may occur for these ontologies. For exam-
ple, City, CityName in ontology ol respectively represent a
city object, and a city s name; City in ontology o2 represents
a city’s name. Here, City in o/ and City in 02 use the same
vocabulary, but they have different meaning; CityName in ol
and City in 02 are different vocabularies, but they have the
same meaning. In JWASA, we employ bridge rules to solve
these semantic conflicts. These rules specify parent-child

VOLUME 8, 2020

X. Wang et al.: JSON-LD Based Web API Semantic Annotation Considering Distributed Knowledge

IEEE Access

and equality relationships among different vocabularies.
For instance, rule (ol, CityName, equalc, 02, City) repre-
sents CityName in ol and City in o2 are the equivalent
classes. It is a tedious work for developers to manually create
all bridge rules. To lighten their workload, our approach
can semi-automatically generate all bridge rules among all
ontologies.

After annotation, three types of semantic annotation results
are generated: well-annotated JSON-LD files for Web APIs,
all ontology files used during annotation, and all bridge rules.
They are the crucial information for subsequent automatic
service composition operations.

B. ARCHITECTURE OF JWASA

To efficiently complete various semantic annotation tasks
above, a semantic annotation tool supporting JWASA is
designed, and its architecture is shown in Fig. 4. The tool
includes four main function modules: Original Information
Collection, United Format Conversion, Semantic Annotation
Core, and Ontology Management.

API-JSONLD!
files
1 g e
Ontology Bridge rule
X / files DB
[JSON-LD annotation managemem] % T

[Prepare JSON-LD template] 1l Automatic ontology update
Ly m

Semantic Annotation Core
Bridge rule generation
Save API JSON Ontology Management

Parse original APT

United Format Conversion

! APIJSON
files

e
Original API
DB
Original Information Collection
self-developed

FIGURE 4. Architecture of a semantic annotation tool for JWASA.

[Save original information]
L

[crawlen] [crawlerz] - [crawlern]

JWASA

1) ORIGINAL INFORMATION COLLECTION MODULE

This is used to collect available Web APIs from various API
open platforms on Internet or self-developed Web APIs. For
different API sources, the module provides different crawler
agents. Also, developers can develop own crawler agents for
special API sources. The caught original Web API description
information will be stored in Original API DB.

2) UNITED FORMAT CONVERSION MODULE

This can read original information of APIs from Origi-
nal API DB, and parse that information, especially parse
response parameters out of corresponding response result
data. Then, for every Web API, it assembles parsed informa-
tion into an united JSON format, and stores that information

VOLUME 8, 2020

in a JSON file. The file is called API-JSON file in the
following.

3) SEMANTIC ANNOTATION CORE MODULE

This firstly uses Prepare JSON-LD template function to
automatically insert JSON-LD elements and extra attributes
about functional semantics into all API-JSON files, and
then adopts JSON-LD annotation management function to
assist developers specify semantics for crucial elements and
to store annotation results in API-JSON files. In the follow-
ing, a well-annotated API-JSON file is called API-JSONLD
file. Meanwhile, JSON-LD annotation management also
provides ontology search operations to help developers
rapidly find suitable vocabularies from available ontology
files. In addition, when new name spaces or new vocabularies
are introduced during annotation, the function would invoke
Automatic ontology update function in Ontology Manage-
ment module to add or update ontology files.

4) ONTOLOGY MANAGEMENT MODULE
This includes two main functions based on Jena ontology tool
kit.” Jena can support ontology CRUD and reasoning oper-
ations. Automatic ontology update function can automat-
ically extract all semantic information from API-JSONLD
files and add/update relevant ontology files. Bridge rule
generation function can semi-automatically generate bridge
rules among vocabularies from multiple ontology files, and
store all bridge rules in Bridge rule DB.

Implementation details of main functions in JWASA will
be shown in section IV and section V.

IV. WEB AP1 AND COMMON WEB API ONTOLOGY

In this section, we will present formal definitions of Web API,
semantic Web API and common Web API ontology. They are
the basis of implementing JWASA.

A. WEB API AND SEMANTIC WEB API
In this article, a Web API means a web service that can
receive HTTP protocol based requests and respond by HTTP
protocol based answers. Its provider can provide complete
description information about features of the API, including
general features (e.g: provider, business category, quality of
service), invocation crucial features, and invocation illustra-
tion features. Although Web APIs from different providers
may have description documents with different formats, com-
mon features of Web APIs can be abstracted from their
description documents. Here, based on abstracted common
features, a Web API is formally defined.

Definition 1: Web API: A Web APl is a tuple (apiname,
Genf, InvCru, Invlil), where,

o apiname is the unique identifier of a Web API, and can
be used to differentiate from other Web APIs from the
same provider;

7https:// /jena.apache.org/ 2020-10-02

197209

IEEE Access

X. Wang et al.: JSON-LD Based Web API Semantic Annotation Considering Distributed Knowledge

o Genfis a set of elements describing general features of
the API, including provider, apitype (business category),
remark (functional description text), and QoS (quality of
service).

o InvCru is a set of elements describing crucial features
about invocation details, including url (access URL),
returnformat (return format), requestmethod (request
method), requestparas (request parameters), responsep-
aras (response parameters), and exceptions;

o Invill is a set of elements illustrating how to invoke the
API, including regexam (request example) and respexam
(response example).

In this definition, provider in Genfis a triple (pname, purl,
premark), where components respectively represent
provider’s unique name, URL, and description text; apitype in
Genfis also a triple (typename, aturl, atremark), where com-
ponents respectively represent name, URL, and description
text of API business category; QoS in Genfis a mutable tuple
(q1,92, - - -, qn), where gi(1 < i < n)is an QoS index, e.g:
price, use number, etc. These indexes are provided by current
Web API’s provider, and different providers may provide
different indexes.

Furthermore, requestparas and responseparas in InvCru
both are sets including multiple parameters, and each parame-
ter is modelled as a tuple (paramname, datatype, isrequired,
pararemark), where components respectively represent
parameter’s unique identifier in current API, data type
(e.g: string, integer, etc.), required or not, and meaning;
exceptions in InvCru represents a set including various excep-
tions that may occur during invocation, and each exception
is modelled as a triple (errortype, errorcode, errorcontent),
where components respectively represent error type, error
code returned, error message returned. Here, the value of
error type has two kinds: api (application) and sys (system).
The api means exceptions about business, e.g: some request
parameter is invalid or no result is returned; the sys means
exceptions about invocation permission of the API, e.g: appli-
cation key is overdue or invalid.

In the following, given a Web API wa, we use wa. XXX to
represent the value of its feature element XXX. For instance,
wa.requestparas responses request parameter set of wa.

A semantic Web API is an extension of corresponding Web
API through adding extra semantic features. These semantics
features make the API easily be discovered, interactive and
automatically invoked.

Definition 2 Semantic Web API: A semantic Web API is
a semantically well-annotated Web API, and is expressed
as a tuple (webapi, semVs, funcSem, exSemV, exSem),
where,

o webapi is a Web API conforming to Definition 1, and

provides original information from its provider;

o semVs is a set of vocabularies from business domains
related to the API;

o funcSem describes functional semantics, and is
expresses as a tuple (inputs, outputs, preconditions,
effects). Here, assume that inparams and outparams

197210

respectively are sets of crucial parameters in webapi.
requestparas and webapi.responseparas, then,

— inputs represents input parameters with semantics,
and is a mapping: inparams — semVs;

— outputs represents output parameters with seman-
tics, and is a mapping: outparams — semVs;

— preconditions represents preconditions before
invoking the API, and is a set of literals that describe
relationships among parameters in inparams by
means of vocabularies in semVs;

— effects represents execution effects after invoking
the API, and is a set of literals that describe rela-
tionships among parameters in inparams and out-
params by means of vocabularies in semVs.

o exSemVs is a set of vocabularies related to exception

semantics;

o exSem represent exceptions semantics, and is a mapping:

webapi.exceptions — exSemV .

Specially, given a semantic Web API, its component
funcSem describes IOPEs features just like in OWL-S.
Meanwhile, extra exception semantics are introduced to facil-
itate self-adaptation running of the APL

B. COMMON WEB API ONTOLOGY

Common features of Web APIs from different providers are
defined in Definition 1. However, in practice, these features
may have different names and presentation formats because
of different providers. This hampers automatic discovery and
interoperability among different Web APIs. To solve this
problem, we design a common Web API ontology: WebAPI-
Onto. It not only provides requisite vocabularies to describe
common features of Web APIs in Definition 1, but also
provides extra semantic vocabularies to describe function and
exception semantics in Definition 2. The formal definition of
WebA PIOnto is shown in Definition 2.

Definition 3 WebAPIOnto: WebAPIOnto is an owl ontol-
ogy specially for Web API domain, and is expressed as a tuple
(WebAPI, Genc, Grdc, FuncSem, R), where,

o WebAPI is an owl class that represents a Web API

description document;

e Genc is a set of owl classes that represent concepts
related to general information of a Web API, and
describes what the API is;

e Grdc is a set of owl classes that represent concepts
related to invocation detail of a Web API, and describes
how to invoke the API;

e FuncSem is a set of owl classes that represent con-
cepts related to functional semantics of a Web API, and
describes what the API does;

e Ris a set of owl object properties with one domain and
one range, where every domain or range is an owl class
in set {WebAPI} U Genc U Grdc U FuncSem, and each
object property describes a relationship between concept
for its domain and concept for its range.

In this ontology, the most core concept is WebAPI, and

other concepts are used to illustrate various properties

VOLUME 8, 2020

X. Wang et al.: JSON-LD Based Web API Semantic Annotation Considering Distributed Knowledge

IEEE Access

WebAP|
ProviderRemark

AP TypeName

APIRemark =

= oo e
il

AFPIName

APITypeRemark

A

owl:Thing

APIType

I FaveriteNum ” ClickNum I

ProviderUrd

Py ! ™ i -

FIGURE 5. Concepts in component Genc of WebAPIOnto.

~ g & y y
ErorType | W\
Qei;Thiog —[IsRequired] | % UnEff ‘
RequestiMethod £ ™ A
Result / { b N e
) L [
ErorContent | | ‘ .

ValueExample

FIGURE 6. Concepts in component Grdc of WebAPIOnto.

[*® owiThing |
[Output l l Effect l I FunctionType ” WebAP| I I Domain]

FIGURE 7. Concepts in component FuncSem of WebAPIOnto.

of WebAPI. Component Genc, Grdc, and FuncSem respec-
tively provide concepts related to three types of features of a
Web API. These concepts are respectively shown in Fig. 5,
Fig. 6, and Fig. 7. Here, an arrow in these figures represents
the concept at its tail is super-class of other concept at its head.

Concepts in Genc mainly describe a Web API’s features
in component Genf. Specially, common QoS indexes also
are included in Genc, such as CollectNum (the number of
collected by users),ClickNum (the number of clicked) and so
on. Concepts in Grdc describe a Web API’s features in com-
ponent InvCru and Inviil. Concepts in FuncSem are mainly
describe necessary IOPE components, business domain, and
function category, and they are extra functional semantic
vocabularies.

Meanwhile, all object properties in component R have
unique names, which can directly illustrate relationship
meanings. Object properties in WebAPIOnto are shown
in Table 3, Table 4, and Table 5. Specially, meanings of
concepts and properties are suggested by their names.

WebAPIOnto is a common Web API ontology, and can
be used by any Web API provider to annotate their own

VOLUME 8, 2020

TABLE 3. Object properties about concepts in component Genc.

NO. Object Property Domain Range

1 hasAPIName WebAPI APIName

2 hasAPIDesc WebAPI APIRemark

3 hasProvider WebAPI Provider

4 hasAPIType WebAPI APIType

5 hasQoS WebAPI QoS

6 hasProviderName Provider ProviderName

7 hasProviderUrl Provider ProviderUrl

8 hasProviderDesc Provider ProviderRemark
9 hasAPITypeName APIType APITypeName
10 hasAPITypeUrl APIType APITypeUrl

11 hasAPITypeDesc APIType APITypeRemark

TABLE 4. Object properties about concepts in component Grdc.

NO. Object Property Domain Range

1 hasUrl WebAPI Url

2 hasReturnFormat WebAPI ReturnFormat

3 hasRequestMethod WebAPI RequestMethod
4 hasRequestExample WebAPI RequestExample
5 hasResponseExample WebAPI ResponseExample
6 hasRequestParameter WebAPI Request

7 hasResponseParameter WebAPI Response

8 hasException WebAPI Exception

9 hasErrorType Exception ErrorType

10 hasErrorCode Exception ErrorCode

11 hasErrorContent Exception ErrorContent
12 hasAPPKey WebAPI APPKey

13 hasStatusCode WebAPI StatusCode

14 hasMessage WebAPI Message

15 hasResult WebAPI Result

16 hasParameterName Parameter ParameterName
17 hasDataType Parameter DataType

18 hasIsRequired Parameter IsRequired

19 hasRemark Parameter ParaRemark

20 hasValueExample Parameter ValueExample

TABLE 5. Object properties about concepts in component FuncSem.

NO. Object Property Domain Range

1 hasDomain WebAPI Domain

2 hasFunctionType WebAPI FunctionType
3 hasInput WebAPI Input

4 hasOutput WebAPI Output

5 hasPrecondition WebAPI Precondition
6 hasEffect WebAPI Effect

description documents. In JWASA, it is used to semantically
annotate various Web APIs crawled from Internet.

Specially, ontology WebAPIOnto provides vocabularies
related to currently popular Web APIs as complete as pos-
sible. From the RESTful view, maturity of these Web APIs
generally is at a lower maturity level [24]. Therefore, devel-
opers can extended this ontology as the maturity of Web APIs
is raised in future.

V. IMPLEMENTATION OF JWASA

Given original information of Web APIs crawled from Inter-
net, JIWASA can generate corresponding semantic Web APIs.
During generation, a series of manual and automatic opera-
tions need to be completed according to the architecture of
JWASA (Fig. 4). To ensure the accuracy of semantics, devel-
opers need to manually identify functional semantics and

197211

IEEE Access

X. Wang et al.: JSON-LD Based Web API Semantic Annotation Considering Distributed Knowledge

exception semantics of these APIs. Except this, other oper-
ations can be completed automatically by means of designed
algorithms. Therefore, JWASA is a semi-automatic semantic
annotation approach. In this section, implementation details
of JWASA will be presented.

A. AN UNITED JSON FORMAT FOR WEB API

In JWASA, Web APIs crawled from Internet are reorganized
into documents in an united JSON format. The format is
called API-JSON, and document in API-JSON format is
described in Definition 3.

Definition 4 API-JSON Document: Given a Web API, its
API-JSON document is in JSON format, where all features
of the API are modelled as attributes, and each attribute is
expressed a key-value pair. Here, except for features in all
components of the API, it adds an extra attribute apilD as the
unique identifier of current APIL.

Specially, in an API-JSON document, those features mod-
elled as tuples are converted into attributes with JSON object
values, and each component in a tuple is converted into one
attribute of corresponding JSON object.

In practice, for a Web API, except apilD and responsepa-
ras, other features can be crawled from its official description
document. An concrete example for an complete API-JSON
document is shown in Fig. 2 (section III).

B. PARSE RESPONSE PARAMETER

A provider generally provides two parameter description
lists: request parameter list and response parameter list. And
parameters in the lists are described from four aspects: param-
eter name, data type, meaning, required. A real example for
those parameter descriptions is shown in Table 6.

TABLE 6. An example for real parameter descriptions fragment.

List type Pname Data type |Meaning required
request list | city string city name no

cityid int city ID no
response list |temphigh string high temperature

windspeed |string wind speed

aqi string AQI index

pm2_5 string PM2.5

Generally, parameters in the two lists are described in a
flatted format, that is, no structural relationships (e.g: object-
property) among different two parameters are presented.
In practice, request parameters of a Web API usually are flat-
ted. Thus, users can directly specify value for every param-
eters in the request list to invoke a Web API. In API-JSON
document, the request list is assigned to attribute request-
paras. However, in most cases, there are some structural
relationships between two parameters in the response list.
For example, agi is an object where multiple properties are
included, here, pm2_5 is one property of agi. This kind of
information is important for automatic interaction among
multiple Web APIs.

197212

Algorithm 1 ParseRespara

Input: examobj: a JSON object, resparas: an array including parsed parameters,
parentname: attribute name with value examobj
Output: resparas: updated resparas after parsing examobj

01. para « a parameter called parentname from resparas, null is return if no
parameter is found

02. valuetype— the node type of examobj

03. IF valuetype is a value THEN

04. IF para.datatype is null THEN

05. realtype<—real data type of examobj (string or integer)
06. para.datatype< realtype

07. para.valexmp« text value of examobj

08. END IF

09. END IF

10. IF valuetype is an object THEN

11. IF para is not null THEN para.datatype<— “object”

12. FOR each attribute aname of examobj THEN

13. avalue« value for attribute aname

14. paraname<— aname

15. IF para is not null THEN paraname<—parentname+"-"+paraname
16. newpara <— a new parameter object

17. newpara.paramname<—paraname

18. add newpara into resparas

19. call ParseRespara(avalue,resparas,paraname)

20. END FOR

21. END IF

22. IF valuetype is an array THEN // default that all elements in an array have
the same data type.

23. enode« the first element in examobj

24. evaluetype<— the node type of enode

25. IF evaluetype is a value THEN

26. para.datatype«— "array.value"

27. para.valexmp« text value of enode

28. RETURN

29. ENDIF

30. IF evaluetype is an object THEN

31. para.datatype<— "array.object"

32. call ParseRespara(enode,resparas,parentname)
33. ENDIF

34. IF evaluetype is an array THEN// if an element in an array is also an
array, no further parsing continues.

35. para.datatype<— "array.array"

36. para.valexmp<«— text value of enode

37. RETURN

38. ENDIF

39. END IF

FIGURE 8. Algorithm for parsing response parameter.

It is noticed that this information isn’t shown in the
response list. Therefore, extra operation is needed to obtain
response parameters with structural relationship. Fortunately,
attribute respexam records a response result in JSON object
format, through analysing internal structure of the result,
response parameters with structural relationship can be
obtained. Specially, attribute responseparas in an API-JSON
document will record all response parameters with structural
relationships.

Here, we design an algorithm to automatic parse all
response parameters out of attribute respexam, and its pro-
cedure is shown in Fig. 8. It deeply traverses an given
JSON object by means of a recursive call. Except for the
JSON object to be parsed(examobj), it also receives two
input parameters: current parsed parameters (resparas), and
attribute name with value examobj (parentname). Finally,
it will return updated resparas with all parsed parameters out
of examobj.

VOLUME 8, 2020

X. Wang et al.: JSON-LD Based Web API Semantic Annotation Considering Distributed Knowledge

IEEE Access

On the first invocation of ParseRespara, examobj is the
value of attribute respexam in current Web API, resparas has
no element, and parentname is null. The algorithm firstly
judges value type of examobj, and gives different parsing
strategies for different types. When examobj is a value node
(e.g: string or integer value), data type and value exam-
ple attributes of the parameter called parentname will be
assigned (lines 03-09). When examobj is an object, data
type of the parameter called parentname firstly is assigned
object, then, for each attribute in this object, ParseRespara
is called again to continue to parse value of the attribute
(lines 10-21). Specially, during each loop, a new parameter
with structure relationship is created (lines /5-18). When
examobj is an array, its first element is parsed, and data type
of the parameter called parentname is respectively assigned
array.value, array.object or array.array according value type
of this element (lines 22-39). When the value type is an
object, ParseRespara is called again to further parse the
element (line 32).

,"'valexmp":"ok"}

,"valexmp": }
rk":null,"valexmp":null}
raremark":"AQI index","valexmp": }
result-temp”,"datatype rk'":"°C","valexmp":"16"}
"result-windspeed","datatype": "string","pararemark": "wind

{"paramname
{"paramname":"
{"paramname
{"paramname

result-aqi”,"datatype":

speed”,"valexmp":"14.0"}

{"paramname": "result-daily","datatype": "array.object","pararemark": "daily","valexmp":null }
{"paramname": "result-daily-date","datatype": "string","pararemark": "date","valexmp": "2015-
12-22"}

{"paramname": "result-daily-day-img","datatype": "string","pararemark": "image

figure”,"valexmp":"1"}

{"paramname": "result-hourly","datatype": "array.object”,"pararemark": "hourly","valexmp":
}

{"paramname":"result-hourly-temp","datatype": "string","pararemark": "°C","valexmp":"14"}

FIGURE 9. Some parsed response parameters for Weather Query API.

According to this algorithm, some parsed parameters for
the response example in Fig. 1 are shown in Fig. 9. Here,
paramname and datatype can reflect current parameter’s
structure in the response result. The information can help
users to directly obtain value of this parameter from corre-
sponding response result, and to facilitate interaction with
other Web APIs. In addition, after parsing, the attribute
pararemark of every parameter also is set according to its
meaning description in the response list. This process is easy,
and aren’t shown here.

C. SEMANTIC ANNOTATION SPECIFICATION
Given an API-JSON document, JWASA can semantically
annotate the document and finally generate an extension ver-
sion of this document: API-JSONLD document. Compared
with the API-JSON document, the API-JSONLD document
adds 3 JSON-LD elements to annotate semantic information
(@context, @id, @type), and introduces 6 new attributes
related to semantic features (domains, function, inputs, out-
puts, preconditions, and effects).

Element @context is an array including some information
related to semantics, eg: defined mapping from attributes
to semantic concepts, used name spaces etc.; element @id

VOLUME 8, 2020

specifies the URI of current Web API or every parameter
in request/response; element @type specifies semantics of
current JSON document, parameters in requestparas and
responseparas, or exceptions in exceptions.

Attribute inputs, outputs, preconditions, and effects are
used to describe functional semantics of a semantic Web
APIL. Attribute domains and function are added to identify
concrete business category. Here, attribute domains includes
vocabularies about business domain of current API; attribute
function includes two elements: the first specifies function
type of current API, and the second is a detailed text descrip-
tion about function of current API. Definition 5 shows the
details about API-JSONLD document.

Definition 5 API-JSONLD Document: Given a semantic
Web API swa, WebAPIOnto, and a set of business domain
ontologies ontos, and ad is the API-JSON document of
swa.webapi. An API-JSONLD document for swa is an exten-
sion of ad through adding other components of swa and
semantic information conforming to JSON-LD specification,
where,

o WebAPIOnto provides semantic vocabularies about
attributes related to features of swa and exception
semantic vocabularies in swa.exSemVs, and is intro-
duced by @context element;

e ontos provides functional semantic vocabularies in
swa.funcsemVs, and is introduced by @ context element;

o Mappings in swa.funcSem and swa.exSem are specified
through introducing @type element in corresponding
parameters or exceptions.

o Each parameter in inputs and outputs of swa.funcSem is
uniquely identified through introducing @id element.

Specially, in an API-JSONLD document, both attribute
inputs and outputs are JSON objects where each attribute
represents a parameter. Each parameter is expressed as a
attribute-value pair pid:psem, where pid and psem respec-
tively represent parameter ID and its semantics.

During annotation, except for attribute inputs and outputs,
values of other attributes need to be manually assigned by
annotators. Values of the two attributes can be automatically
generated according to annotated request/response parame-
ters. An concrete example for an API-JSONLD document is
shown in Fig. 3.

In every API-JSONLD document, except for JSON-LD
elements, semantics of other attributes are declared by a
mapping from attributes to concepts in ontology WebA-
PIOnto. The mapping is saved to a JSON-LD file, and
is introduced into the document by attribute @context
(shown in Fig. 10(a)). Here, the first element in @context
specifies the mapping file’s location: D:/selfadapt/webapi/
Jjsonld/api.jsonld, and Fig. 10(b) shows a fragment in this
file. In Fig. 10(b), @vocab is used to declare default
name space of semantic vocabularies in current document,
and in the following annotation, no prefixes are required
for vocabularies in the default name space. For example,
pname:ProviderName means semantics of attribute pname

197213

IEEE Access

X. Wang et al.: JSON-LD Based Web API Semantic Annotation Considering Distributed Knowledge

(@context: [
"D.:/selfadapt/webapi/jsonld/api.jsonld",
{
"a":"http://sdjzu.edu.cn/cs/onto/WebAPI/1969#",
"ns":"http://sdjzu.edu.cn/cs/onto/train#",
"com":"hitp://sdjzu.edu.cn/cs/onto/jisucom#"”
}
]
(a) An example of @context in an API-JSONLD document
{
"@context": {
"@vocab": "http://sdjzu.edu.cn/cs/onto/WebAPI#",
"provider": "Provider”,
"pname": "ProviderName",
"requestparas": "Request”,
"responseparas': "Response”,
"paramname": "ParameterName",
"errorcode": "ErrorCode”,
"errorcontent": "ErrorContent”,

(b) A mapping fragment from attributes to semantic concepts

FIGURE 10. Some fragments in an API-JSONLD document.

is ProviderName from http.//sdjzu.edu.cn/cs/onto/WebAPI#
(ontology WebAPIOnto).

The second element in @context is an object which
declares source paths of resources (“‘a:” as default prefix)
and ontologies to be used in current document. Semantic
annotators can modify these prefix names and their source
paths or add new prefix definitions to introduce new ontolo-
gies. In Fig. 10(a), three source paths are declared, and
respectively specify path of resources in current document
(e.g: request/response parameters) and paths of two intro-
duced ontologies.

Values for attribute domain and function are easily spec-
ified according to some text description from providers.
Specially, for a Web API, its function type in attribute
function may be information providing, world altering, or
dictionary service according to concrete function effect. For
example, Weather Query API is an information providing
API, because it only query some relevant data; Order Train
Ticket API is a world altering API, because the world status
will be changed after this API runs; Weather Query cities
API is a dictionary service AP, because it can run without
any request parameters and return all cities related to weather
query. Based on response result of Weather Query cities API,
according to a given city name, a user can find the city’s ID,
code etc. This is just like a dictionary.

After attribute @context, domain, and function of a tem-
plate are specified, the core semantic annotation operation
can start. The core of semantic annotation is to specify seman-
tics of parameters in attribute requestparas and responsepa-
ras, and to declare literals in preconditions and effects. That
information can directly reflect IOPE features of current Web

197214

API, and is important for following automatic composition.
However, in real world, this annotation task will encounter the
following five main problems, because of diversity of Web
APIs.

(1) A lot of response parameters make annotation
tedious and time-consuming. For example, Weather Query
API has 3 format parameters (msg, result, status) and 71
business parameters. These 71 parameters describe weather
information of today including various air quality indexes,
hourly weather details, and daily weather details.

(2) Some Web APIs can receive different request
parameters and return similar response. For example,
Weather Query API can receive any one of city, cityid, city-
code, location, and all return the weather information.

(3) Multiple parameters describing a business object
aren’t specially declared. This makes the expression of
P/E (precondition/effect) difficult. For example, a Web API
can obtain weather information according to two given GPS
coordinate parameters: lon, lat. They respectively represent
longitude and latitude of a location, but this relationship of the
two parameters isn’t clearly declared in response parameters
of the APL

(4) Business parameters are crucial elements reflecting
I/O features of a Web API, but, they always are mixed with
format parameters in request and response. For instance,
return data format, request data number, application key are
format parameters in request; execution status code and exe-
cution message both are format parameters in the response.

(5) Some Web APIs don’t have request, and only have
response. For example, Cities for weather Query API can
return all cities used for weather query APIs, and users don’t
need to input any request parameters.

Considering those problems above, in our semantic anno-
tation, we design a semantic annotation specification from
the perspective of developers, shown in the following. The
specification make IOPE and other features of a Web API
clearly and easily integrate with other Web APIs.

(1) General JSON-LD element @id and @type are used
to respectively specify unique identify and semantics of
a parameter. For format parameters (e.g. application key,
result, execution message, status code), only their @type
attributes are specified, because format parameters with the
same semantics are unique in a Web APIL. Some business
parameters, that may interoperate with other Web APIs, are
picked. And both @id and @type attributes are specified for
those picked parameters. An annotation fragment following
this specification is shown in Fig. 11, where parameters with-
out @id and @type aren’t shown.

(2) For a Web API with multiple alternative request
parameters, users can create multiple API-JSONLD doc-
uments. In each document, only one alternative parameter is
picked, and other components are the same. For example, for
Weather Query APL, its request parameters may be city, cityid,
citycode, or location. According to these request parameters,
a user can create four similar API-JSONLD documents for
this Web APL

VOLUME 8, 2020

X. Wang et al.: JSON-LD Based Web API Semantic Annotation Considering Distributed Knowledge

IEEE Access

‘a:arrivalport”

ivalport”,"
esult-list-arrivalportcode
rtport

‘a:arrivalportcode

‘a:departport”

‘a:depariportcode esult-list-departportcode”

“"datatype”:"

preconditions:[
“a:flight-ns:hasFlightno-a:flightno”, "a:flight-ns:hasDepartCity-a:startcityobj",
“a:flight-ns:hasArriveCity-azendcityobj", "a:staricityobj-ns:hasCity3Code-a:city",
“azendeityobj-ns:hasCity3Code-azendcity”]

effects:[

“a:flight-ns:hasArrivalport-a:arrivalportobj","a: light-ns:hasDepartport-a:departportoby",

iportcode”," obj-ns:hasF -a:d 0

“a. j-ns City-a:city"," lity-a:endcity”,

“azarr -a:arrivalporicode”, " -a:arrivalport”]

FIGURE 11. An annotation fragment for Flight Query API.

(3) To gather relevant parameters together, various vir-
tual parameters representing business objects are intro-
duced. Their data types are assigned to virtualobject. These
parameters can exist in request or response. For exam-
ple, in annotated Flight Query API (Fig 11), there are
three virtual parameters in request (requestparas): a:flight,
a:endcityobj, a:startcityobj, and two virtual parameters in
response (responseparas): a:arrivalportobj, a:departportobj.
Relationships between virtual and real parameters are pre-
sented in preconditions or effects. Specially, each literal in
preconditions or effects is a string including three compo-
nents (split by “-”’). The middle component represents an
object property from an ontology, and the first and last com-
ponents respectively represent domain and range values of
this property.

@

preconditions:["a:cityobj-ns:hasCityName-a:cityname"]

effects: ["a:cityobj-ns:hasCity3Code-a:citycode", "a:cityobj-ns:has Country-a:country")

FIGURE 12. An annotation fragment for Flight Cities Query API.

(4) Function type of a Web API without request will
be assigned dctionary service (first element of attribute
function). In the API, some parameters are picked as query
keys, and an example is shown in Fig. 12. Here, attribute key
of each picked parameter is assigned to I, e.g: a:cityname
and a:cityobj. The two parameters will be considered as input
parameters of the AP, and other parameters with @id will be
as output parameters. Specially, a virtual parameter a:cityobj
is introduced to gather all real parameters for city features
together.

(5) Business exceptions (value of attribute errortype is
api) in attribute exceptions also are annotated. This can
help users to automatically handle business exceptions dur-
ing invocation. An exception annotation fragment is shown
in Fig. 13. Here, @type is used to specify exception semantics
of each exception.

VOLUME 8, 2020

exceptions: [
{"errortype":"api","errorcode";"201","errorcontent": " §i HE SR A4 2, @type": "UnPre"}
{"errortype":"api”,"errorcode": "202","errorcontent": A HE 5 5" "@type": "UnPre”}
{"errortype": "api","errorcode": "210","errorcontent": " A4 2", @type": "UnExe"} |

FIGURE 13. An exception annotation fragment of Flight Cities Query API.

D. FUNCTIONAL SEMANTICS EXTRACTION

According to previous annotation specifications, except
attribute inputs and outputs, other attributes in an
API-JSONLD document can be specified by current user.
Thus, P/E components in IOPE features of a Web API can
be directly obtained from attribute preconditions and effects.
Meanwhile, I/O components can be automatically extracted
from annotated request/response parameters. The generation
process is shown in Fig. 14.

Algorithm 2 I/OExtraction
Input: apijsonld: a API-JSONLD document.
Output: updated apijsonld

01. extracting following data from apijsonld
regparams < all parameters with attribute @id and @type in attribute
requestparas
resparams < all parameters with attribute @id and @type in attribute
responseparas
02. IF regparams is null THEN // Dictionary Service
03. regparams< all parameters with key in resparams
04. resparams<resparams - regparams
05. END IF
06. FOR each parameter p in regparams THEN
07. pid<value of attribute @id of p, pidsem~value of attribute @type of p
08. newp=<anew parameter is created by pid and sem
09. add newp into attribute inputs of apijsonid
0. END FOR
11. FOR each parameter p in resparams THEN
12. pid<value of attribute @id of p, pidsem<value of attribute @type of p
13. newp=<anew parameter is created by pid and sem

14. add newp into attribute outputs of apijsonld
15. END FOR

FIGURE 14. Algorithm for extracting 1/0 parameters.

inputs: {"a:endcity": "ns-City3Code","acity": "ns: City3Code",

ndcityob;": "ns:City","a:flight": "ns: Flight",
"a:flightno": "ns. Flightno","a:startcityobj": "ns: City"}
outputs: {"a:arrivalport Flightportnam departport": "ns:Flightportname",
"a:departportobj": "ns: Flightport","a:arrivalportobj": "ns: Flightport",
"a:arrivalportcode": "ns: Portcode","a:departportcode": "ns: Portcode"}

(a) Extracted input/output parameters of “Flight Query” API

inputs: {"a:cityobj":"ns:C:
outputs: {"a:citycode":"ns
(b) Extracted input/output

a:cityname": "ns: CityName"}

3Code","a:country": "ns: Country"}
of “Flight Cities Query” API

FIGURE 15. An example for extracted input and output parameters.

Firstly, the algorithm extracts request/response parame-
ters from a given API-JSONLD document (line 07). Only
those parameters with attribute @id and @type are picked.
Secondly, if current API is dictionary service, and then those
response parameters with attribute key will be considered
as request parameters (lines 02-05). Thirdly, it respectively
creates input and output parameters according to extracted
request/response parameters (lines 06-15). An example for
extracted input and output parameters is shown in Fig. 15.

197215

IEEE Access

X. Wang et al.: JSON-LD Based Web API Semantic Annotation Considering Distributed Knowledge

Itis noticed that it is easily to convert IOPE data of an anno-
tated API-JSONLD document into specific formats required
by existing discovery and composition tools.

E. AUTOMATIC ONTOLOGY GENERATION

In practices, Web APIs are from various business domains.
Generally, few of suitable existing ontologies can be
used to provide semantics for all Web APIs. Therefore,
when no vocabularies from existing ontologies are suit-
able, new vocabularies may be used during annotating a
Web API. To raise reuse rate of ontologies, it is neces-
sary to generate new ontologies or modify existing ontolo-
gies. Here, an automatic ontology generation algorithm is
designed, and is shown in Fig. 16. It will extract seman-
tic vocabularies from an API-JSONLD document, and then
create new ontologies or add new vocabularies into existing
ontologies.

Algorithm 3 OntologyGeneration
Input: apijsonld: a API-JSONLD document
Output: ontologies that are created and updated
01. extracting following data from apijsonld
nsprefixmap < a mapping from name space prefixes to their name spaces, that are
parsed from @context.

params<all parameters with @id and @type in requestparas and responseparas.
literals<all literals in preconditions and effects.
02. nsontomap < a mapping from name spaces in nsprefixmap and their ontologies, and
ontologies can be obtained from specific ontology DB.
03. FOR each parameter p in params THEN
04. semconcept— value of @type in p
05. nspre< name space prefix of semconcept
06. onto< nsontomap.get(nsprefixmap.get(nspre))//obtain ontology for nspre
07. IF onto is null THEN
08. onto< anew ontology model
09. createNewClass(semconcept, p.datatype, p.pararemark, onto)//create a new
class for semconcept where p.datatype is its data type, and p.pararemark is its comment,
and add it into onto.

10. nsontomap.put(nsprefixmap.get(nspre),onto)

11. ELSE

12. IF semconcept exists in onto THEN CONTINUE

13. createNewClass(semconcept, p.datatype, p.pararemark, onto)
14. END IF

15. END FOR

16. FOR each literal / in /iterals THEN

17. (pl, semproperty, p2)~ three elements in / (split by “-”)

18. domain+ getSemConcept(p/)//obtain semantic concept of parameter p/
19. range~— getSemConcept(p2)

20. nspre< name space prefix of semproperty

21. onto< nsontomap.get(nsprefixmap.get(nspre))//obtain ontology for nspre

22. IF onto is null THEN

23. onto+ anew ontology model

24. createNewObjProp(semproperty, domain, range, onto)//create a new object

property where semproperty is its name, domain and range respectively are its domain
and range; and then add it into onto.

25. nsontomap.put(nsprefixmap.get(nspre),onto)

26. ELSE

27. IF semconcept exists in onto THEN CONTINUE

28. createNewObjProp(semproperty ,domain, range, onto)
29. ENDIF

30. END FOR

FIGURE 16. Algorithm for automatically generating ontology during
annotation.

The algorithm firstly parses ontologies, annotated param-
eters in request/response, and literals in preconditions/effects
out of an API-JSONLD document (line 0I). Then, it loads
all introduced ontologies in this document (line 02). Thirdly,
it parses semantic concepts out of parameters, and creates

197216

new ontologies or adds new classes into existing ontologies
according to whether ontologies and semantic concepts for
parameters are new or not (lines 03-15). Lastly, it parses
object properties out of literals, and carries out the similar
process with the semantic concepts (lines /6-30).

The algorithm will be invoked when an API-JSONLD
document is saved. Thus, during annotation of following Web
APIs, these newly generated ontologies can be reused.

F. SEMI-AUTOMATIC BRIDGE RULE GENERATION

During annotation, a user can pick vocabularies from exist-
ing ontologies, and also can create new vocabularies. Thus,
three main semantic conflicts among two vocabularies from
different ontologies may occur. The first is that the two
vocabularies from different ontologies have the same name
and meaning. However, they can’t be considered as the same
vocabulary, because their name spaces are different. The sec-
ond is that the two vocabularies have the same name, but
different meanings. This means any two vocabularies with
the same name shouldn’t be directly considered as the same
meaning. The third is that the two vocabularies have different
names, but the similar meaning. Judgement of the second and
third conflicts needs users’ assistance, that is, users need man-
ually to specify which two vocabularies the conflict occurs
between. Also, for the third conflict, further relationship
between the two vocabularies should be specified, such as
sub-class, super-class, or equality. In the following, the three
semantic conflicts respectively are called semconflictl, sem-
conflict2, and semconflict3.

To solve the conflicts above, we use bridge rule technol-
ogy in our previous work [22] to declare real relationship
between two vocabularies. A bridge rule can define relation-
ship between two vocabularies, and different rule types mean
different relationship meanings. For instance, rule (ns!:Train,
intoc, ns2:Vehicle) means concept Train in ontology ns/ is a
sub-class of Vehicle in ontology ns2. Other rule types have
been introduced in section 2. Here, an automatic bridge rule
generation algorithm is designed to improve efficiency of
bridge rule creation, and is shown in Fig. 2. Based on given
vocabulary information with semconflict2 and semconflict3
(parameter vacabwith2 and manualbrs), the algorithm can
automatically infer various new bridge rules implied by given
ontologies (parameter ontos) with the help of Jena ontology
tool Kkit.

The algorithm firstly loads all ontologies into an ontology
model, and extracts all concepts and properties from the
model (lines 07-03). Then, it automatically generates basic
bridge rules according to relationship declarations in existing
ontologies and situation in semconflict1 (lines 04-19). Lastly,
based on the basic bridge rules and manual rules given by
users, all implied rules are obtained (line 20). Specially,
in this algorithm, three new operations are invoked: isEqualc
(line 06), isEqualr (line 14), generateImpBR (line 20).

Operation isEqualc/isEqualr is used to determine whether
two concepts/properties are equal or not. In isEqualc, two

VOLUME 8, 2020

X. Wang et al.: JSON-LD Based Web API Semantic Annotation Considering Distributed Knowledge

IEEE Access

Algorithm 4 BridgeRuleGeneration

Input: vacabwith2: vocabularies that have different meanings from vocabularies with the same
name; manualbrs: bridge rules between two vocabularies with different names or in vacabwith?2;
ontos: ontologies used by all API-JSONLD documents

Output: brs: all bridge rules among all ontologies in ontos

01. ontomodel— an ontology model where all ontologies in ontos are loaded.

02. concepts<all classes in ontomodel.

03. props<all object properties in ontomodel.

04. FOR any cl, ¢2 in concepts THEN {/generate bridge rules to solve semconflict] considering
semconflict2

05. IF c/==c2 or cl in vacabwith2 or c2 in vacabwith2 THEN CONTINUE

06. IF isEqualc(cl,c2) THEN add rule <cl, equalc, ¢2> into brs

07. END FOR

08. FOR c in concepts THEN

09. subs — direct and indirect sub-classes of c, that are obtained through reasoning on
ontomodel (Jena is employed)

10. FOR s in subs THEN add rule <c, ontoc, s>, <s, intoc, ¢> into brs

11. END FOR

12. FOR any pl, p2 in props THEN //generate bridge rules to solve semconflictl considering
semconflict2

13. IF pI==p2 or pl in vacabwith2 or p2 in vacabwith2 THEN CONTINUE

14. 1IF isEqualr(pl,p2) THEN add rule <pl, equalr, p2> into brs

15. END FOR

16. FOR p in props THEN

17. subs < direct and indirect sub-properties of ¢, that are obtained through reasoning on
ontomodel (Jena is employed)

18. FOR s in subs THEN add rule <p, ontor, s>, <s, intor, p> into brs

19. END FOR

20. brs~ generateImpBR(brs, manualbrs)// generate all bridge rules that are implied by brs and
manualbrs

21. RETURN brs

FIGURE 17. Algorithm for generating bridge rules among multiple
ontologies.

concepts are equal when one of two conditions in the follow-
ing is satisfied:
o They have the same local name and data type. Here, local
name means a name without name space.
o The equivalent relationship between them is declared
explicitly in ontologies.

In isEqualr, two properties are equal when three conditions
in the following all are satisfied:

o They have the same local name, or the equivalent rela-
tionship between them is declared explicitly in ontolo-
gies.

o Their domains dI, d2 make isEqualc(dl, d2) true or rule
(d1, equalc, d2) exists.

o Their ranges rl, r2 make isEqualc(rl, r2) true or rule
(rl, equalc, r2) exists.

Operation generateImpBR is used to infer implied rules
according to the previous basic bridge rules and manual
bridge rules. The following steps show its inference process:

(1) Generate new bridge rules according to symmetry.
If (cl, rt, c2) exists, then (c2, inverseop(rt), cl) is created.
Here, rt means one of six rule types (intoc, ontoc, equalc,
intor, ontor, equalr), and operation inverseop is used to con-
vert rt into its inverse type. Specially the inverse type of
intoc/r is ontoc/r, and the inverse type of equalc/r is itself.

(2) Generate new bridge rules according to transitivity.
If (cl, rt, c2) and (cl’, rt, cl) exist, then {(cl’, rt, ¢2) and
(c2, inverseop(rt), cl’) are created. And, if (cl, rt, ¢2) and
(c2, rt, c2’) exist, then (cl, rt, c2’) and (c2’,inverseop(rt),cI)
exist.

VOLUME 8, 2020

(3)Infer new bridge rules among rules with different
rule types. Here, the following four inference situations are
considered, where rt only represents intoc/r or ontoc/r:

o If (cl, rt, c2) and (c2, equalc/r, c2’) exist, then (cl, rt,

¢2’y and (c2’, inverseop(rt), cl) are created.

o If (cl, 1t, c2) and (cl,equalc/r,cl’) exist, then (cI’, rt,

c2) and (c2, inverseop(rt), cl’) are created.

o If {(cl, equalc/r, c2) and (cl, rt, cI’) exist, then (c2, rt,

cl’y and (cl’, inverseop(rt), c2) are created.

o If (cl, equalc/r, c2) and (c2, rt, c2’) exist, then (cl, rt,

c2’y and (c2’, inverseop(rt),cl) are created.

It is noticed that generated bridge rules by this algorithm
declare various relationships between different two vocabu-
laries in given ontologies. These rules can effectively elimi-
nate semantic conflicts among distributed knowledge.

VI. EXPERIMENT EVALUATION

In this section, a series of experiments are designed to eval-
uate effectiveness and efficiency of our semantic annotation
approach.

A. TEST CASE ILLUSTRATION

We crawl 183 Web API descriptions from two open API plat-
forms (Jisu & Juhe), and 23 business domains are involved.
Main business domains and API numbers in them is shown
in Table 7. Four function types of APIs are involved: informa-
tion providing (134 APIs), world altering (1 APIs), dictionary
service (45 APIs), and value providing (3 APIs). It can be
seen that most APIs are information providing. Furthermore,
we store all interface description information into a database
including provider name, API type, API name, access URL,
return format, request method, request example, response
example, etc. Also, we assign an unique ID to every APL.

TABLE 7. Main business domain details.

No. Domain API num | No. Domain API num
1 calendar 2 13 express 2
2 QR code 3 14 literature 2
3 traffic 15 15 train 3
4 |face recognition 1 16 movie 5
5 hospital 7 17 TV 2
6 | unit conversion 1 18 network 1
7 divine 2 19 translation 1
8 history 1 20 |administrative area 5
9 |card recognition 1 21 poetry 9
10 book 88 22 vehicle 7
11 weather 13 23 flight 5
12 business 7

B. EXPERIMENT ENVIRONMENT

Based on JWASA, a semantic annotation tool is imple-
mented by means of JavaEE platform, and it adopts B/S
architecture to support simultaneous annotation by multiple
developers. Application server Tomcat8.0 is used to deploy
the tool. Jena3.8 is imported to implement reasoning and

197217

IEEE Access

X. Wang et al.: JSON-LD Based Web API Semantic Annotation Considering Distributed Knowledge

basic management operations about ontologies. Mysql5.1 is
picked as the tool’s database to store original API description
information, generated bridge rules, and other information
about annotation. And the tool is installed on ThinkPad X1
(1.80GHz,1.99GHz, 16GRAM, Winl0).

Based on JWASA, we design an experiment to complete
semantic annotation of all Web APIs in the previous test case.
It includes the following five steps:

o Step 1: Generate an API-JSON document for every Web

API according to its description crawled from Internet.

o Step 2: Generate an API-JSONLD template document
for every API-JSON document.

o Step 3: Manually add semantic vocabularies in every
template document, and save semantically annotated
API-JSONLD document.

o Step 4: Correct and improve ontologies generated in
Step 3.

o Step 5: Generate bridge rules among all used business
domain ontologies in annotation.

During annotation, three types of files are generated:
API-JSON, API-JSONLD, ontology. The first two types of
documents all are saved in JSON format in files with suffix
Json and .jsonld. And the last are saved in OWL [25] format
in files with .owl suffix.

Furthermore, in following experiments, execution time of
an algorithm is the average of execution time of 5 runs under
the same environment.

TABLE 8. Details of parsed response parameters in part of business
domains.

Domain API num | Minimum | Maximum
calendar 2 21 29
QR code 3 3 4
traffic 15 3 25
hospital 7 4 36
book 88 5 22
weather 13 6 92
business 7 5 36
movie 5 10 31
administrative area 5 7 10
poetry 9 6 14
vehicle 7 5 23
flight 5 9 33

C. EFFECTIVENESS AND EFFICIENCY

1) PARSING RESPONSE PARAMETERS AND GENERATING
UNITED API-JSON DOCUMENT

In Step 1 of the experiment, Algorithm 1 (ParseRespara)
is invoked to parse response parameters out of relevant
response example during generating every API-JSON docu-
ment. Finally, /83 API-JSON files are created. Table 8 shows
details of parsed response parameters in part of business
domains, including business domain (Domain), APl num-
ber (APInum), minimum of parsed parameters (Minimum),
and maximum of parsed parameters (Maximum). It can be
seen that response parameters are effectively parsed out of
response example with JSON format.

197218

In Step 1, we also evaluate execution time of generat-
ing API-JSON documents by an extra experiment. Based
on crawled API descriptions for all Web APIs in the test
case, we automatically create /83 API-JSON files at one
time. The creation process includes reading API descriptions
from Database, parsing response parameters from response
example, and saving to API-JSON files. The result shows
that it spent 5350 ms creating relevant /83 API-JSON
files. The most time is only 131ms for single Web APL
This means generation of an API-JSON document is very
fast.

2) JSON-LD BASED SEMANTIC ANNOTATION AND
FUNCTIONAL SEMANTICS EXTRACTION

It is noticed that many Web APIs have dozens of response
parameters. This makes annotation work tedious. To facilitate
the annotation work, JWASA provides user-friendly opera-
tion interfaces to directly edit data in JSON format and to
retrieve vocabularies in existing ontologies.

Meanwhile, in Step 2 of the experiment, through adding
necessary attributes into API-JSON documents, /83 API-
JSONLD templates are created. Based on these templates,
we manually annotate /83 APIs in Step 3 of the experi-
ment, and finally generate /83 API-JSONLD documents.
Table 9 shows details of parameters in five semantically
annotated Web APIs from flight domain, including API name,
the number of old request parameters (Regpara), the number
of annotated request parameters(Aregpara), the number of
added virtual parameters in request (Reqvobj), the number
of old response parameters (Respara), the number of seman-
tically annotated response parameters (Arespara), the num-
ber of added virtual parameters in response (Resvobj), and
function type (Functiontype). It is noticed that fewer param-
eters are semantically annotated in request/response than
old parameters. Specially, those annotated parameters are
close to relevant business, and are distinguished from other
parameters with the annotator’s experience. Also, except
API “Flight No. Query”, for other four APIs, some vir-
tual parameters are introduced in their request or response
parameters.

In addition, for /83 API-JSONLD documents, we carry out
Algorithm 2 to set attribute inputs and outputs in each docu-
ment. Finally, the two attributes are set correctly according to
annotated request/response parameters and function type of
current document. Algorithm 2 is invoked when an annotated
API-JSONLD document is saved, and can be completed in
several milliseconds.

3) AUTOMATIC ONTOLOGY GENERATION

In Step 3 of the experiment, Algorithm 3 (OntologyGen-
eration) is invoked to generate ontologies used in an API-
JSONLD document, when this document is saved. During
annotation process of the /83 APIs, /4 business ontologies
are automatically generated and saved as OWL files. Details
of these ontologies are shown in Table 10, including domain,
concept number (CNum), object property number (PNum),

VOLUME 8, 2020

X. Wang et al.: JSON-LD Based Web API Semantic Annotation Considering Distributed Knowledge

IEEE Access

TABLE 9. Details of five annotated APIs in flight domain.

API name Reqpara | Areqpara | Reqvobj | Respara | Arespara | Respvobj Functiontype
Realtime Flight Query 6 3 3 28 4 2 information providing
History Flight Query 2 2 0 25 5 2 information providing
Flight No. Query 2 1 0 23 7 0 information providing
Flight Cities 0 0 0 9 3 1 dictionary service
Flight Query 5 3 2 33 4 2 dictionary service

TABLE 10. Details of generated ontologies.

No. Domain CNum | PNum | APInum
1 common 69 59 60
2 vehicle 82 80 21
3 book 83 228 87
4 weather 49 46 13
5 company 24 21 3
6 poetry 14 23 9
7 |administrative division 8 8 5
8 hospital 13 11 7
9 business 15 13 4

10 literature 7 6 2
11 train 14 19 4
12 movie 11 13 5
13 TV 3 2 2
14 flight 10 12 5

and number of APIs using current ontology (APInum). It is
noticed that an ontology can be used by multiple APIs, such
as 60 APIs for ontology common, 87 APIs for ontology
book.

We also design an extra experiment to evaluate efficiency
of ontology generation. In the experiment, we assume that
semantic vocabularies in all annotated API-JSONLD doc-
uments are new vocabularies, and then, based on semantic
vocabularies from /83 annotated API-JSONLD documents,
we carry out Algorithm 3 to create all business ontolo-
gies at one time. The creating process includes reading
API-JSONLD files, creating ontologies, and saving to OWL
files. The result shows that it spent 3/72 ms creating all
14 business ontologies. Thus, for every API-JSONLD docu-
ment, the time spending in generating ontologies only is about
tens of milliseconds.

In Step 4 of the experiment, for those automatically gen-
erated ontologies, we manually correct and improve fewer
part of concepts’ comments, and add comments of all
object properties. Meanwhile, we add some abstract classes/
properties into ontology common, and they can be set super
class/property of those in concrete business ontologies. This
can make more relevant APIs be found. For example, Loca-
tion is a new class in ontology common, and its sub-
classes include Address, GPSLocation, Station, Flightport in
other ontologies; property locationInCity is added into the
ontology, and it is the super-properties of some properties
in other ontologies. Furthermore, previous three semantic
conflicts also exist among these ontologies. It is noticed
that there are 26 groups of concepts with the same name.

VOLUME 8, 2020

Specially, concept City appears in 6 different ontologies. City
in ontology weather and flight means a city object, but in
ontology common, vehicle, administrative division and hos-
pital only means city name.

4) AUTOMATIC BRIDGE RULE GENERATION

In Step 5 of the experiment, we carry out Algorithm 3
(BridgeRuleGeneration) to facilitate composition among
APIs, which can infer implied relationships and elimi-
nate various semantic conflicts among concepts/properties
among ontologies. The concrete results under two situa-
tions is shown in Table 11, including number of generated
bridge rules (BRnum), number of bridge rules for various
rule types (equalc, intoc, etc.), number of vocabularies that
have different meanings from vocabularies with the same
name (Diffvocab), and number of manually added bridge
rules (MBRnum).

TABLE 11. Details of generated bridge rules under two situations.

BRnum | equalc | intoc | ontoc | equalr | intor | ontor | Diffvocab| MBRnum
272 176 5 5 86 0 0 0 0
274 166 8 8 86 3 3 3 9

In the first situation (row 1 in Table 11), there are no
vocabularies in diffvocab and no bridge rules in mBrnum,
and the total number of generated bridge rules is 272.
Here, equalc and equalr rules account for most of them,
because there are many vocabularies with the same name.
Specially, before running the algorithm, we manually set sub-
class relationship between Location and Address in ontol-
ogy common. Thus, five intoc and five ontoc bridge rules
are inferred. In the second situation (row 2 in Table 11),
there are 3 vocabularies in diffvocab and 9 bridge rules are
in mBRnum, and 274 bridge rules are generated. Except
for equalc and equalr rules, other four types of rules also
are generated. It is noticed that, compared with the first
situation, equalc rules are less, and intoc/r, ontoc/r rules
become more. This means the vocabularies in diffcocab and
manual bridge rules are considered during execution of the
algorithm.

In the second situation, we found it spent about 252 /ms to
generate 274 bridge rules among /4 ontologies. The execu-
tion time in seconds can be accepted in practice.

Furthermore, generated bridge rules include various rela-
tionships between two vocabularies in two different ontolo-
gies or in the same ontology. Therefore, these rules can play

197219

IEEE Access

X. Wang et al.: JSON-LD Based Web API Semantic Annotation Considering Distributed Knowledge

an important role in future API automatic discovery and
composition.

VIl. CONCLUSION

In this article, a semi-automatic Web API semantic annotation
approach is provided, namely JWASA. It adopts lightweight
JSON-LD format to implement semantic annotation of a Web
API, and meanwhile, proposes a whole solution for Web API
semantic annotation. In JWASA, two types of documents in
JSON format are designed: API-JSON and API-JSONLD,
and respectively describe Web APIs and semantic Web
APIs. Meanwhile, a common Web API description ontology
WebAPIOnto is designed to provide semantic vocabularies
for common features of Web APIs from different providers.
Furthermore, a semantic annotation specification and a series
of algorithms are designed to improve effectiveness and
efficiency of annotation. These algorithms includes parsing
response parameters, extracting I/O parameters, automatic
domain ontology generation, and semi-automatic bridge rule
inference. Finally, for crawled Web APIs from Internet,
JWASA can generate three types of artifacts: API-JSONLD
documents, domain ontologies, and bridge rules. All of
them are crucial elements for following semantic-based Web
API manipulation, e.g: discovery [12] and composition [26].
Based on a prototype system of JWASA and real Web APIs on
Internet, a series of experiments are carried out. Experiment
results show JWASA is effective and efficient.

JWASA mainly is used to semantically annotate features
related to function of Web APIs. Differences among descrip-
tion format from different providers are efficiently han-
dled. This can facilitate future API automatic composition.
However, picking semantic vocabulary is completed manu-
ally. This requires annotators are professional for relevant
business domains. Therefore, in futher, we will improve
degree of automation of our JWASA through semantic recom-
mendation technologies [27]. Also, on artifacts of JWASA,
we will research automatic invocation, composition and
ecosystem evolution [28] of Web APIs.

ACKNOWLEDGMENT
Xianghui Wang thanks her colleagues from Shandong
Jianzhu University for their comments.

REFERENCES

[1] I. Nadareishvili, R. Mitra, M. Mclarty, and M. Amundsen, Microservice
Architecture: Aligning Princ., Practices, Culture. Newton, MA, USA:
O’Reilly Media, 2016.

[2] M. Maleshkova, C. Pedrinaci, and J. Domingue, ‘“Semantic anno-
tation of Web apis with sweet,” in Proc. 6th Workshop Scripting
Develop. Semantic Web, Colocated, Heraklion, Crete, Greece, May 2010,
pp. 1-13.

[3] C. Luo, Z. Zheng, X. Wu, F. Yang, and Y. Zhao, “Automated structural
semantic annotation for restful services,” Int. J. Web Grid Services, vol. 12,
no. 1, pp. 2641, 2016.

[4] M. Garriga, C. Mateos, A. Flores, A. Cechich, and A. Zunino, “RESTful
service composition at a glance: A survey,” J. Netw. Comput. Appl., vol. 60,
pp. 32-53, Jan. 2016.

197220

[5]

[6

—

[71

[8]

[9]

(10]

(11]

[12]

[13]

(14]

(15]

[16]

[17]

(18]

[19]

(20]

[21]

(22]

(23]

(24]

(25]
[26]

(27]

(28]

A. Ranabahu, A. Sheth, M. Panahiazar, and S. Wijeratne, Semantic Anno-
tation and Search for Resources in the Next Generation Web With Sa-Rest.
Pune, Italy: Knoesis, 2011.

C. Bizer, K. Eckert, R. Meusel, H. Mahleisen, M. Schuhmacher, J. Vilker,
H. Alani, L. Kagal, A. Fokue, and P. Groth, ‘“Deployment of rdfa, micro-
data, and microformats on the Web-a quantitative analysis,” in Proc. Int.
Semantic Web Conf., 2013, pp. 17-32.

R. Verborgh, A. Harth, M. Maleshkova, S. Stadtmiller, T. Steiner,
M. Taheriyan, and R. V. de Walle, Survey of Semantic Description of REST
APIs. New York, NY, USA: Springer, 2014.

M. N. Lucky, M. Cremaschi, B. Lodigiani, A. Menolascina, and
F. D. Paoli, “Enriching api descriptions by adding api profiles through
semantic annotation,” in Proc. Int. Conf. Service-Oriented Comput., 2016,
pp. 780-794.

C. Peng and G. Bai, “Using tag based semantic annotation to empower
client and REST service interaction,” in Proc. 3rd Int. Conf. Complex.,
Future Inf. Syst. Risk, 2018, pp. 64-71.

C. Marco and D. P. Flavio, “Toward automatic semantic api descriptions to
support services composition,” in Proc. Service-Oriented Cloud Comput.,
vol. 10465, 2017, pp. 159-167.

J. Li, “A fast semantic Web services matchmaker for owl-s services,”
J. Netw., vol. 8, no. 5, p. 1104, 2013.

M. D. Wilkinson, B. Vandervalk, and L. McCarthy, “The semantic auto-
mated discovery and integration (SADI) Web service design-pattern, API
and reference implementation,” J. Biomed. Semantics, vol. 2, no. 1,
p. 8,2011.

G. Kellogg, “JSON-LD: JSON for linked data,” in Proc. Semantic Technol.
Bus. Conf., 2012, pp. 1-4.

S. M. Sohan, C. Anslow, and F. Maurer, “SpyREST in action: An auto-
mated RESTful API documentation tool,” in Proc. 30th IEEE/ACM Int.
Conf. Automated Softw. Eng. (ASE), Nov. 2015, pp. 813-818.

D. Booth and K. L. Canyang, ‘“Web services description language (wsdl)
version 2.0 part 0: Primer,” W3C Recommendation, vol. 26, pp. 39-41,
Dec. 2007.

W. A. Bernstein, “Sawsdl-imatcher: A customizable and effective seman-
tic Web service matchmaker,” J. Web Semantics, vol. 9, no. 4, pp. 402-417,
2011.

M. D. L. Calache and C. R. G. D. Farias, “Graphical and collaborative
annotation support for semantic Web services,” in Proc. IEEE Int. Conf.
Softw. Archit. Companion (ICSA-C), Mar. 2020, pp. 210-217.

U. Lampe, S. Schulte, M. Siebenhaar, D. Schuller, and R. Steinmetz,
“Adaptive matchmaking for RESTful services based on hRESTS and
MicroWSMO,” in Proc. 5th Int. Workshop Enhanced Web Service Tech-
nol., 2010, pp. 10-17.

D. Roman, J. Kopecky, T. Vitvar, J. Domingue, and D. Fensel, “Wsmo-
lite and hrests: Lightweight semantic annotations for Web services and
restful apis,” in Proc. Web Semantics Sci. Services Agents World Wide Web,
vol. 31, 2015, pp. 39-58.

R. Alarcon, R. Saffie, N. Bravo, and J. Cabello, REST Web Service Descrip-
tion for Graph-Based Service Discovery. Cham, Switzerland: Springer,
2015.

C. Marco and D. P. Flavio, “A practical approach to services composition
through light semantic descriptions,” in Proc. Service-Oriented Cloud
Comput., vol. 11116, 2018, pp. 130-145.

X. Wang, Z. Feng, and K. Huang, “D3L-based service
runtime self-adaptation using replanning,” IEEE Access, vol. 6,
pp. 14974-14995, 2018.

X. Wang, Z. Feng, K. Huang, and W. Tan, ““An automatic self-adaptation
framework for service-based process based on exception handling,” Con-
currency Comput., Pract. Exper., vol. 29, no. 5, p. €3984, Mar. 2017.

A. Cheron, J. Bourcier, O. Barais, and A. Michel, ‘“Comparison matrices
of semantic restful apis technologies,” in Proc. Int. Conf. Web Eng., 2019,
pp. 425-440.

Owl 2 Web Ontology Language Document Overview, W. W. W. Consor-
tium, Cambridge, MA, USA, 2012.

X. Wang and Z. Feng, “Semantic Web service composition considering
iope matching,” J. Tianjin Univ., vol. 50, no. 9, pp. 984-996, 2017.

H. Zhang, D. Ge, and S. Zhang, “Hybrid recommendation system based
on semantic interest community and trusted neighbors,” Multimedia Tools
Appl., vol. 77, no. 4, pp. 4187-4202, Feb. 2018.

X. Wang, Z. Feng, S. Chen, and K. Huang, “DKEM: A distributed knowl-
edge based evolution model for service ecosystem,” in Proc. IEEE Int.
Conf. Web Services (ICWS), Jul. 2018, pp. 1-8.

VOLUME 8, 2020

X. Wang et al.: JSON-LD Based Web API Semantic Annotation Considering Distributed Knowledge

IEEE Access

VOLUME 8, 2020

XIANGHUI WANG (Member, IEEE) received the
B.S. and M.S. degrees from the School of Com-
puter Science and Technology, Shandong Univer-
sity, China, in 2002 and 2005, respectively, and the
Ph.D. degree from the School of Computer Sci-
ence and Technology, Tianjin University, China,
in 2018. She is currently an Assistant Professor
with the School of Computer Science and Tech-
nology, Shandong Jianzhu University, China. Her
research interests include knowledge engineering
and service computing.

QIAN SUN received the B.S. and M.S. degrees
from the School of Computer Science and Tech-
nology, Tongji University, China, in 2004 and
2007, respectively. She is currently an Instructor
with the School of Computer Science and Tech-
nology, Shandong Jianzhu University, China. Her
research interests include workflow technology
and service computing.

JINLONG LIANG received the B.S. degree from
the School of Computer Science and Technology,
Shandong University, China, in 2006, and the M..S.
degree from the Qilu Software College, Shan-
dong University, in 2017. He is currently a Senior
Engineer with the Information Center, Shandong
Provincial Qianfoshan Hospital, First Affiliated
Hospital of Shandong First Medical University,
China. His research interest includes enterprise
information integration.

197221

