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ABSTRACT Advance knowledge of soil water content (SWC) in the soil wetting layer of crop irrigation
can help develop more reasonable irrigation plans and improve the efficiency of agricultural irrigation water
use. To improve the accuracy of predicting SWC at multiple depths, the ResBiLSTM model was proposed,
in which continuous meteorological and SWC data were gridded and transformed as model inputs, and then
high-dimensional spatial and time series features were extracted by ResNet and BiLSTM, respectively, and
integrated by a meta-learner. Meteorological, SWC and growth stage records data from seven typical maize
monitoring stations in Hebei Province, China, during the 2016-2018 summer maize planting process were
utilized for the training, evaluation and testing of the ResBiLSTM model, with model prediction targets set
at 20cm, 30cm, 40cm and 50cm depths. Experimental results showed that: 1) ResBiLSTM model could
achieve better model fit and prediction of meteorological and SWC data at all growth stages, with R2 within
[0.818, 0.991], average MAE within [0.79%, 2.00%], and the overall prediction accuracy ranked as follows:
anthesis maturity stage > seedling stage > tassel stage; 2) The average MSE of the ResBiLSTM model
for the prediction of SWC in the next 1-6 days was within [3.91%, 15.82%], and the prediction accuracy
decreased with the extension of the prediction time; 3) Compared with the classical machine learning model
and related deep learning models, the ResBiLSTM model was able to obtain better prediction accuracy
performance.

INDEX TERMS ResNet, BiLSTM, soil water content, growth stage, summer maize.

I. INTRODUCTION
Agricultural water consumption accounts for about 60% of
economic and social water consumption in China, and the
demand for efficient use of water resources in agriculture
is becoming more and more urgent [1]. Maize is a major
grain crop in China, with China National Bureau of Statistics
announcing total maize production of 260.77 million tons
in 2019, and Hebei Province is one of the major maize
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producing areas. Moisture in the soil is the main source of
water uptake by crop roots, so knowing the trends of soil
water content (SWC) at different depths of the corn irrigation
wet layer in advance can help farms make a reasonable irriga-
tion plan to improve water use efficiency [2]. However, due
to changes in field meteorology, soil composition and crop
growth at different growth stages, the SWC fluctuations show
a complex non-linear relationship. In addition, modelling of
data during the growth period of a crop can lead to more
targeted models and better prediction accuracy [3]. The water
consumption characteristics of crops also differ significantly
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at different growth stages [4]. Therefore, it is important to
construct a more accurate model for predicting SWC in the
soil wetting layer for the maize growth stages.

Changes of SWC are mainly influenced by environmen-
tal factors such as evapotranspiration, groundwater, runoff,
rainfall and other environmental factors on farmland, so in
the early days it was often based on water balance or soil
water dynamics to simulate soil water transfer for prediction
[5]. For example, the FAO-developed crop-water productivity
model AquaCrop, which simulated time-series changes in
soil moisture by combining crop water consumption char-
acteristics, irrigation regimes, and environmental evapotran-
spiration [6]. The Hydrus model, developed by the Saline
Soil Laboratory, simulated changes in SWC by calculating
moisture and solute transport patterns in the air pocket [7].
However, the mechanism models need to fully consider the
water transport mechanism, soil characteristics, meteorolog-
ical conditions and crop characteristics and other factors,
the parameter rate setting process is complex and the rate
setting model is only applicable to a single area and crop,
limiting the promotion and application of themethod in actual
production [8].

With advances in sensor measurement technology,
researchers can obtain extensive, continuous and reliable data
on at in-situ monitoring sites [8]. The increase in data vol-
ume and quality allows machine learning algorithms to take
advantage of the ability to fit complex non-linear relation-
ships to build data-driven models [9]. Hong et al. [10] com-
bined support vector machine (SVM) and relevance vector
machine (RVM) to construct a predictivemodel for SWCover
the next few days. Prasad et al. [11] used an extreme learning
machine (ELM) model for predicting the average monthly
SWC. However, traditional machine learning models are usu-
ally more restrictive in terms of sample quality and quantity,
require more effort in data pre-processing and feature extrac-
tion, and have insufficient model generalization capability.

Artificial intelligence models based on artificial neural
networks (ANN) can better mine the hidden features of big
data and are an important direction of machine learning [12].
Chen et al. [13] combined principal component analy-
sis (PCA) and radial basis function (RBF) neural networks
to construct a SWC prediction model for tobacco fields.
Yang et al. [14] proposed a hybrid algorithm combining dis-
crete wavelet decomposition, BP neural network and particle
swarm to construct a time series prediction model for SWC.
Saha et al. [15] and Chatterjee et al. [16] used the Levenberg-
Marquard back propagation method and flower pollination
algorithm (MFPA) as training algorithms to train ANN to
predict SWC, respectively. Increased neural network depth
can improve model expression and optimization rate [17].
Cai et al. [18] constructed a model for predicting SWC for
the next day using a deep neural network regression algo-
rithm (DNNR) based on meteorological and 0-20 cm depth
SWC data from three stations in Beijing, China. However,
current ANN models for SWC prediction are usually single
data feature extraction, without considering the spatial and

temporal characteristics of the data, so it is difficult to achieve
better prediction results. In addition, existing SWC prediction
models usually only predict the surface layer (0-20 cm) or a
single depth, which is hard to satisfy the actual agricultural
irrigation decisions.

Convolutional neural network (CNN)was first proposed by
LeCun [19]. The features of local area awareness, temporal
domain up-sampling and weight sharing make CNN widely
used in the field of image and video data classification.
However, an increase in the number of layers of CNN leads
to gradient disappearance while a decrease in the number of
layers results in poor feature extraction [20]. To address the
above problems, He et al. [21] proposed the residual network
(ResNet), which introduced the residual block to build deep
networks. On the other hand, the recurrent neural network
(RNN) is better at modeling time series data and performs
well in natural language processing [22]. To overcome the
problem of gradient disappearance or gradient explosion that
may occur with the long-range memory of the original RNN,
Hochreiter and Schmidhuber [23] proposed the LSTM net-
work based on the RNN by introducing a gate mechanism
to update the information. However, LSTM can only learn
forward features but ignores the learning of backward fea-
tures, and the Bi-directional LSTM (BiLSTM) network built
by combining forward and backward LSTMs can make better
use of contextual semantic features [24]. The findings of
[25], [26] for arrhythmia classification showed that ResNet
and BiLSTM models were able to obtain better predictions
compared to the independent CNN and LSTM models.

The spatio-temporal feature extraction advantage of
integrating CNN and LSTM to construct a high-precision
prediction model is a research hotspot [27]. For field envi-
ronmental data, the combination of SWC and meteorological
data over multiple consecutive days can be viewed as a two-
dimensional, single-channel grayscale image, so the fusion
model can use both CNN to extract high-dimensional fea-
tures from the image [28] and LSTM to extract time-series
features [29]. In other areas of research targeting regres-
sion prediction problems, Qin et al. [30] and Li et al. [31]
constructed prediction models for PM2.5 by integrating CNN
and LSTM structures, respectively, and obtained better per-
formance compared to traditional machine learning models
and independent CNN and LSTM models. Choi et al. [32]
and Guo and Chen [33] constructed a short-term load fore-
casting model and a facial expression recognition model
based on ResNet and LSTM, respectively. Zhou et al. [34]
and Chen [35] applied the integrated model of ResNet and
BiLSTM to heartbeat classification and network intrusion
detection, respectively. However, few studies have con-
structed SWC prediction models by integrating the structures
of ResNet and BiLSTM.

To overcome the drawbacks of existing methods, we pro-
pose a novel approach. Our motivation was to construct
a novel SWC prediction model ResBiLSTM by combin-
ing the advantages of ResNet and BiLSTM for high-
dimensional residual feature and time-series bidirectional
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feature extraction, based on the ideas of integrated learning
and previous research results. The meteorological, SWC and
growth records data at seven sites in Hebei Province, China,
were used to construct a multi-depth SWC prediction model
for the soil wetting layer during the summer maize growth
period. Hence, the main contributions of this work are listed
next:

(1) Developed a prediction model ResBiLSTM for soil
moisture content at different depths in agricultural fields by
integrating the temporal and spatial feature extraction advan-
tages of ResNet and BiLSTM models.

(2) Combined data from different growth stages of summer
maize to reveal the differences in the fit ability and prediction
accuracy of the ResBiLSTMmodel for different growth stage
data.

(3) Analyzed the autocorrelation characteristics of soil
water content at different depths in the field and compared
the ability of the ResBiLSTMmodel to predict different days
in the future.

(4) Compared and analyzed the predictive accuracy advan-
tages of the ResBiLSTM integrated model over traditional
machine learning and related deep learning models.

The remaining sections of this paper are organized as
follows. Section II introduces the methods and materials, the
methods part contains the construction principles of ResNet,
BiLSTM, and ResBiLSTM models as well as the model
evaluation methods and model training parameters, and the
materials part contains the study area, data acquisition, data
processing, and data analysis. Section III presents and dis-
cusses the predictive accuracy results of the ResBiLSTM
model for different growth stages, different day delays, and
different model comparisons, respectively, as well as the
further study. Finally, conclusions are given in Section IV.

II. METHODS AND MATERIALS
The ResBiLSTM SWC prediction model was based on the
idea of integrated learning by integrating the ResNet-based
and BiLSTM-based models, and achieved the prediction
capability of multi-depth SWC changes by integrating the
high-dimensional residual features and bidirectional time
series features of the matrix composed of SWC and mete-
orological data. Therefore, in this section, the principles of
ResNet and BiLSTM, the ResBiLSTM model integration
strategy, themodel training evaluation strategy, and themodel
validation data were introduced, respectively.

A. ResNet
ResNet is built on a foundation of convolutional arithmetic,
which extracts informative features by fusing spatial and
channel-wise information within local receptive fields [21].
The core module of ResNet is the residual block, the struc-
ture of which is shown in Figure 1a, where x is the input,
H(x) is the output, F(x) is the residual mapping function,
weight layer is the convolution layer, BN represents the
batch normalization layer, and ReLU represents the activation
layer. The model is difficult to fit the actual mapping H(x)

FIGURE 1. Structural diagram of the original and improved ResNet
residue blocks.

directly, so ResNet converts the problem to fitting the residual
mapping F(x) by introducing ‘‘skip connection’’, so that the
actual mapping H(x) can be expressed as H(x) = F(x)+ x,
which enables the model to approach the actual mapping by
minimizing the residual function F(x) = H(x)− x to solve
the performance degradation problem of network stacking.
Assuming that there are L layers of residual block connec-
tions, the output of the l-th residual block can be represented
as

x(l+1) = x(l) +
∑L−1

i=1
F
(
x(i) +W(i)

)
(1)

where x(l) denotes the input of the l-th residual block, x(l+1)

denotes that the output of this residual block is also the input
of the l+ 1 th residual block, and W(i) is the convolution
operation.

From (1), each layer of the residual network is accumu-
lating the residual features of the upper layer, ensuring that
layer l+ 1 always has more information about the features
than layer l. In the process of back propagation, the error loss
term is calculated for the gradient of the l-th residual block of
the network according to the chain derivation rule as

∂loss
∂x(l)

=
∂loss
∂x(L)

∂x(L)

∂x(l)

=
∂loss
∂x(L)

(
1+

∂

∂x(l)
∑L−1

i=l
F
(
x(i) +W(i)

))
(2)

An improved residual block structurewas used in this study
(Figure 1b), which differed from the original version in that
gradients in the modified residual block could be directly
connected to any earlier layer via shortcuts, thus solving the
problem of gradients disappearing or explodingwhen training
deeper networks [20].

During model training, internal covariate shift is caused by
changes in the data distribution of internal nodes. The Batch
Normalization (BN) layer is used to solve the problem of
uneven and inconsistent data distribution in deep neural net-
works. The BN layer can speed up the training of deep neural
networks. It normalizes the data after the activation function
performs a non-linear transformation on the input data of
the previous layer, so that the neural network maintains the
consistency of the input data distribution, ensures the train-
ability of the network, reduces the large changes in the inter-
nal distribution of the network, speeds up the convergence
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FIGURE 2. Schematic diagram of the memory unit structure of the LSTM
network.

rate of the network and maintains the characterization ability
of the neural network. As an activation function, Rectified
Linear Unit (ReLU) had the sparse activation characteristic
to avoiding the occurrence of overfitting. The mathematical
expression is as

f (x) = max (0, x) (3)

B. BI-DIRECTIONAL LSTM
The LSTM structure is a variant of RNN structure, and its
basic constituent unit is the Memory Unit (Figure 2), which
can realize the functions of forgetting, remembering and
outputting through the gate structure. By using the previous
hidden state ht−1 and the current input xt, it is possible to
calculate the forgetting gate ft, memory gate it and output gate
ot and then control the information state. By retaining impor-
tant information and forgetting unimportant information, the
Memory Unit eliminates the gradient explosion or gradient
disappearance problem that exists with RNN.

The variables are calculated as (4)-(9).
Calculate the oblivion gate ft from ht−1 and xt by

ft= σ (Wfxt + Ufht−1 + bf) (4)

Calculate memory gate it from ht−1 and xt by

it= σ (Wixt + Uiht−1 + bi) (5)

Calculate memory state C̃t from ht−1 and xt by

C̃t = tanh (Wcxt + Ucht−1 + bc) (6)

Calculate the current memory state Ct from ft, it, Ct and
the previous moment memory Ct−1 by

Ct = ft∗Ct−1 + it∗C̃t (7)

Calculate the output gate Ot from ht−1 and xt by

Ot= σ (Woxt + Uoht−1 + bo) (8)

Calculate the hidden state ht at the current moment from ot
and Ct by

ht = ot ∗ tanh (Ct) (9)

FIGURE 3. BiLSTM network structure diagram.

where, Wf,Uf,Wi,Ui,Wc,Uc,Wo,Uo are weight matrices;
bf,bi,bc, bo are bias vectors; tanh is hyperbolic tangent acti-
vation functions; σ is sigmoid activation functions.

BiLSTM is a combination of forward LSTM and backward
LSTM and its structure is shown in Figure 3. Assuming that
the hidden state of the output of the forward LSTM at time t
is Eht and the hidden state of the output of the backward LSTM
is

↼

ht, the hidden state htb of the output of the BiLSTM can be
represented as

htb = Eht⊕
↼

ht (10)

C. RESBILSTM
The ResBiLSTM model integrates two branches to extract
spatio-temporal features of the data. The extracted spatio-
temporal features are further learned by the meta-learner to
achieve better data fitting capabilities.

Figure 4 shows the network structure of the ResBiLSTM
model. The gridded SWC and meteorological time series
data are input to the ResNet branch and BiLSTM branch,
respectively, which are then integrated and learned through
a meta-learner, with Adam used as the iterative optimiza-
tion algorithm for model training and MSE used as the loss
function.

By combining continuous multi-depth SWC and meteo-
rological data, several successive time series data can be
transformed into a two-dimensional matrix. The gridded data
matrix with the multi-depth SWC and meteorological vari-
ables from left to right, and the time series from far to near
from top to bottom. The gridded time series data can be
represented as

Xs,t=



x1,t−n x2,t−n x3,t−n · · · xs,t−n
x1,t−n+1 x2,t−n+1 x3,t−n+1 · · · xs,t−n+1
x1,t−n+2 x2,t−n+2 x3,t−n+2 · · · xs,t−n+2

...
...

...
. . .

...

x1,t x2,t x3,t · · · xs,t


(11)

where Xs,t is the matrix of input items, s is the number of
input variables, and t is the historical time step.

In the ResNet branch, the gridded data is first input to
the 2D convolution layer, then connected to 2 consecutive
residual blocks, and the output is flattened and connected to
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FIGURE 4. ResBiLSTM model network structure.

the full connection layer of 64 filters. Considering the small
size of the input items compared to the photos, the model is
stacked with 2 layers of residual blocks to ensure sufficient
information is extracted and to make the model lightweight.
2D CNN layer has 64 feature maps and 3 × 3 convolution
kernel size. 2D CNN layer has the same configuration with
64 filters and 3 × 3 convolution kernel size for both residual
blocks.

In the BiLSTM branch, the input items are first flattened
and then fed into two successive BiLSTM layers and finally
output to a fully connected layer of 64 filters. The stacking
of the two BiLSTM layers corresponds to a trend prediction
on top of the prediction at each time step, thus allowing for a
better representation of the time domain features.

Fully connected layers are adopted to construct a meta-
learner for further learning of the feature parameters extracted
from the ResNet branch and BiLSTM branch. 128 neurons
from the two branches are first spliced to form a dense layer
of 256 neurons, then three dense layers are connected, each
with 128, 64 and 32 neurons, respectively.

The activation functions of all feature layers in the ResNet
branch and BiLSTM branch use the ReLU function to miti-
gate overfitting. The output layer in the meta-learner uses the
linear activation function.

D. LOSS FUNCTION AND MODEL TRAINING
Five evaluation measures were selected to indicate the perfor-
mance of the different models.

Mean Squared Error (MSE) is

MSE =
1
m

∑m

i=1

(
yi −

∧
yi
)2

(12)

Mean Absolute Error (MAE) is

MAE =
1
m

∑m

i=1

∣∣∣(yi − ∧yi)∣∣∣ (13)

Root Mean Squared Error (RMSE) is

RMSE =

√
1
m

∑m

i=1

(
yi −

∧
yi
)2

(14)

Mean Absolute Percentage Error (MAPE) is

MAPE =
100
n

n∑
i=1

∣∣∣∣∣
∧
yi − yi
yi

∣∣∣∣∣ (15)

Coefficient of determination (R2) is

R2
= 1−

∑
i

(
∧
yi − yi

)
2∑

i
(
yi − yi

)
2

(16)

In the above formula, is the predicted value,
∧
yi is the true

value, and yi is the average value. MAE can reflect the actual
situation of the predicted value error. MSE is the expected
value of the square of the difference between the estimated
and the observed value, it can evaluate the degree of the
data change, and the smaller value of the MSE, the better
accuracy of the prediction model. RMSE is the arithmetic
square root of MSE. MAPE is equivalent to normalizing the
error at each point, reducing the impact of the absolute error
from individual outliers. R2 can eliminate the influence of
dimension on the evaluation measure.

The abstract process of training for models is shown as
Figure 5. In addition, the specific training steps in this paper
can be summarized as follows:

(1) The whole growth data are divided into separate data
sets according to growth stage.

(2) The data are processed, including removal of outliers
(such as null values, values beyond common sense, etc.), data
normalization, and model input item construction.

(3) The processed data is randomly divided into training,
validation, and test sets for model training, parameter tuning,
and model testing, respectively.

(4) The Early Stopping method determines the timing of
the model’s termination of training based on the validation
set results.

(5) Themodel after training uses the test set data to evaluate
the model performance.
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FIGURE 5. ResBiLSTM model training process.

The training environment for the research experiments was
CPU: Intel(R) Xeon(R) CPU E5-1620 v4 @ 3.50GHz, GPU:
NVIDIA Quadro K2200 and RAM: 32GB. The model train-
ing adopted Anaconda platform as the deep learning training
base platform, Keras as the deep learning model building
framework, and TensorFlow-gpu 1.13 was used at the back
end to achieve parallel computing through CUDA technology
to make full use of GPU resources to speed up training. Adam
as an optimizer. To prevent the overfitting problem caused
by too many model training sessions, this study adopted the
early stopping method to determine the termination point of
model training, and terminates the model training when the
validation set error was not further reduced for 50 consecutive
sessions, adopted the best performing model weights in the
training process and saved the trained model as .h5 format.

E. STUDY AREA AND DATA ACQUISITION
The study area is Hebei Province, China (36◦05′ −42◦40′ N,
113◦27′ −119◦50′ E), which has a temperate continental
monsoon climate with 2303.1 annual sunshine hours, 81-204
frost-free days, 484.5 mm of average annual precipitation, the
distribution of precipitation is more southeast than northwest.

The data source was the China Meteorological Data Net-
work (http://data.cma.cn). Considering the maize cultiva-
tion, soil, and meteorological factors, after communicating
with the local agricultural authorities, a total of 2144 data
from 7 maize-growing agro-meteorological monitoring sta-
tions in Hebei Province (Gaoyi Station, Feixiang Station,
Dingzhou Station, Bazhou Station, Luoxian Station, and
Huanghua Station) from 2016 to 2018 was selected as exper-
imental data. Figure 6 shows the distribution of the stations.

FIGURE 6. Research area and distribution of meteorological and soil
moisture monitoring stations.

The selected sites had similar soil, climate and growth
conditions. Meteorological and SWC data were deter-
mined by automatic meteorological moisture monitoring
stations placed in maize fields with a frequency of 1 h,
while crop growth data were determined and recorded
by agricultural professionals based on crop phenotypic
characteristics. The type of SWC used is the volumet-
ric SWC (%). Daily averages of SWC at 10, 20, 30, 40
and 50 cm soil depths (SWC10, SWC20, SWC30, SWC40
and SWC50) were obtained. The meteorological data include
daily average air temperature (Tmean, ◦C), daily minimum
air temperature (Tmin, ◦C), daily maximum air tempera-
ture (Tmax, ◦C), daily average ground surface temperature
(GTmean, ◦C), daily minimum ground surface temperature
(GTmin, ◦C), daily maximum ground surface tempera-
ture (GTmax, ◦C), daily hours of sunshine (SSH, h), daily
cumulative rainfall (pr, mm), daily average wind speed at 2m
(U2, m·s−1) and daily average air humidity (RH, %). Crop
growth data recorded the beginning and end of the ten growth
stages of summer maize planted at each site.

F. DATA PROCESSING
Ten growth stages of summer maize in the raw data were
divided into three growth stages. The seedling stage is a
stage of nutritional growth that mainly focuses on root growth
and leaf differentiation, including the sowing, seedling emer-
gence, trifoliate and tiller stages, which generally lasts
about 30 days. The tassel stage is the stage of nutritional
growth and fertile growth in parallel, including pulling, ges-
tation and tasseling stages, which generally lasts about 25-28
days. At the anthesis maturity stage, maize enters reproduc-
tive growth, including flowering, milk ripening and maturity
stages, which usually lasts about 45-55 days. Table 1 shows
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TABLE 1. Time periods for each growth stage of summer maize in 2016, 2017 and 2018.

the start and end times of each growth stage for the seven sites
in 2016, 2017, and 2018, with relatively consistent planting
periods for successive years of maize at the same site, and
gradual delays in planting and harvesting of maize from south
to north by climate, with a maximum difference of 23 days.

To make the best use of deep learning algorithms and fully
exploit the value of the data, all meteorological and SWC
variables were used for model construction to obtain the best
prediction results. A study by Zhou et al. [36] on the opti-
mal root zone soil moisture vertical regulation scheme had
indicated that the maximum depth of the planned irrigated
wet layer for maize planting was 50 cm. Considering the
root growth of maize at different growth stages, the SWC
at 20, 30, 40 and 50 cm depths was used as the prediction
target. In addition, considering the convenience of model
parameter design and practical application, the SWC and
meteorological variables of the last three consecutive days
were used to form the input matrix. Therefore, the input shape
of the ResBiLSTM model is 15 × 3 and the output shape
is 4 × 1.

For the data set division, the data of five sites were uti-
lized for the model training, evaluation, and testing, 80% of
modeling data was utilized for model training, 20% for model
testing. In the data used for model training, 20% of it was
randomly selected as validation data set to judge the model
fitting. In addition, data normalization can improve the pre-
diction accuracy and the fitting speed of model. Accordingly,
the Min-Max normalization method was utilized to process
each feature variable, and the data normalization formula is

xnorm =
x0 − xmin

xmax − xmin
(17)

where xnorm, x0, xmin, and xmax are the normalized, real,
minimum, and maximum values, respectively.

G. DATA ANALYSIS
Table 2 shows the mean, standard deviation (SD), maximum
(Max), minimum (Min), and median values of SWC during

different growth periods. Overall, the mean values of SWC
are 19.06%, 25.44% and 25.24% at the seedling, tassel and
anthesis maturity stages, respectively, and the minimum val-
ues of SWC for the entire growth period occurred at the
seedling stage, while the maximum values occurred at the
tassel stage. The standard deviations of SWC in each layer
are within [7.6%, 9.1%], [8.25%, 10.2%] and [7.3%, 9.4%] at
different growth stages, respectively, and SWC data are more
discrete at the tassel stage than at the seedling and anthesis
maturity stages, which make it more difficult to fit the tassel
stage data effectively.

Table 3 presents the results of the statistical analysis of 10
meteorological variables. The time selected is the summer
maize growth period, which is in summer, with long sun-
shine hours and relatively high air temperature and ground
surface temperature. Seasonal factors also make the effect
of crop transpiration and soil water evaporation obvious,
which accelerate the process of SWC dissipation and bring
uncertainty to the model prediction.

Table 4 shows the results of Pearson correlation analysis
among the variables. The correlation coefficients between
SWC at different depths are all above 0.5, showing a strong
positive correlation. The correlations between the meteo-
rological variables and SWC are different, with Tmean,
Tmin, RH, pr, and GTmin showing positive correlations
for SWC at different depths, and Tmax, GTmean, and
GTmax showing negative correlations for SWC at different
depths.

Figure 7 presents the results of the autocorrelation anal-
ysis of the prediction targets at different days delay. The
autocorrelation coefficients for SWC at depths of 20, 30,
40, and 50 cm were within [0.962, 0.772], [0.968, 0.810],
[0.977, 0.859], [0.984, 0.902], respectively, for a delay of 1-6
days, while the average of the autocorrelation coefficients
for each layer was 0.973, 0.941, 0.912, 0.886, 0.861 and
0.836, respectively. The autocorrelation coefficient decreases
with increasing number of delay days and increases with
increasing soil depth within the same number of delay days.
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TABLE 2. Statistical analysis results of soil water content at different soil depths.

TABLE 3. Results of statistical analysis of meteorological data throughout
the entire growth period.

III. RESULTS AND DISSCUSSION
A. COMPARISON OF ResBiLSTM MODEL PREDICTION
ACCURACY AT DIFFERENT GROWTH STAGES
ResBiLSTM model was used to train and validate the
model on the data of the three growth stages separately.
Figure 8 shows the results of the correlation between the
predicted and true values of the test set at different depths
for the three growth stages. The coefficients of determination
R2 were within [0.881, 0.987], [0.818, 0.926], and [0.944,
0.991] for the seedling, tassel, and anthesis maturity stages,
respectively. The best fit of the model to the data at the
anthesis maturity stage was obtained at 50 cm depth, with
an R2 of 0.991. The fit of the model at both the seedling and
anthesis maturity stages increased with increasing soil depth.
The degree of fit at different depths at the tassel stage was low

FIGURE 7. Autocorrelation analysis of soil water content at different days
delay.

and unstable, with the lowest degree of fit at 20 cm depth, with
an R2 of 0.818.

Table 5 presents the prediction accuracy of the ResBiL-
STMmodel for different growth stages. The prediction accu-
racy of the model was ranked as: anthesis maturity stage
> seedling stage > tassel stage. The average MSE, MAE,
RMSE and MAPE of different depths at seedling stage
and anthesis maturity stage were within [1.36%, 8.33%]
and [0.68%, 3.98%], and the prediction accuracy tended to
increase gradually with the increase of soil depth. The MSE
at tassel stage was within [8.52%, 12.09%] and the average
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FIGURE 8. Comparison of model predicted and real values of soil water content at four soil depths for different growth stages.

TABLE 4. Results of Pearson correlation analysis of soil water content at different depths with other variables.

MSE at tassel stage was 7.29% and 9.48% higher than that
at seedling stage and anthesis maturity stage, respectively.
In addition, the MSE at 20, 30, and 40 cm depth at the tassel
stage were close and exceeded 11%.

From Figure 8, the R2 of all results was greater than
0.8, indicating that the model could fit the SWC data at
multiple depths in different growth stages well. However,
the R2 was significantly lower at the tassel stage than at the
seedling and anthesis maturity stage, and this trend was also
evident in the MSE, MAE, RMSE, and MAPE in Table 5.
This may be due to the fact that the standard deviations
of different soil depths at the tassel stage ranged within
[8.2%, 10.2%], whereas those at the seedling and anthesis

maturity stages were within [7.6%, 9.1%] and [7.3%, 9.6%],
respectively (Table 2), reflecting the fact that SWC data were
more discrete among individuals at the tassel stage, making
it more difficult to fit the model to the data. The study of
Zhai et al. [4] showed that the increase in temperature at
the tassel stage, plant nutritional growth was vigorous and
water consumption intensity was maximum, where the water
consumption modulus of maize ranged from 16.60%-35.26%
and the water consumption intensity of maize ranged from
2.38-7.55 mm·d−1. Study of maize irrigation regime also
showed that the crop water requirement was highest at tassel
stage and irrigation frequency was high [37]. The effect of
crop water consumption and irrigation practices on SWC at
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FIGURE 9. Comparison of the prediction accuracy of the ResBiLSTM model for soil water content at different soil depths for the next 1-6 days.

different depths made model predictions more difficult [38].
In addition, a study by Zhou et al. [36] showed that maize
roots were mainly distributed at the depth of 0-40 cm, with
shallow roots having a higher density and water uptake inten-
sity than deeper roots, and differences in root uptake depth
may also be responsible for the decrease in prediction accu-
racy with increasing depth.

B. COMPARISON OF PREDICTION ACCURACY WITH
DIFFERENT DAYS DELAY
To compare the prediction accuracy for different days in the
future, data from the entire growth period were used to train
the model to predict SWC at different depths for the next 1-6
days, respectively. Figure 9 shows the error indicator values
for the model’s prediction of SWC at depths of 20, 30, 40,
and 50 cm with 1-6 days delay. Soil depths ranged from
shallow to deep with MSE within [5.17%, 18.98%], [4.19%,
15.57%], [3.49%, 16.21%], [2.78%, 12.52%] and RMSE

within [2.27%, 4.35%], [2.04%, 3.95%], [1.87%, 4.02%],
[1.67%, 3.54%]. MAPE were within [7.7%, 15.4%], [4.4%,
9.5%], [3.6%, 9.3%], [4.1%, 11.6%]. R2 were within [0.757,
0.931], [0.776, 0.939], [0.809, 0.958], [0.867, 0.969]. The
prediction accuracy of the model decreased with increasing
prediction day delay and the model’s prediction accuracy
increased with increasing soil depth. Averaging the values
of the error indicators at different depths, from shallow to
deep MSE, RMSE, MAPE, and R2 were within [3.91%,
15.82%], [1.96%, 3.54%], [4.9%, 11.5%], and [0.802, 0.949],
respectively.

The model prediction accuracy evaluation indicators MSE,
RMSE, MAPE, and R2 showed a trend of decreasing predic-
tion accuracywith increasing number of prediction days. This
may be due to the fact that the correlation of SWC decreases
over time, which is supported by the analysis of the autocorre-
lation coefficients of SWC at different depths for the next 1-6
days in Figure 7. The analysis of the autocorrelation of SWC
from 1 to 16 days in the study of Cai et al. [18] was consistent
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TABLE 5. The accuracy of the ResBiLSTM model for predicting soil water content at different growth stages and soil depths.

with the findings of this study. In addition, Table 3 showed
that the average daily rainfall during the growth period of
summer maize was 3.3 mm, while the standard deviation
and median rainfall were 12.3 mm and 0 mm, respectively.
Since SWC is directly affected by irrigation and rainfall, the
uncertainty of rainfall makes the probability of SWC being
affected by rainfall increases with the number of days delay,
which increases the difficulty of accurate prediction by the
model.

From the perspective of different soil depths, the model’s
prediction accuracy for the 20 cm depth was much lower than
for the 30 cm, 40 cm and 50 cm depths, which may be due
to the fact that shallow soils were more affected. According
to Table 4, the correlation coefficients of daily precipitation
with SWC20 and SWC50 were 0.202 and 0.098, respectively,
with the shallow layers being more affected. Furthermore,
the maximum surface temperature was directly related to
soil water evaporation [39]. The correlation coefficients of
GST with SWC20 and SWC50 were −0.201 and −0.182,
respectively, also proving that shallow layers are more sus-
ceptible to environmental factors. The study of temporal and
spatial variability of soil by Alun et al. [40] also showed that
the variability of SWC decreased with increasing soil depth,
which is consistent with the findings of this study.

C. COMPARISON OF PREDICTIVE ACCURACY OF
DIFFERENT MODELS
To demonstrate the advantages of the ResBiLSTM model
in terms of SWC prediction accuracy, the performance of
classical machine learning models in SWC prediction, such
as Support Vector Regression (SVR) [41], Multi-Layer Per-
ceptron (MLP) [42] and Random Forest (RF) [43] were
compared. Also, the ResBiLSTM model was based on the
integrated model of ResNet and BiLSTM, so two newmodels
by removing the ResNet branch and the BiLSTMbranchwere
constructed, respectively. In addition, the DNNR [18], CNN-
LSTM1 [30], and CNN-LSTM2 [31] mentioned in the intro-
ductory section were selected as the deep learning models
involved in the comparison. The same data set partitioning
and model training strategy was used for all tested models.

Table 6 shows the prediction accuracy results of different
models for the same data set. The MAPE of all the models

TABLE 6. Prediction accuracy of soil water content by different models.

involved were less than 10%, indicating that these models
were able to make good predictions. The ResBiLSTMmodel
had the best prediction accuracy with MSE, MAE, MAPE
and RMSE of 3.90%, 1.02%, 4.5% and 1.94%, respectively.
The proposed ResBiLSTM model has a significant predic-
tion accuracy advantage over the traditional machine learn-
ing models (SVR, MLP and RF). The ResBiLSTM model
reduced MSE by 23.1% and 16.8% compared to the indepen-
dent ResNet and BiLSTM branches, respectively. Compared
to the related deep learning models, the ResBiLSTM model
presents better prediction accuracy with a 14.3% and 13.7%
decrease in MSE compared to the CNN-LSTM1 and CNN-
LSTM2 models, respectively.

The prediction accuracy of deep learningmodels was better
than those of classical machine learning models (SVR, MLP,
and RF). The deep learning model’s ability to mine potential
features of the data is key to its ability to provide a better
fit to complex nonlinear data. Cai et al. [18] compared the
prediction accuracy of the DNNR model with some classical
machine learningmodels, the results were consistent with this
study. Meanwhile, the prediction accuracy of the spatiotem-
porally integrated models (ResBiLSTM, CNN-LSTM1 and
CNN-LSTM2) is higher than that of the independent mod-
els (ResBiLSTM without ResNet and ResBiLSTM without
BiLSTM), which indicates that by combining the spatially
high dimensional features extracted by CNN and the time-
series features extracted by LSTM, the models can obtain
better feature extraction capability and thus better prediction
accuracy compared to the individual models. Li et al. [31] and
Qin et al. [30] investigated the construction of PM2.5 predic-
tion models by integrating CNN and LSTM, and the results
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showed that combining time-domain and spatial-domain fea-
tures resulted in better prediction accuracy, which had the
same conclusion as this study. In addition, the proposed
ResBiLSTM model has the best prediction accuracy perfor-
mance, which indicates that the addition of residual blocks
and the application of bidirectional LSTM after the convo-
lutional layer further enhances the model’s spatio-temporal
feature extraction ability and further utilizes the meta-learner
to learn spatio-temporal features to obtain better prediction
accuracy. The findings of He et al. [25] and Huang et al. [26]
for arrhythmia classification showed that combining ResNet
and BiLSTM could improve the predictive ability of the
model, which was similar to the findings of this study. The
above advantages make the ResBiLSTM model particularly
suitable for predicting soil water content at multiple depths
during the summer maize growth period.

D. LIMITATIONS AND FURTHER STUDY
The ResBiLSTM model combined with the advantages of
spatial and time series feature extraction, and obtained a good
prediction accuracy for SWC. However, the ResBiLSTM
model has some shortcomings in that it does not take into
account the weather forecast in the composition of the inputs,
which makes the model inadequate in predicting the process
of the increase in the moisture of the surface soil. In addition,
there is a need to improve the balance of data sets across
growth periods. The following studies will be conducted in
the future: 1) to increase the number of stations and extend the
time series range; 2) to extend the types of data input to the
model, such as soil and vegetation conditions, human activity,
weather forecast information; 3) to optimize the model struc-
ture and parameter settings to achieve more efficient model
training and better generalized prediction capability.

IV. CONCLUSION
The ResBiLSTM model was proposed for the multi-depth
SWC model prediction in maize soil wetting layer, which
integrates ResNet and BiLSTM based on the existing
research. The model took the gridded meteorological and
SWC data as inputs and extracted the spatially high dimen-
sional features and time series features of the data to achieve a
better prediction. Meteorological and multi-depth SWC data
of summer maize growth stages in 2016, 2017 and 2018 at
seven stations in Hebei Province, China, were selected as
model training data. The experimental results showed that the
ResBiLSTM model could achieve a good fit and prediction
effect for different growth stages, and the prediction accuracy
for different growth stages was ranked as: anthesis maturity
stage > seedling stage > tassel stage. The accuracy of the
ResBiLSTM model in predicting the multi-depth SWC for
1-6 days delay decreased as the prediction time increased.
The deep learning model had better prediction accuracy than
the traditional machine learningmodels (SVR,MLP and RF),
and the ResBiLSTM model had the best prediction perfor-
mance among the deep models involved in the comparison
(DNNR, ResBiLSTM without ResNet, ResBiLSTM without

BiLSTM, CNN-LSTM1 and CNN-LSTM2). This study has
implications for the researches on soil water content pre-
diction model construction and deep learning spatiotemporal
feature model design.
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