
Received August 27, 2020, accepted October 2, 2020, date of publication October 30, 2020, date of current version November 11, 2020.

Digital Object Identifier 10.1109/ACCESS.2020.3034932

Language and Obfuscation Oblivious Source
Code Authorship Attribution
SARIM ZAFAR, MUHAMMAD USMAN SARWAR , SAEED SALEM, (Member, IEEE),
AND MUHAMMAD ZUBAIR MALIK
Department of Computer Science, North Dakota State University, Fargo, ND 58105, USA

Corresponding author: Muhammad Usman Sarwar (muhammad.sarwar@ndsu.edu)

This work was supported in part by the North Dakota Established Program to Stimulate Competitive Research (ND EPSCoR) under
Grant FAR0032069.

ABSTRACT Source Code Authorship Attribution can answer many interesting questions such as: Who
wrote the malicious source code? Is the source code plagiarized, and does it infringe on copyright? Source
Code Authorship Attribution is done by observing distinctive patterns of style in a source code whose author
is unknown and comparing them with patterns learned from known authors’ source codes. In this paper,
we present an efficient approach to learn a novel representation using deep metric learning. The existing
state of the art approaches tokenize the source code and work on the keyword level, limiting the elements of
style they can consider. Our approach uses the raw character stream of source code. It can examine keywords
and different stylistic features such as variable naming conventions or using tabs vs. spaces, enabling us to
learn a richer representation than other keyword-based approaches. Our approach uses a character-level
Convolutional Neural Network (CNN). We train the CNN to map the input character stream to a dense
vector, mapping the source codes authored by the same author close to each other. In contrast, source codes
written by different programmers are mapped farther apart in the embedding space. We then feed these
source code vectors into the K-nearest neighbor (KNN) classifier that uses Manhattan-distance to perform
authorship attribution. We validated our approach on Google Code Jam (GCJ) dataset across three different
programming languages. We prepare our large-scale dataset in such a way that it does not induce type-I error.
Our approach is more scalable and efficient than existing methods. We were able to achieve an accuracy of
84.94% across 20,458 authors, which is more than twice the scale of any previous study under a much more
challenging setting.

INDEX TERMS Software engineering, natural language processing, artificial neural networks.

I. INTRODUCTION
Source code often contains distinctive patterns that represent
a programmer’s1 style of writing code. The source code
authorship attribution aims to extract these patterns from the
source code and identify the author. Source code authorship
attribution has primarily relied on feature engineering, where
unique features are associated with each author, such as vari-
able naming conventions, use of for, or while loop. However,
extracting such features is time-consuming and challenging.
Even for a single author, coding style varies across different
programming languages due to language-specific conven-
tions and constraints. Further, with continuous learning and

The associate editor coordinating the review of this manuscript and

approving it for publication was Hiram Ponce .
1We use the term author and programmer interchangeably

increased programming expertise, programmers’ styles keep
on evolving.

Source code authorship attribution has numerous applica-
tions in the information security domain, such as identifying
malicious source code authors, plagiarism detection [1], and
resolving copyrights infringement [2]. Despite its application
in numerous fields, source code authorship identification can
also be a privacy risk for the programmers who do not want to
reveal their true identities, such as contributors to open-source
projects and activists [3].

Numerous studies [4]–[6] have been conducted to
address the source code authorship attribution problem. The
approaches usually focus on sophisticated graph-based fea-
tures such as abstract syntax trees, program dependency
graphs, and machine learning algorithms. However, most of
the previous studies’ features limit the applicability to usually
one language because of the highly specialized/hand-crafted

VOLUME 8, 2020 This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/ 197581

https://orcid.org/0000-0001-8195-0953
https://orcid.org/0000-0002-6559-7501

S. Zafar et al.: Language and Obfuscation Oblivious Source Code Authorship Attribution

nature of the feature engineering step. For instance, features
extracted for authorship attribution in the Python language
cannot identify authors of C++ or Java language source
code. There are a few studies [3], [7] that do address this
issue by utilizing language-agnostic features. However, they
work on the keyword level, thus limiting the elements of style
they can consider. Also, existing studies use relatively small
scale datasets, where the number of authors ranges from a
few hundred to a few thousand authors. To address the issues
mentioned above, we present an efficient character-based
approach to learn a novel deep representation that maps the
source code to a fixed-length vector. We enforce the deep
representations to behave in such a way that enables us to use
a lazy learning classifier on top of them.

In this paper, we present a CNN based approach for learn-
ing meaningful code representations. We use this approach
in conjunction with K-nearest neighbors (KNN) Classifier
to perform authorship attribution of the source code files.
We train the CNN using lifted structured loss function [8]
on character level embedding vectors. The lifted structured
loss function forces the network to confine source codes
originating from the same author ‘‘close’’ to each other
and keep the source codes of different authors separated
from each other in the embedding space. Then, we extract
embedding vectors from CNN and feed them to the KNN
to classify the authors. The primary advantage of utilizing a
nearest neighbor classifier is its lazy learning capability and
its ability to incorporate new samples without the need to
retrain, which was not possible with the approach presented
byAbuhamad et al. [3], [7]. Our study attempts to answers the
following research questions. (i) Is our CNN-based approach
capable of extracting language-agnostic features that will
help to identify authors across different programming lan-
guages? (ii) Can our approach perform authorship attribution
on obfuscated source codes? (iii) Can our approach identify
authors under simulated real-world settings where known
source code could be obfuscated or original? (iv) How does
our approach perform in the open-world setting?

To answer the aforementioned questions, we conducted a
series of experiments using source code files extracted from
the Google Code Jam (GCJ) competition.We only considered
the three most popular programming languages in the GCJ
competition: C++, Java, and Python.We present our analysis
of these three individual programming languages and the
combination of all three languages (mix-language scenario)
under three different settings. We also explored the effects
of limited source code files (F) per author and conducted the
experiments with F=5, F=7, and F=9 source code files per
author, where the KNN uses F-1 source code files for training
and one source code file for evaluation.

First, we conducted a large scale authorship attribution on
the original source-code files extracted fromGCJ.We demon-
strate that our proposed framework can identify authors
writing in individual programming languages and even the
authors who write in multiple programming languages. With
nine source code files per author, we were able to achieve

91.67% accuracy on 12,498 programmers writing code in
multiple programming languages.

Second, we analyzed the effect of obfuscation of the source
code authorship identification. For this, we obfuscated our
source code files using off-the-shelf source code obfuscators.
We demonstrate that our proposed approach is resilient to the
source code obfuscation and can identify authors even from
the obfuscated source codes while maintaining good accu-
racy. However, we observed some degradation in accuracy
compared to the results achieved using original source-code
files, which is expected as the sole purpose of obfuscation
is to hide the stylistic features of an author. With nine files
per author, we achieved 83.41% accuracy for 14,100 authors
whose source-codes were written in multiple languages.

Third, we mimic a real-world scenario by combining
obfuscated and original source-code files. We demonstrate
that our framework can identify a large number of authors
with high accuracy, even in our simulated real-world set-
ting. With nine source code files per author, we achieved an
accuracy of 84.94% for 20,458 programmers writing code in
multiple languages.

Finally, we conducted an initial experiment to address
our problem’s open-world aspect, where the author could be
someone outside the dataset. We used a distance threshold
to differentiate between the known and unknown (out of the
‘world’) authors.

This is the first study to identify the authors on such a
large scale and under such diverse settings to the best of
our knowledge. Previously, Abuhamad et al. [3] conducted
the largest experiment using 8,903 C++ programmers with
seven files per author, as shown in Table 1. Our study scales to
23,850 programmers, which are more than twice the number
of programmers considered by Abuhamad et al. [3].

The following is a summary of our contributions:

1) We proposed a CNN based framework, where we train
the CNN using lifted structured loss function.

2) We conducted various authorship attribution experi-
ments on the Google Code Jam dataset under diverse
settings, i.e., single-language, multi-language, original
source-code, obfuscated, and simulated real-world set-
tings.

3) We also conducted an initial experiment to address the
open-world scenario of our problem.

4) We demonstrated that our proposed framework is effi-
cient and can handle a large number of programmers
while maintaining high accuracy and efficiency.

Organization. The paper is structured as follows. We dis-
cuss our motivation to solve the author attribution problem
in section II. In section III, we discuss the relevant previous
studies. In section IV, we provide the theoretical background
required to understand our study. In section V, we discuss
our CNN based framework for source code authorship attri-
bution. We discuss the different experiments used to evaluate
our proposed approach in section VI. In section VII and
section VIII, we discuss the limitations and potential future

197582 VOLUME 8, 2020

S. Zafar et al.: Language and Obfuscation Oblivious Source Code Authorship Attribution

TABLE 1. Comparison between our work and previous works across number of authors, languages, and performance.

avenues for our work respectively. Finally, we conclude our
paper in section IX.

II. MOTIVATION
Source code authorship attribution is a widely studied
research topic in the information security domain. Effective
authorship attribution can help in many research applications
such as plagiarism detection, software forensics, copyrights
investigation, and authorship verification. These applications
of the authorship attribution motivate our study. Some of the
applications are described in detail as follows:

Plagiarism Detection: Plagiarism detection is one of the
most studied research problems in recent years. Plagiarism
is defined as the presentation of work or an idea of another
person as your own. Assume we have a source code S
and a set of potential source codes from which S could be
copied. In this case, source code authorship identification
can be helpful in detecting whose source code was copied.
Numerous tools are available for plagiarism detection such as
Measure of Software Similarity (MOSS) [9], Sherlock [10],
Plague [11]. However, with the incorporation of authorship
identification, we can considerably improve the accuracy of
plagiarism tools [12].

Copyrights Investigation: In the absence of any con-
tract, plagiarism of the source code may lead to copyright
infringement. With a practical authorship attribution

approach, one can determine the original author of the source
code, resolving such disputes.

Software Forensics: Software forensics is the sub-field
of computer forensics that deals with software applications
and source codes. Source codes can be reviewed for evi-
dence of activity, function, intention, and evidence of the
software’s author [13]. Software forensics is divided into four
distinct research areas: author identification, author discrim-
ination, author characterization, and author intent determina-
tion [13]. Effective author identification is a core component
of software forensics and can play a pivotal role in software
forensics.

III. RELATED WORK
Numerous studies have been conducted to explore soft-
ware authorship attribution. These studies use machine learn-
ing models on different features, such as lexical features,
syntactical features, semantic features, textual features, and
graph-based features. Table 1 shows a summary of the related
work, along with the comparison across four factors: number
of authors, programming languages, accuracy, and approach.

Abuhamad et al. [3] proposed a CNN based source code
authorship framework. Source codes are initially represented
using TF-IDF and word embedding based vectors. These
code representations are further fed into CNN to learn deep
representations. These deep representations and authorship

VOLUME 8, 2020 197583

S. Zafar et al.: Language and Obfuscation Oblivious Source Code Authorship Attribution

labels are then used to train a random forest classifier to
extract source code authorship. Results were evaluated using
Google Code Jam (GCJ) and Github dataset. They reported
accuracy of 99.4% for 150 programmers and 96.2% for
1600 programmers. They claim that their approach can scale
to several programmers and across various programming lan-
guages.

Abuhamad et al. [7] proposed a recurrent neural net-
work (RNN) based approach to classify source code authors.
Source code files are first encoded in TF-IDF vectors and
fed into an RNN model to generate the deep feature vectors.
Further, the deep representations are fed into a random forest
classifier to classify the source code authors. Results were
evaluated using the GCJ and Github dataset. They achieved
an accuracy of 96% for 1600 authors in the GCJ dataset and
94.38% for 745 authors in the Github dataset. Also, they
reached an accuracy of 93.42% for 120 authors on obfuscated
source code files. However, they created their large-scale
dataset by assuming that if the same username occurs across
different years of the code jam dataset, they must be the same
author. While making this assumption, they can induce both
false positive and false negative errors in the experiment.

Ullah et al. [6] used a program dependence graph (PDG)
along with the deep learning model to identify the authors
from the source code of different languages. First, the PDG
is used to extract the control flow and data variation features
from source code files. Then, TF-IDF based representations
of PDG features are fed into a neural network to identify the
source code author. They conducted the experimentation on
a GCJ dataset of three programming languages: C++, Java,
C#. These experiments scale to 1000 programmers.

Caliskan-Islam et al. [5] utilized machine learning models
to de-anonymize source code authors. The extensive feature
extraction process for programmer code stylometry involves
code parsing. The stylometry feature set is a representation
of the coding style and is derived from abstract syntax trees.
Syntactic features for code stylometry are extracted using
a fuzzy parser to generate an abstract syntax tree. The fea-
ture set was composed of a comprehensive set of around
120,000 layout-based, lexical, and syntactic features. They
achieved an accuracy of 94% and 98%over 1600 and 250 pro-
grammers, respectively, on the GCJ dataset.

Dauber et al. [4] analyzed the source code files extracted
from the open-source version control systems. They provided
an extension of Caliskan-Islam et al. [5] work, which per-
forms stylistic authorship identification on the source code
sample with high accuracy. Firstly, they ensemble the output
probabilities of sample source code files of the same author
for the same classifier, which results in improved classifica-
tion. Further, they were able to link several samples to the
same programmer. Further, they used calibration-curves to
prove the quality of authorship attribution for a given source
code sample.

Burrow et al. [24] utilized n-gram features of the source
code files to perform authorship attribution. Their work was
inspired by the success of using n-gram based features in text

authorship identification [12]. Results were reported on the
tokenized representations of C language source code files for
100 authors.

Frantzeskou et al. [16] presented an approach called
Source CodeAuthor Profiles (SCAP). It utilizes the byte level
n-grams and a similarity measure to predict the author of
the source code. Experiments were conducted on Java and
C++ programming languages with the number of authors
ranging from 6 to 30 programmers.With 30 java authors, they
were able to achieve 96.9% accuracy while they were able to
achieve 100% accuracy for 6 C++ programmers.
Code authorship identification of the source code bina-

ries has also been studied in the past. One such study was
conducted by Caliskan et al. [25], where abstract syntax
trees based author identification approach was used to extract
authors from binaries. First, syntactical features are extracted
using an abstract syntax tree. Further, these features are fed
to the random forest classifier to yield authors of the bina-
ries. The approach was evaluated using the GCJ dataset and
reported an accuracy of 96% for 100 programmers and 86%
accuracy for 600 programmers.

Meng et al. [23] proposed a framework to identify multiple
authors in a binary file. They exploit the features that capture
the programming style at the programming block level. The
feature set includes the instruction features, control flow
features, data flow features, and context features. Further,
these features are fed into a joint classification model trained
with Conditional Random Field (CRF). The study was con-
ducted on three open-source projects: Apache HTTP server,
the Dyninst binary analysis, instrumentation tool suite, and
GCC. The dataset contains 147 binaries of C language and
22 binaries of C++ language. They were able to achieve 65%
accuracy on 284 authors.

Despite the exciting results demonstrated by previous
work, there are numerous limitations. First, most of the earlier
studies’ features limit the applicability to usually one lan-
guage because of the feature engineering step’s hand-crafted
nature. Because of that, the features extracted for one par-
ticular language cannot be used to identify authors in other
languages. However, Abuhamad et al. [3], [7] do address this
issue by extracting language-oblivious features. However,
they work on the keyword level, which limits the elements of
style. Also, existing works use relatively small scale datasets,
where the number of authors ranges from a few hundred to a
few thousand authors.

Numerous loss functions have been presented in previ-
ous studies to solve few-shot learning problems, including
contrastive loss [26], triplet loss [27], Quadruplet loss [28],
and lifted structured loss [8]. These loss functions have
been shown to perform well in few-shot learning settings.
The contrastive loss function was proposed to minimize the
embedding distance between positive pairs and maximize the
distance between the negative pairs. Triplet loss function aims
to pull an anchor point closer to the positive point and increase
the distance between the anchor and negative points by a
fixed margin. Quadruplet loss was proposed to address the

197584 VOLUME 8, 2020

S. Zafar et al.: Language and Obfuscation Oblivious Source Code Authorship Attribution

limitations of triplet loss. Chen et al. [28] argue that a model
trained using triplet loss function would still show a relatively
large intra-class variation. They proposed to address this
problem by adding an extra penalty in the loss function, which
forces the two negatives in the quadruplet to maximize the
distance between them. For the lifted structured loss function,
the idea is to extract as much information from each batch as
you can. This is done by considering all possible negative for
each anchor and positive in the batch. So the loss function will
force to push away all the possible negative while bringing
the anchor and positive closer together. We used the lifted
structured loss to train our CNN.

IV. BACKGROUND
A. DEEP REPRESENTATION LEARNING
Code authorship attribution is often formulated as a clas-
sification problem. However, the authorship identification
problem largely depends on each author’s unique features,
such as variable naming conventions, use of for, or while
loop. Representation learning as ameans to automate rich and
distinctive feature engineering has gained increasing atten-
tion in the machine learning community and has become a
field in itself. Representation learning has been previously
used in multiple applications such as source code authorship
attribution [3], human motion classification [29], and person
re-identification task [30]. This study used representation
learning, where we train CNN using lifted structured loss
function to extract meaningful feature vectors.

Convolutional Neural Network: CNN is a type of neural
network used for solving visual (image, video) tasks. How-
ever, it has also been used to solve different natural language
processing tasks such as authorship attribution [31], Senti-
ment analysis [32], and document summarization [32]. CNN
architecture has three main components, i.e., convolutional
layer, pooling layer, and dense layer. We will briefly explain
these three components below.

The convolutional layer is responsible for extracting fea-
tures from the input vector by convolving it with filters.
Each filter within a convolution is applied to the input.
We do so by computing the dot product between the filter
and the input. Filters are usually randomly initialized from
a pre-determined distribution. The convolution outputs the
features maps, which are then passed to the pooling layer.

The pooling layer reduces the dimensionality of each
feature map in order to extract meaningful features. The
pooling layer can be of different types: max-pooling,
average-pooling, and sum-pooling are some of the exam-
ples. For instance, the max-pooling layer extracts the feature
map’s largest element within a region/window. Similarly,
the average-pooling layer takes the average of all the elements
in a particular window/region.

A dense layer is a single-layer of neurons that applies a
dot product between the neuron weights and the input vector.
If it is the neural network’s last layer, A softmax activation
function is further applied to this layer’s output to solve
the classification problem. The softmax function returns a

probability distribution, which can then classify the input
vector into its respective class label.

B. K-NEAREST NEIGHBOUR CLASSIFIER
K-Nearest Neighbour classifier (KNN) is an instance-based
lazy learning algorithm that classifies objects based on the
feature space’s closest training instance. Various distance
metrics can be used to determine the closeness between
instances, e.g., Manhattan-distance and cosine similarity.
KNN is one of the simplest classification algorithms as it does
not require any prior knowledge about the distribution of the
data. The Nearest Neighbour classifier is the simplest form
of KNN when K = 1. KNN classification primarily has two
stages:

1) Based on distance metric, pick the k nearest instances
to a given instance i.

2) Then, based on the class labels of the k nearest
instances, the class of instance i is determined.

V. CNN BASED AUTHORSHIP IDENTIFICATION SYSTEM
The authorship identification problem largely depends on the
unique features associated with each author. Thus, the feature
engineering process can become quite extensive. To enable a
distinctive feature extraction process, we present an efficient
CNN based approach to learn a novel deep representation that
maps the source code to a fixed-length vector. These repre-
sentations are further fed to the KNN classifier to identify
the source code authors. The primary motivation for utilizing
the KNN classifier is its lazy-learning ability, which makes
our approach more efficient than the ones used by previous
studies. We enforce the deep representations to behave in
such a way that enables us to use the KNN classifier effec-
tively. To incorporate this property in the embedding vectors,
we leverage the lifted structured loss. The lifted structured
loss allows us to learn deep representations such that embed-
ding vectors of source codes authored by the same author are
closer to each other in the embedding space than source codes
written by different authors. Figure 1 shows an overview of
our author attribution framework. We briefly highlight the
different phases of our approach in this section and explain
each phase’s details in the subsequent subsections.

A. CHARACTER-LEVEL REPRESENTATION
We use the character-level vectors to represent the source
code files, where each character is represented by a unique
integer number. A source code S composed of n characters
is denoted as S = {c1, c2, · · · , cn}. The character-level
representation has several advantages over word-level rep-
resentation. First, the vocabulary is much smaller than the
one required by word-level representation. For instance,
in the English language, we only need 97 characters, includ-
ing all punctuation marks, while word-level vocabulary can
be tens of thousands of words. Every single word can be
formed using the character level representation. Simultane-
ously, the word-level representation can only naturally handle

VOLUME 8, 2020 197585

S. Zafar et al.: Language and Obfuscation Oblivious Source Code Authorship Attribution

FIGURE 1. Flow diagram depicting the high level illustration of our proposed framework. Source codes are converted into character-level vectors, these
vectors are then fed to CNN to learn deep embeddings, and then deep embeddings are further fed into KNN to classify authors.

the words that are part of its vocabulary. This flexibility
is one of the critical advantages of character-level embed-
ding over word-level embedding, especially considering that
programming languages continuously evolve, and new key-
words additions are frequent. However, the disadvantage
of using character-level representation is that it results in
longer sequences, and the model requires more computation
resources to train if used naively.

B. NETWORK ARCHITECTURE
Weuse aCNNbased architecture inspired byRuder et al. [31].
Our network takes a character level vector as an input. Here,
each character is represented by an integer, as discussed in
subsection V-A. Further, the sequence is passed through an
embedding layer such that it maps each integer onto a 128-
dimensional embedding vector. After the embedding layer,
we use the spatial dropout layer [33] with a 25% dropout
and helps the neural network avoid overfitting. We then
use four 1-D convolution layers consisting of 512 filters
with kernel sizes of 2, 3, 5, and 7. We use he-normal
initialization [34] to initialize convolution filter weights.
Further, to add non-linearity we applied ReLU activation
function [35]. To condense the feature maps and retain the
most important features, we use global max-pooling oper-
ation over time [36], which outputs four 512 dimensional
vectors against each convolution layer.We concatenated these
features to form a 2048 dimensional vector and applied
a 50% dropout on this vector. We fed this output to a
256-dimensional dense layer and applied the tanh activation
function on the dense layer output so that every dimension
has an upper and lower bound. We used the glorot-uniform
initialization [37] to initialize the weights of the dense layer.
The hyper-parameters of our CNN architecture were chosen
after various iterations. Figure 2 shows the high-level illus-
tration of our CNN architecture.

C. LOSS FUNCTION
The ability to quantify the pairwise similarities between
examples makes the learning problem a lot simpler. Given a
similarity function, a classification task can be solved with a
simple nearest neighbor classifier [8]. In contrast to conven-
tional classification approaches, metric learning has become

FIGURE 2. A high-level illustration of the character-level convolutional
neural network used to extract deep representation of the source code.

increasingly popular due to its ability to learn the general con-
cept of distance metrics and its compatibility with efficient
distance-based inference on the learned metric space [8].

We train our network using the lifted structured loss func-
tion [8]. The lifted structured loss function is used for the 256
dimensional embedding layer. The lifted structured loss mini-
mizes the distance between all the similar embedding vectors
and maximizes the dissimilar embedding vectors’ distances.
Equation 1, shows the lifted structured loss function.

J̃i,j = log

 ∑
(i,k)∈N

exp{α − Di,k} +
∑

(j,l)∈N
exp{α − Dj,l}


+Di,j

J̃ =
1

2|P|
∑
(i,j)∈P

max
(
0, J̃i,j

)2
(1)

197586 VOLUME 8, 2020

S. Zafar et al.: Language and Obfuscation Oblivious Source Code Authorship Attribution

Here, P denotes the set of positive pairs in the batch, N
denotes the set of negative pairs in the batch, α is the margin
parameter, and Di,k is the distance between sample i and
sample k .

D. CNN TRAINING
We train the neural network using Ranger optimizer, a combi-
nation of the Radam [38] and the Lookahead [39] optimizers.
RAdam stabilizes the training at the start, and LookAhead
stabilizes the training and convergence during the rest of the
training process. We train the network for 250,000 steps.
We utilize the learning rate warm-up, as it has been shown
to work well to stabilize the early training process [39]. The
learning rate was increased linearly from 0 to 1e−3 in the first
1% of the training process, and then it was decreased linearly
from 1e− 3 to 1e− 6 over the rest of the training process.

The dataset’s prior distribution reveals that code files are
not evenly spread across authors, so random sampling of
authors and their respective files for training might induce
a bias as authors with more files might not get proper repre-
sentation. To address this issue, we sample an author based
on the prior distribution of source code files such that the
authors with more source code files get sampled more in each
iteration. Here, we only select two source code files from each
author’s files and put them in a batch. We do this to maximize
the number of unique authors within each batch. We repeat
the process while ensuring that no author appears more than
twice in a batch. So with this in mind, we selected a batch
size of 64, which means that we have precisely 32 authors
per batch. This process is called massaging the batch and is
usually used in imbalanced class problems.

We train our CNN using TensorFlow,2 an open-source
framework used to built machine learning applications such
as neural networks using data-flow graphs. We executed our
experiments on a workstation with GeForce GTX 1660 Ti
GPU (6GB) and 16GB of RAM. With this specification, our
CNN took around 48 hours to train.

E. K-NEAREST NEIGHBOUR CLASSIFIER
After training the CNN, we extract the deep embedding
vectors of all source code files. Further, some of these deep
embedding vectors are used for the KNN classifier as the
training dataset, and the rest are used as a test dataset to
evaluate the classifier. If a source code vector V is ‘closer’ to
a vector belonging to a particular author, then the probability
of V being authored by the same author is high. To determine
this ‘closeness’, we use Manhattan-distance, as it has been
shown to perform well in high dimensional space in a wide
variety of tasks [40].

Abuhamad et al. [3] utilized the Random Forest classifier,
which has a training time complexity of O(n2dt), where n is
the number of samples, d is the number of dimensions, and t
is the number of trees. The prediction time complexity of this
classifier is O(dt). However, a naive KNN has a prediction

2https://www.tensorflow.org/

complexity of O(dn). We use a KNN implementation that
utilizes the ball trees data structure [41] to look up nearest
neighbors, which makes our model much more efficient and
performs prediction with O(d log n) complexity. Also, being
a lazy-learning classifier, KNN does not require a training
phase. We used scikit-learn3 to implement KNN classifier,
where K=1. We empirically chose K=1 because it gave us
the best performance overall.

VI. EVALUATION
This section discusses the steps employed to perform author-
ship identification experiments and their results under various
settings. (A) We introduce the dataset used in the experi-
ments. (B) We discuss how we obfuscated the source code
files. (C) We provide the data pre-processing steps employed
to clean the dataset. (D) We discuss how we extracted deep
embedding vectors of the source code files. (E) We provide
an analysis to check the goodness of the deep embedding vec-
tors. (F) We discuss how we performed authorship attribution
using deep embedding vectors. (G) We present the results of
our proposed approach under different settings. (H) Finally,
we discuss an initial experiment to address the open-world
aspect of the authorship attribution problem.

A. DATA COLLECTION
For our study, we chose to work with the Google Code
Jam (GCJ)4 dataset. GCJ is an international programming
competition organized annually by Google. There are mul-
tiple rounds, and each round requires writing a program
to solve several problems within the allocated time. The
source codes’ public availability makes the GCJ a valuable
resource to address the authorship attribution problem. The
three most popular programming languages in GCJ are C++,
Java, and Python. We gathered GCJ data of these program-
ming languages from the year 2008 to 2019 to conduct our
experiments.

We split the dataset into training, validation, and test sets
across different years. The source codes written in the year
2018 are used to train the CNN. Source code files written
between 2009-2017 and 2019 are used as test sets, while
source codes written in the year 2008 are used as a validation
set. Figure 3 shows the number of source code files of differ-
ent languages across the train, test, and validation datasets.

B. SOURCE CODE OBFUSCATION
We also obfuscate the source code files belonging to each
of the programming languages. Numerous obfuscation tools
are available for each programming language. However,
we decided to use PyObfx,5 Stunnix,6 and JavaSource-
CodeObfuscator7 to obfuscate Python, C++ and Java source
codes, respectively. We used the default settings for all the

3https://scikit-learn.org/
4https://codingcompetitions.withgoogle.com/codejam
5https://github.com/PyObfx/PyObfx
6http://stunnix.com/prod/cxxo
7https://github.com/veylence/JavaSourceCodeObfuscator

VOLUME 8, 2020 197587

S. Zafar et al.: Language and Obfuscation Oblivious Source Code Authorship Attribution

FIGURE 3. Number of source code files associated with different
languages across different datasets. Here, the y-axis shows the number of
source code files on the log scale (base 10) while the x-axis shows
different datasets.

FIGURE 4. Distribution of source code files length. Here the y-axis shows
the number of source code files while the x-axis shows the length of
source code files in number of characters.

obfuscation tools. Also, these tools obfuscate the source code
such that the code’s functionality remains the same.

The PyObfx tool is a popular python source code obfusca-
tor that obfuscates the source code by assigning a cryptic look
to the strings, integers, floats, and booleans. Moreover, it also
changes the variable names and imported libraries’ names to
random non-recognizable strings. Stunnix is a sophisticated
C/C++ obfuscator which replaces the symbol name, numeric
constant, characters into non-recognizable strings. It also
removes the spaces, tabs, and comments from the source
code. The JavaSourceCodeObfuscator tool is an off-the-shelf
Java source code obfuscator that renames the classes, inter-
faces, methods, parameters, fields, and variables to random
alphabetic non-recognizable strings. All the aforementioned
obfuscation tools are randomized such that re-executing the
obfuscator on the same source code yields different results.

C. DATA PRE-PROCESSING
The following are the pre-processing steps employed before
conducting our experiments:

1) We only keep source code for the three most popu-
lar languages used in GCJ, C++, Java, and Python.
We identified the language of the source code files
using their file extension.

FIGURE 5. Distribution of number of source code files per author. Here,
the y-axis shows the number of authors while the x-axis shows the
number of source code files.

2) We remove duplicate source code files from the dataset.
3) We only keep the source codes that were processable

by the obfuscators. We also remove the source codes
whose obfuscated version is the same as the original
version. This can arise due to a multitude of reasons,
such as error while parsing and syntactically incorrect
source codes.

4) We remove all the users with less than two source code
files, which can be either obfuscated or original.

5) We remove the source code files with less than 465
(0.01 percentile of source code length distribution)
characters. We used this lower limit to ensure that our
model receives only source codes that contain some
distinctive features of the author.

6) We only consider the first 7, 200 characters of the
source files based on the 95th percentile of the distri-
bution of source code length.

After the pre-processing step, we are left with 2,680,120
code files in total. These include obfuscated, and the original
source code files across 11 years. We note that we end up
with slightly more obfuscated files than original source-code
files due to the minimum length cut-off. Figure 4 shows
the distribution of the length of the source code files after
pre-processing. According to this distribution, 50% of the
source code files have a length of less than 2056 characters.
Moreover, the distribution of the number of source code files
against the number of authors can be seen in figure 5.We limit
the visualization to 80 source code files in figure 5, as the dis-
tribution is right-tailed. According to this distribution, 50% of
the authors have less than 20 source code files.

D. DEEP EMBEDDING EXTRACTION
We transformed the source code files, both original and
obfuscated, to character level embedding vectors, as dis-
cussed in Section V-A. In our training data, there are
16,019 unique authors and 1, 525 unique characters. The
UNK token represents any new character that waswas not part
of the training set. Source code samples can be of different
lengths, so we padded them with 0 to make them of 7, 200
character length.We choose a 7, 200 character length because
it is the 95th percentile of the source code character length in

197588 VOLUME 8, 2020

S. Zafar et al.: Language and Obfuscation Oblivious Source Code Authorship Attribution

FIGURE 6. Distribution of inter and intra-cluster distances in training (2018) and validation set (2008). Here, the ‘‘dotted’’ distribution
plot shows the inter-cluster distances while the ‘‘striped’’ distribution shows the intra-cluster distances.

our training dataset. Further, these character-level vectors are
fed to CNN to learn deep embedding vectors.

CNNTraining Assumption: In a real-world setting, a sig-
nificant chunk of the source code files could be obfuscated.
If trained with only the original source code files from GCJ,
our network could not maintain a good accuracy under the
simulated real-world setting. To identify source code authors
under such a setting, the underlying network needs to be
trained using both obfuscated and the original source code
files. In this way, the model can extract features that can
work with both kinds of source codes. Hence, to evaluate our
approach using different experiments, we trained our network
on a dataset that contains both obfuscated and the original
source code files.

E. ANALYSIS OF EMBEDDING VECTORS
We calculated the inter and intra-cluster distances between
the embedding vectors under the simulated real-world setting
to ensure the deep embedding vectors’ quality for the classi-
fication task. Here, a cluster represents a unique author. For
each author in the training set, we calculated the mean of the
Manhattan-distances between the embedding vectors of all
the source code files to get the mean intra-cluster distance.
Further, we also calculated the mean Manhattan-distances
between the mean embedding vectors of each cluster (author)
to get the mean inter-cluster distance between clusters.
We assessed the significance of the difference between inter
and intra-cluster distances with the null hypothesis that the
two groups have the same mean and the alternate hypothesis
that they are not. The p-value for the t-test that the inter and
intra-cluster distances are drawn the same distribution and
have equal means is less than 0.001, which indicates that the
inter and intra-cluster distances are significantly different.

Figure 6 shows the inter and intra-cluster distance distri-
butions to illustrate the quality of our deep representations
on both training and validation sets. For the year 2018, The
average distance between embeddings within each cluster is
66.42, with a standard deviation of 20.95, while the average
distance between the means of different clusters is 180.01,
with a standard deviation of 8.17. The minimum distance

between the cluster means for 2018 was 146.35. Only 34,
which is 0.21% of the total number of clusters, were found to
have an average embedding distance greater than that value.
For the year 2008, The average distance between embed-
dings within each cluster is 76.01, with a standard deviation
of 20.06. The average distance between themeans of different
clusters is 153.93, with a standard deviation of 7.61. The
minimum distance between the cluster means for 2008 was
129.55. Only 19, which is 0.6% of the total number of
clusters, were found to have an average embedding distance
greater than that value. We observe that the intra-cluster dis-
tances are significantly lower than the inter-cluster distances.
This means that the distance in the embedding space has good
discriminative power and can discriminate between different
authors’ source code files. We can also see that the distri-
butions across training and validation sets are quite similar,
reflecting that our model did not overfit and generalize well.

For qualitative evaluation, we sampled random authors
from the validation dataset and visualized their respective
source code embedding vectors using the Incremental Prin-
cipal Component Analysis (IPCA) method [42]. IPCA is
helpful when data cannot fit in memory due to memory con-
straints. It allows us to input the data in batches. Using IPCA,
we reduce the dimensionality of the data to two dimensions
(principal components). The first two principal components
capture 10.20% and 8.50% of the variance of data, which
illustrates that most of the dimensions learned by the model
are meaningful. As we can see in figure 7, even with such
low variance coverage of the first two components, we can
get well-formed source code clusters.

F. CLASSIFICATION
We report the results by randomly sampling n source code
files belonging to a particular author, i.e., five files per
author, seven files per author, or nine files per author. Fur-
ther, we feed n − 1 source code files to initialize the
KNN and the remaining 1 source code file to evaluate
the KNN. We use the Manhattan-distance metric to find
the nearest code sample. It has been shown in the literature
that Manhattan-distance has exceptional performance when

VOLUME 8, 2020 197589

S. Zafar et al.: Language and Obfuscation Oblivious Source Code Authorship Attribution

FIGURE 7. Embedding visualization after using Incremental Principle
Component Analysis. The visualization shows source code sample
representations for five randomly sampled authors. Here, source code
files for the same author are depicted by the same shape and figure.

compared with many other distance metrics in high dimen-
sional space [40]. To report the results, we repeat all our
experiments ten times and calculate the accuracy scores’
mean and standard deviation. Here accuracy metric is appro-
priate because our test dataset is not unbalanced, as every
author has precisely one source code file in the testing set.

G. EXPERIMENT RESULTS
In this section, we discuss the results of our experiments con-
ducted across different scenarios. We conducted our exper-
iments for three programming languages separately, and
we also consider a mixed scenario in which source codes
authored in all three programming languages are considered.
The motivation for including a mixed scenario is to address
the authorship attribution problem under the assumption that
an author can also write code in multiple programming lan-
guages. Here, there might be a case for a particular author in a
mixed scenario such that files in the KNN training dataset are
of one language, and files in the KNN test dataset might be of
another language. For instance, the KNN training set contains
Python and C++ code samples, and the test set contains
Java code samples. It is important to note here that not every
author’s source code needs to be written in multiple lan-
guages. The primary difference here is that before all the prior
source code files for all the authors were written in one pro-
gramming language, our priors consist of all three languages.
We report Top-1 and Top-3 accuracy of the results. Here,
Top-N accuracy means that the correct author prediction is in
the top N predictions by the KNN classifier. We discuss the
results in the subsequent sections: (1) We discuss the results
of our proposed approach over the original GCJ source code
files. (2) We discuss the performance of our approach over
obfuscated source code files. (3) We discuss our simulated
real-world setting results, created by combining both original
and obfuscated source code files.

1) RESULTS ON ORIGINAL GCJ DATASET
This subsection explores the authorship attribution
problem on the original source-codes mined from the

GCJ competition. Table 2 shows the results achieved by
our proposed framework under this particular setting. As we
can observe, across all the programming languages and even
under the mixed language scenario, we achieve similar results
for 5, 7, and 9 files. We also see that the test years’ results
are similar to the results obtained in the training year, which
shows that the model is not overfitting.

a: FIVE FILES PER AUTHOR
For the mixed-language scenario, we see an average −1.8%
difference in all years’ accuracy from 2018. For C++,
we observe an average difference of−3.6%, while for Python
and Java, we note an average difference of 4.75% and
−0.60%, respectively. Here, the ‘‘negative’’ difference means
that our model performs worse on test data than the training
set.

b: SEVEN FILES PER AUTHOR
For C++, we observe an average difference of −1.80%,
while for Python, we note an average difference of 5.20%.
For Java, we observe an average difference of 0.61%. Finally,
for themixed-language scenario, the average difference of the
accuracy is only −0.525%.

c: NINE FILES PER AUTHOR
For C++, we observe an average difference of −0.59%,
while for Python, we observe an average difference of 4.23%.
For Java, we note an average difference of 0.86%, while for
the mixed-language scenario, we report an average difference
of 0.16%.

2) RESULTS ON OBFUSCATED GCJ DATASET
Source code is often obfuscated in an attempt to hide the
authorship. In this experiment, we examine how obfusca-
tion affects our approach. For this, we first obfuscate our
source code using different source code obfuscation tools,
as described in section VI-B. We only sample obfuscated
source code vectors from the set of source codes. We com-
puted the average difference of accuracy between obfuscated
and the original source-code setting to observe our model’s
performance trend in the obfuscated setting. Table 3 shows
the results achieved by our proposed framework under this
particular setting.

a: FIVE FILES PER AUTHOR
We observe an average difference of −10.6% for
mixed-language scenario between obfuscated and original
source-code setting. For C++, we see an average difference
of −8.12%. While for Python and Java, we note an average
accuracy difference of −13.2% and −14.1%, respectively.

b: SEVEN FILES PER AUTHOR
For mixed-language scenario, we observe an average differ-
ence of −8.71% between obfuscated and the original source
code setting. For C++, we see an average difference of

197590 VOLUME 8, 2020

S. Zafar et al.: Language and Obfuscation Oblivious Source Code Authorship Attribution

TABLE 2. Top-1 and Top-3 accuracy of authorship attribution across different number of source code files per author, different years and programming
languages under original source-code setting.

−6.86%. While for Python and Java, we observe an accuracy
difference of −10.0% and −10.9%, respectively.

c: NINE FILES PER AUTHOR
We observe an average difference of −7.04% for
mixed-language scenario between obfuscated and original
source code setting. For C++, we see an average difference
of −5.75%. For Python and Java, we note an average accu-
racy difference of −7.85% and −8.32%, respectively.

Results show that our approach scales for a large number of
authors under obfuscated settings and achieves high accuracy.
However, this experiment results show some degradation in
accuracy, compared to results achieved in the original source
code setting, which is expected as the sole purpose of obfus-
cation is to hide the traits that can be used to identify the
author. We also note that with the increase in the number
of files, the accuracy difference drops by almost 3 points,
making the gap even smaller.

VOLUME 8, 2020 197591

S. Zafar et al.: Language and Obfuscation Oblivious Source Code Authorship Attribution

TABLE 3. Top-1 and Top-3 accuracy of authorship attribution across different number of source code files per author, different years and programming
languages under obfuscated setting.

3) SIMULATED REAL-WORLD SETTING
In this experiment, we try to simulate a real-world setting
where we would have both obfuscated and the original source
code files written in multiple programming languages. Here,
source code vectors are sampled from the set of both obfus-
cated and original source codes. Table 4 shows the results
for each programming language and mixed programming
language scenario under the simulated real-world settings.
To make our model truly obfuscation oblivious, it must work
well in such a real-world setting. Given the random nature

of the sampling technique, Our model may have only seen
the original source codes written by a particular author. If an
obfuscated source code of that author comes up, the model
is expected to make a correct prediction. To determine our
model’s performance trend, we computed the average accu-
racy difference of the simulated real-world settingwith obfus-
cated and original source-code settings. As expected, our
results fall within the lower bound determined by the obfus-
cated setting and the upper bound determined by the original
source code setting.

197592 VOLUME 8, 2020

S. Zafar et al.: Language and Obfuscation Oblivious Source Code Authorship Attribution

TABLE 4. Top-1 and Top-3 accuracy of authorship attribution across different number of source code files per author, different years and programming
languages under simulated real world setting.

a: FIVE FILES PER AUTHOR
For C++, We note that the average difference between sim-
ulated real-world setting and obfuscated setting is −2.96%,
and it drops to 5.16% when compared with the original
source-code setting. For Python, the average difference with
the obfuscated setting is−5.24%, and it drops to 8.00% com-
paredwith the original source-code setting. For Java, the aver-
age difference with the obfuscated and original source-code
setting is 0.87% and 15.0%, respectively. Lastly, for the
mixed-language scenario, the average difference with the

obfuscated setting is −2.72%, and it drops to 7.82% when
compared with the original source-code setting.

b: SEVEN FILES PER AUTHOR
We observe that the average difference between the simu-
lated real-world setting and obfuscated setting is −2.36%.
The average difference between the simulated real-world
and the original source-code setting is 4.50% for C++. For
Python, the average difference with the obfuscated setting is
−3.25%, and it drops to 6.75%when the average difference is

VOLUME 8, 2020 197593

S. Zafar et al.: Language and Obfuscation Oblivious Source Code Authorship Attribution

computed with the original source-code setting. For Java,
the average difference with the obfuscated setting is 1.83%,
and this difference drops to 0.33% when the average dif-
ference is computed with the original source-code setting.
Finally, for the mixed-language scenario, the average differ-
ence is −1.05% compared with the obfuscated setting, and it
drops to 3.93%when computed with the original source-code
setting.

c: NINE FILES PER AUTHOR
We see the average difference between simulated real-world
setting and the obfuscated setting is −1.36%, and it drops
to 4.38% when the average difference is computed between
simulated real-world setting and original source-code settings
for C++. For Python, the average difference with the obfus-
cated setting is−1.71%, and it drops to 6.13when the average
difference is computedwith original source-code settings. For
Java, the average difference is 2.73% when computed with
obfuscated settings, and it drops to 11.04% when calculated
with original source-code settings. Lastly, the average dif-
ference with obfuscated settings is −2.72% compared to the
average difference with original source-code settings for the
mixed-language scenario.

Our study presents the largest and the most diverse code
authorship identification work by extracting the authorship
of 20,458 programmers who write source code in multiple
programming languages while maintaining high Top-1 accu-
racy, i.e., 84.94%.

H. OPEN WORLD
One of the advantages of utilizing this deep metric-
learning-based approach is that we can use the similaritymea-
sure to address our problem’s open-world aspect. We perform
the authorship attribution by using a distance threshold to
differentiate between the known and unknown authors (out
of the world). We conducted an initial experiment to demon-
strate our approach’s applicability to identify whether an
unknown author wrote a given source code. We restricted our
experiment to the source code files written in the year 2008 of
the GCJ competition under the simulated real-world setting
with nine source code files. Here, selecting the right threshold
to differentiate between known and unknown authors is crit-
ical. The threshold is generally dependent on the application
because the precision and recall measures’ importance may
vary [4]. Furthermore, it is also reliant on the approach used.
For instance, we used the distance threshold to differentiate
between known and unknown authors.We are usingKNNas a
classificationmethod, which classifies based on the closeness
between instances.

To determine the threshold, we calculated the mean (68.92)
and standard deviation (35.06) of the intra-cluster distances,
as discussed in section VI-E over the year 2018, which was
also used to train the neural network. We experimented with
different distance thresholds within the range of two stan-
dard deviations of the mean intra-cluster distances. We then
evaluated the thresholds in terms of precision and recall both

FIGURE 8. Precision and recall trend for our open world experiment
against different distance thresholds. Here x-axis shows the distance
threshold to differentiate between inside and outside of world authors
while y-axis shows the precision/recall of our open world experiment.
Here, we report the results for both outside (unknown) authors and
overall (unknown and known) authors.

inside and outside the world authors. Figure 8 shows the
results of our open world experiment. We note that as we
increase the threshold, the recall for outside the world attri-
bution decreases as expected. However, precision for outside
world samples increases up to a point and then decreases
sharply. This analysis can help evaluate the acceptable trade-
off, which can result in choosing the right threshold. For
instance, in figure 8, we can see that the optimal distance
threshold is 51.41, where we were able to identify unknown
authors with 84.0% recall and 88.5% precision. However,
for the overall (unknown and known) authors, we were able
to achieve 65.3% precision and 72.2% recall at a distance
threshold of 51.41.

1) DISCUSSION OF RESULTS
Results show that our approach can identify authors across
various programming languages and can scale for a large
number of programmers under diverse settings. Our approach
also shows similar results in the training and testing dataset,
which indicates that our model does not overfit. We also note
that the number of authors and performance does not have
a direct relationship. The increase in the number of authors
does not necessarily result in a decrease in performance.
We hypothesize that this is due to particular kinds of pro-
gramming problems that force the different programmers to
solve them similarly. In contrast, other programming prob-
lems might give them more freedom, making the problem
different across the years and impacting overall performance.

VII. LIMITATIONS
The following are the limitations that are associated with this
study.

Multiple Authors: Currently, our study is based on the
assumption that source code can only be attributed to a single
author. However, in reality, source codes are usually authored
by multiple authors, mainly when they belong to a project.
Identifying multiple programmers in source code could be an
exciting avenue to explore.

197594 VOLUME 8, 2020

S. Zafar et al.: Language and Obfuscation Oblivious Source Code Authorship Attribution

Real World Dataset: Currently, our approach is evalu-
ated on the GCJ dataset. We tried to simulate the real-world
setting, but the scenario might be different in the real-world
dataset, such as the one mined from Github.

VIII. FUTURE WORK
In this section, we highlight the planned future direction of
our work.

Binaries: Currently, our study identifies authors of the
source code written in a specific programming language.
However, a study by Caliskan et al. [5] showed that coding
style is preserved in the compilation process, and authors can
be extracted from the executable binaries. A large-scale study
to identify the authors of binaries generated from obfuscated
and the original source code files is an appealing avenue to
explore.

Model Interpretability: Analyze what the model looks
for in code while extracting the author. Is it looking for spaces
vs. tabs? Function declarations? Indentation of code blocks?
Line of codes? No. of characters in a line? Or somethingmore
complex.

Language Agnostic: Currently, our proposed approach
is trained and tested on three known languages, i.e., C++,
Python, and Java. We plan to analyze our model on unseen
languages.

Model Architecture and Loss Function: We plan to
investigate different architectures and loss functions.

Multiple Authors: Currently, our study is based on the
assumption that source code can only be written by a single
author. In the future, we plan to identify the group of authors
involved in writing source code.

Code Reuse: Programmer often re-use already written
code. Moreover, numerous tools are available online for auto-
matically generating code that the authors otherwise have to
write themselves. In the future, we plan to explore how code
reuse impacts the accuracy of our approach.

AVAILABILITY
We have released all the artifacts necessary to reproduce all
the results presented in our study. Scripts can be accessed
using GitHub link.8

IX. CONCLUSION
Identifying the author of source code is beneficial formultiple
applications such as plagiarism detection, software forensic,
copyright, and violation detection. Programmers often use
similar patterns to write code, such as variable naming, use
of for/while loop. These patterns play an important role in
identifying authors from the source code. We present an
efficient approach to learn novel deep representations of
source code files that characterize the code in a fixed size
embedding vector. Code files written by the same author are
close in the embedding space compared to code files written
by a different author. In this study, we provide a CNN based

8https://github.com/sarim-zafar/LANG_OBF_OBLIVIOUS

author attribution system. We first train our convolutional
neural network using the lifted structured loss function on
character-level source code representations. We then extract
the deep representation vectors from the CNN and feed them
to a K-nearest neighbor classifier.

We evaluate our approach using the GCJ dataset. We per-
formed our analysis of the three most popular program-
ming languages: Python, C++, Java. Results show that
our approach is efficient and scalable while maintaining a
high accuracy under several different settings and scenar-
ios. We evaluated our approach under obfuscated source-
code, original source-code, and simulated real-world settings.
We also conducted an initial experiment to address the prob-
lem’s open-world aspect, where the author could be someone
outside the training set.With nine source code files per author,
our approach can identify 20, 458 programmers who write
the code in multiple languages with an accuracy of 84.94%.
Moreover, our approach can identify 10, 280 C++ pro-
grammers with an accuracy of 90.98%, 6, 910 Python pro-
grammers with an accuracy of 84.79% and 3, 911 Java
programmers with an accuracy of 79.36%.

REFERENCES
[1] S. Burrows, S. M. M. Tahaghoghi, and J. Zobel, ‘‘Efficient plagiarism

detection for large code repositories,’’ Software: Pract. Exper., vol. 37,
no. 2, pp. 151–175, 2007.

[2] G. Frantzeskou, E. Stamatatos, S. Gritzalis, C. E. Chaski, andB. S. Howald,
‘‘Identifying authorship by byte-level N-Grams: The source code author
profile (SCAP) method,’’ Int. J. Digit. Evidence, vol. 6, no. 1, p. 1–18,
2007.

[3] M. Abuhamad, T. AbuHmed, A. Mohaisen, and D. Nyang, ‘‘Large-scale
and language-oblivious code authorship identification,’’ in Proc. ACM
SIGSAC Conf. Comput. Commun. Secur., Jan. 2018, pp. 101–114.

[4] E. Dauber, A. Caliskan, R. Harang, G. Shearer,M.Weisman, F. Nelson, and
R. Greenstadt, ‘‘Git blame who?: stylistic authorship attribution of small,
incomplete source code fragments,’’ Proc. Privacy Enhancing Technol.,
vol. 2019, no. 3, pp. 389–408, Jul. 2019.

[5] A. Caliskan-Islam, R. Harang, A. Liu, A. Narayanan, C. Voss,
F. Yamaguchi, and R. Greenstadt, ‘‘De-anonymizing programmers via
code stylometry,’’ in Proc. 24th USENIX Secur. Symp. (USENIX Secur.),
2015, pp. 255–270.

[6] F. Ullah, J. Wang, S. Jabbar, F. Al-Turjman, and M. Alazab, ‘‘Source code
authorship attribution using hybrid approach of program dependence graph
and deep learning model,’’ IEEE Access, vol. 7, pp. 141987–141999, 2019.

[7] M. Abuhamad, J.-S. Rhim, T. AbuHmed, S. Ullah, S. Kang, and D. Nyang,
‘‘Code authorship identification using convolutional neural networks,’’
Future Gener. Comput. Syst., vol. 95, pp. 104–115, Jun. 2019.

[8] H. O. Song, Y. Xiang, S. Jegelka, and S. Savarese, ‘‘Deep metric learning
via lifted structured feature embedding,’’ in Proc. IEEE Conf. Comput. Vis.
Pattern Recognit. (CVPR), Jun. 2016, pp. 4004–4012.

[9] A. Aiken. (2004). Moss : A system for Detecting Software Plagia-
rism. [Online]. Available: http://www.cs.berkeley.edu/aiken/moss.html,
and [Online]. Available: https://ci.nii.ac.jp/naid/10017142577/en/

[10] X. Li and X. J. Zhong, ‘‘The source code plagiarism detection using
AST,’’ in Proc. Int. Symp. Intell. Inf. Process. Trusted Comput., Oct. 2010,
pp. 406–408.

[11] G. Whale, ‘‘Identification of program similarity in large populations,’’
Comput. J., vol. 33, no. 2, pp. 140–146, Feb. 1990.

[12] S. Burrows, A. L. Uitdenbogerd, and A. Turpin, ‘‘Comparing techniques
for authorship attribution of source code,’’ Softw., Pract. Exper., vol. 44,
no. 1, pp. 1–32, Jan. 2014.

[13] A. Gray, P. Sallis, and S. MacDonell, ‘‘Software forensics: Extending
authorship analysis techniques to computer programs,’’ Univ. Otago,
Dunedin, New Zealand, Inf. Sci. Discuss. Papers Series 97/14, 1997.
[Online]. Available: http://hdl.handle.net/10523/872

VOLUME 8, 2020 197595

S. Zafar et al.: Language and Obfuscation Oblivious Source Code Authorship Attribution

[14] B. N. Pellin, ‘‘Using classification techniques to determine source code
authorship,’’ Dept. Comput. Sci., Univ.Wisconsin-Madison, Madison,WI,
USA, White Paper, 2000.

[15] S. G. Macdonell, A. R. Gray, G. MacLennan, and P. J. Sallis, ‘‘Soft-
ware forensics for discriminating between program authors using case-
based reasoning, feedforward neural networks and multiple discriminant
analysis,’’ in Proc. 6th Int. Conf. Neural Inf. Process., vol. 1, Nov. 1999,
pp. 66–71.

[16] G. Frantzeskou, E. Stamatatos, S. Gritzalis, and S. Katsikas, ‘‘Effective
identification of source code authors using byte-level information,’’ in
Proc. 28th Int. Conf. Softw. Eng. (ICSE), 2006, pp. 893–896.

[17] S. Burrows, A. L. Uitdenbogerd, and A. Turpin, ‘‘Application of informa-
tion retrieval techniques for source code authorship attribution,’’ in Proc.
Int. Conf. Database Syst. Adv. Appl. Berlin, Germany: Springer, 2009.

[18] B. S. Elenbogen and N. Seliya, ‘‘Detecting outsourced student program-
ming assignments,’’ J. Comput. Sci. Colleges, vol. 23, no. 3, pp. 50–57,
2008.

[19] R. C. Lange and S. Mancoridis, ‘‘Using code metric histograms and
genetic algorithms to perform author identification for software foren-
sics,’’ in Proc. 9th Annu. Conf. Genetic Evol. Comput. (GECCO), 2007,
pp. 2082–2089.

[20] I. Krsul and E. H. Spafford, ‘‘Authorship analysis: Identifying the author
of a program,’’ Comput. Secur., vol. 16, no. 3, pp. 233–257, Jan. 1997.

[21] X. Yang, G. Xu, Q. Li, Y. Guo, and M. Zhang, ‘‘Authorship attribu-
tion of source code by using back propagation neural network based on
particle swarm optimization,’’ PLoS ONE, vol. 12, no. 11, Nov. 2017,
Art. no. e0187204.

[22] H. Ding and M. H. Samadzadeh, ‘‘Extraction of java program fingerprints
for software authorship identification,’’ J. Syst. Softw., vol. 72, no. 1,
pp. 49–57, Jun. 2004.

[23] X. Meng, B. Miller, and K.-S. Jun, ‘‘Identifying multiple authors in a
binary program,’’ in Proc. Eur. Symp. Res. Comput. Secur., Aug. 2017,
pp. 286–304, doi: 10.1007/978-3-319-66399-9_16.

[24] S. Burrows and S. M. Tahaghoghi, ‘‘Source code authorship attribution
using n-grams,’’ in Proc. 12th Australas. Document Comput. Symp. Mel-
bourne, VIC, Australia: RMIT Univ., 2007, pp. 32–39.

[25] A. Caliskan, F. Yamaguchi, E. Dauber, R. Harang, K. Rieck,
R. Greenstadt, and A. Narayanan, ‘‘When coding style survives compi-
lation: De-anonymizing programmers from executable binaries,’’ 2015,
arXiv:1512.08546. [Online]. Available: http://arxiv.org/abs/1512.08546

[26] R. Hadsell, S. Chopra, and Y. LeCun, ‘‘Dimensionality reduction by learn-
ing an invariant mapping,’’ in Proc. IEEE Comput. Soc. Conf. Comput. Vis.
Pattern Recognit., vol. 2, Jun. 2006, pp. 1735–1742.

[27] F. Schroff, D. Kalenichenko, and J. Philbin, ‘‘FaceNet: A unified embed-
ding for face recognition and clustering,’’ in Proc. IEEEConf. Comput. Vis.
Pattern Recognit. (CVPR), Jun. 2015, pp. 815–823.

[28] W. Chen, X. Chen, J. Zhang, and K. Huang, ‘‘Beyond triplet loss: A
deep quadruplet network for person re-identification,’’ in Proc. IEEE
Conf. Comput. Vis. Pattern Recognit. (CVPR), Jul. 2017, pp. 403–412,
doi: 10.1109/CVPR.2017.145.

[29] J. Butepage, M. J. Black, D. Kragic, and H. Kjellstrom, ‘‘Deep repre-
sentation learning for human motion prediction and classification,’’ in
Proc. IEEE Conf. Comput. Vis. Pattern Recognit. (CVPR), Jul. 2017,
pp. 6158–6166.

[30] H. Yao, S. Zhang, R. Hong, Y. Zhang, C. Xu, and Q. Tian, ‘‘Deep repre-
sentation learning with part loss for person re-identification,’’ IEEE Trans.
Image Process., vol. 28, no. 6, pp. 2860–2871, Jun. 2019.

[31] S. Ruder, P. Ghaffari, and J. G. Breslin, ‘‘Character-level and
multi-channel convolutional neural networks for large-scale
authorship attribution,’’ 2016, arXiv:1609.06686. [Online]. Available:
http://arxiv.org/abs/1609.06686

[32] N. Widiastuti, ‘‘Convolution neural network for text mining and natural
language processing,’’ in Proc. IOP Conf., Mater. Sci. Eng., 2019, vol. 662,
no. 5, Art. no. 052010.

[33] J. Tompson, R. Goroshin, A. Jain, Y. LeCun, and C. Bregler, ‘‘Efficient
object localization using convolutional networks,’’ in Proc. IEEE Conf.
Comput. Vis. Pattern Recognit. (CVPR), Jun. 2015, pp. 648–656.

[34] K. He, X. Zhang, S. Ren, and J. Sun, ‘‘Delving deep into rectifiers:
Surpassing human-level performance on ImageNet classification,’’ inProc.
IEEE Int. Conf. Comput. Vis. (ICCV), Dec. 2015, pp. 1026–1034.

[35] V. Nair and G. E. Hinton, ‘‘Rectified linear units improve restricted Boltz-
mann machines,’’ in Proc. 27th Int. Conf. Mach. Learn. (ICML), 2010,
pp. 807–814.

[36] R. Collobert, J. Weston, L. Bottou, M. Karlen, K. Kavukcuoglu, and
P. Kuksa, ‘‘Natural language processing (almost) from scratch,’’ J. Mach.
Learn. Res., vol. 12 pp. 2493–2537, Aug. 2011.

[37] X. Glorot and Y. Bengio, ‘‘Understanding the difficulty of training deep
feedforward neural networks,’’ in Proc. 13th Int. Conf. Artif. Intell. Statist.,
2010, pp. 249–256.

[38] L. Liu, H. Jiang, P. He, W. Chen, X. Liu, J. Gao, and J. Han, ‘‘On the vari-
ance of the adaptive learning rate and beyond,’’ 2019, arXiv:1908.03265.
[Online]. Available: http://arxiv.org/abs/1908.03265

[39] M. Zhang, J. Lucas, J. Ba, and G. E. Hinton, ‘‘Lookahead optimizer: k
steps forward, 1 step back,’’ in Proc. Adv. Neural Inf. Process. Syst., 2019,
pp. 9593–9604.

[40] C. C. Aggarwal, A. Hinneburg, and D. A. Keim, ‘‘On the surprising
behavior of distance metrics in high dimensional space,’’ inProc. Int. Conf.
Database Theory. Berlin, Germany: Springer, Jan. 2001, pp. 420–434.

[41] T. Liu, A. W. Moore, and A. Gray, ‘‘New algorithms for efficient high-
dimensional nonparametric classification,’’ J. Mach. Learn. Res., vol. 7,
pp. 1135–1158, Jun. 2006.

[42] D. A. Ross, J. Lim, R.-S. Lin, and M.-H. Yang, ‘‘Incremental learning for
robust visual tracking,’’ Int. J. Comput. Vis., vol. 77, nos. 1–3, pp. 125–141,
May 2008.

SARIM ZAFAR received the B.S. degree in
computer science from Information Technology
University, in 2018. He is currently a Gradu-
ate Student with North Dakota State University
(NDSU), Fargo, ND, USA. He is also working
as a Graduate Research Assistant (GRA), NDSU.
His research interests include social media ana-
lytics and applied machine learning in software
engineering.

MUHAMMAD USMAN SARWAR received the
B.S. degree in computer science from Information
Technology University, in 2017. He is currently a
Graduate Student and a Graduate Research Assis-
tant with North Dakota State University (NDSU),
Fargo, ND, USA. His current research inter-
ests include social media analytics and applied
machine learning in software engineering.

SAEED SALEM (Member, IEEE) received the
Ph.D. degree in computer science from the Rens-
selaer Polytechnic Institute, Troy, NY, USA.
He is currently an Associate Professor with
North Dakota State University. His research inter-
ests include graph mining and machine learning
with a focus on developing algorithms for min-
ing frequent and significant graphs. His group
developed enumeration algorithms for mining all
frequent subgraphs, cross-graph dense graphs, and

approximate frequent subgraphs from heterogeneous graphs.

MUHAMMAD ZUBAIR MALIK received the
Ph.D. degree in software engineering from The
University of Texas at Austin. He was a Post-
doctoral Researcher and a Research Scientist
with Carnegie Mellon University, Pennsylvania.
He is currently an Assistant Professor with North
Dakota State University. His research interest
includes software systems. His recent research
interests include automated program repair, devel-
oping language, and systems for robotics and
machine learning systems.

197596 VOLUME 8, 2020

http://dx.doi.org/10.1007/978-3-319-66399-9_16
http://dx.doi.org/10.1109/CVPR.2017.145

