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ABSTRACT Linear models in machine learning are extremely computational efficient but they have high
representation bias due to non-linear nature of many real-world datasets. In this article, we show that
this representation bias can be greatly reduced by discretization. Discretization is a common procedure in
machine learning that is used to convert a quantitative attribute into a qualitative one. It is often motivated
by the limitation of some learners to handle qualitative data. Since discretization looses information (as
fewer distinctions among instances are possible using discretized data relative to undiscretized data) — where
discretization is not essential, it might appear desirable to avoid it, and typically, it is avoided. However, in the
past, it has been shown that discretization can leads to superior performance on generative linear models,
e.g., naive Bayes. This motivates a systematic study of the effects of discretizing quantitative attributes
for discriminative linear models, as well. In this article, we demonstrate that, contrary to prevalent belief,
discretization of quantitative attributes, for discriminative linear models, is a beneficial pre-processing step,
as it leads to far superior classification performance, especially on bigger datasets, and surprisingly, much
better convergence, which leads to better training time. We substantiate our claims with an empirical study
on 52 benchmark datasets, using three linear models optimizing different objective functions.

INDEX TERMS Discretization, classification, logistic regression, support vector classifier, artificial neuron,

big datasets, bias-variance analysis.

I. INTRODUCTION

Linear models in machine learning are popular due to their
simplicity and computational efficiency. Generative linear
models such as naive Bayes, and discriminative linear models
such as Logistic Regression, are commonly used as baseline
models during model evaluation phase [1]. In some real world
problems, these simple linear models perform very well in
comparison to sophisticated non-linear models such as Fac-
torization Machines, Bayesian Networks, Artificial Neural
Networks, Gradient Boosted Decision Trees, etc. However,
due to their simplicity, these linear models do have an inher-
ent weakness which stems from their high representation
bias [2]. The representation bias, also called, its hypothesis
language bias [3], can be defined as the minimum loss of any
model in the space of models available to the learner. It is
clearly desirable in the general case to use a space of models
with minimum representation bias, for any given problem.
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This is one reason, non-linear models which have inherent
(explicit or implicit) feature engineering process leads to
superior performance on many real-world datasets.
Discretization is a typical pre-processing step in many
machine learning algorithms that is used to convert a Quan-
titative attribute into Qualitative one [4], [5]. In this article,
we argue that high representation bias of typical linear models
on real-world problems, can be reduced by discretization.
Typically, the representation-bias reduction is done through
either manual or automated feature engineering. Manual fea-
ture engineering is the process of creating new features from
the original features. Each non-linear machine learning model
has its own inherent feature engineering phase, which could
be explicit, e.g., in case of higher-order Logistic Regres-
sion [6], k-Dependence Bayesian Estimators [7], etc. or it
could be implicit, e.g., Artificial Neural Networks have lay-
ers of dense, convolution, recurrent layers, which effectively
engineer features to be fed later to the linear part of the
network [8], [9]. This is illustrated in Figure 1, where two
schemes for reducing the representation bias of a model are
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FIGURE 1. Illustration of the two schemes of reducing representation
bias of simple linear models - a) Feature Engineering, b) Discretization.
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FIGURE 2. Contrived example demonstrating the power of discretization
for reducing representation bias of a linear model.

shown. Note, we do not propose discretization as an alterna-
tive to feature engineering — rather, we present it as a process
which share its goal of reducing representation bias of the
model, with feature engineering process. We believe that this
role of discretization has somewhat been mis-understood or
under-appreciated — as practice of discretizing quantitative
attributes is not common in practical machine learning, due
to its apparent data loss perspective.

Consider the simple contrived univariate regression exam-
ple in Figure 2. The dependent variable Y is plotted on the y-
axis whereas the independent variable X is on x-axis. As can
be seen that there is a non-linear trend in the data as the extent
of the disease is more prevalent in early and late age group.
A linear model, will learn just one parameter  — which corre-
sponds to the slope of the plane. However, if we discretize the
independent variable, now our linear model is forced to learn
three different parameters, i.e., 81, 82, 83 — which can lead
to modelling this non-linear trend. We have demonstrated
this in regression settings (e.g., linear regression), but the
underlying idea is equally applicable to classification (e.g,
logistic regression) problems, that we address in this article.

Let us now consider another example, demonstrated in Fig-
ure 3. A linear model is trained on a synthetically generated 2-
D data, where one class (Class B) is surrounded by the second
class (Class A). As can be seen from Figure 3(a) — a linear
model does not have the power to capture the non-linear
boundary. In Figure 3(b), we discretize the data using 4-bin
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equal frequency discretization — followed by the application
of the same linear model. It is surprising to see that the result-
ing discretization has produced features in which data can
be separated by even linear models. Is this trend ubiquitous,
i.e, is discretization a panacea for linear models when han-
dling non-linear data? We believe the answer is No. We give
another example of a dataset in Figure 4, where linear model
with or without discretization is not very effective. We will
discuss soon, that on datasets such as those shown in Figure 4
— traditional feature engineering either manual or automated
will be more effective, which we discuss later in this section.
Now, based on above examples, let us state two important
observations, based on which we would like to motivate this
work:

o First, a linear classifier with discretization is not linear
with respect to the original data anymore.

« Contrary to the predominant perception of discretization
as an information loss process — an alternative perspec-
tive on discretization is that, a linear classifier with
discretization has reduced representation bias, which
consequently results in learning a model with much
reduced error. The motivation for writing this article is
to highlight this perspective.

The contributions of this work are two-fold:

o First, through a systematic evaluation on standard
datasets, we show that discretization can greatly reduce
the error of typical discriminative linear models such
as those optimizing Conditional Log-Likelihood (CLL),
Hinge Loss (HL) and Mean-Square-Error (MSE) objec-
tive functions. As we discussed earlier, this is contrary
to popular belief, and hence a significant finding.

« Second, we show that discretization based models have
much better convergence profiles, which lend them
faster training time, which is greatly desirable when
learning from large quantities of data.

Note that we do not claim that discretization is an alter-
native to feature engineering (or any other form of feature
transformation — note, all feature transformations, either lin-
ear or non-linear are subsumed in our use of the term Feature
Engineering). For instance, an example of a case where dis-
cretization is not very useful is demonstrated by the dataset
shown in Figure 4. It can be seen that for this dataset, either
manual feature engineering or automated feature engineering
capability of e.g., tree-based methods or of Artificial Neural
Networks will be much more effective. This is demonstrated
in Figure 5.

We must also state that this is not a study of comparative
analysis of different discretization schemes or that of differ-
ent discriminative linear model. There are several work that
already discuss these two topics in some detail [10], [11].
Finally, we conjecture, that discretization can be taken as a
complimentary technique to feature engineering. And, there
is a strong case to study the effectiveness of discretization
for even non-linear models (depicted as two dotted arrows
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Perceptron

(a) Perceptron on original data

Perceptron

(b) Perceptron trained on discretized data. 4-bin equal frequency dis-
cretization is used.

FIGURE 3. [Figure is seen best in color] lllustration of the effectiveness of a discretization. Perceptron is chosen as a linear model. It is a
model of not so practical importance but chosen here as a representative of linear models. Similar results are to be expected with
Logistic Regression and Support Vector Classifier. Equal frequency distribution is also chosen as representative. The results are
generalizable to other forms of discretization. It can be seen that on this non-linear data distribution, discretization has been quite

effective.
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(b) Perceptron trained on discretized data. 4-bin equal frequency dis-
cretization is used.
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FIGURE 4. Comparison of decision boundaries with and without discretization on a simple two-dimensional X-OR problem. It can be
seen that on this non-linear data distribution, discretization has not been very helpful.

in Figure 1), especially for Artificial Neural Networks, with
the emergence of deep learning [12].

The rest of this article is organized as follows. Some pre-
liminary background and terminology is given in Section II-
A. We discuss discretization in general in Section II-B. Lin-
ear classifiers based on Conditional Log-Likelihood (CLL)
Hinge Loss (HL) and Mean-square-error loss are discussed
in Sections II-D, II-E and II-F respectively. Optimization
strategies for training these linear classifiers are discussed
in Section II-H. An overview of related work is given in
Section III. Experimental results are given in Section IV. We
conclude in Section V with pointers to directions for future
work.

Il. BACKGROUND
A. TERMINOLOGY
In machine learning and data mining research, there exists
variation in the terminology when it comes to characterizing
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the nature of an attribute (or feature). For example, ‘continu-
ous vs. discrete’, ‘numeric vs. categorical’ and ‘quantitative
vs. qualitative’. We believe that the ‘quantitative vs. qualita-
tive’ distinction is best suited for our study in this article and
hence, this is used throughout the paper.

Qualitative attributes are the attributes on which arith-
metic operations can not be applied. The values of a quali-
tative attribute can be placed or categorized in distinct cate-
gories. Sometimes there exist a meaningful rank among these
categories, resulting in distinction of ordinal and nominal
among quantitative attributes. For example, Student Grade:
{HD, D, C, P, F} and Pool Depth: {Very Deep, Deep, Shal-
low} are ordinal attributes, while Marital Status: {Married,
Never-married, Divorced, Widow, Widower} and National-
ity: {Australian, American, British} are nominal attributes.
Quantitative attributes, on the hand, are the attributes on
which arithmetic operations can be applied. They can be
both discrete and continuous. For example, Number of Chil-
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FIGURE 5. Comparison of decision boundaries obtained with Decision Tree, with maximum depth of 6 (Left), Gradient Boosted Decision Trees, with
maximum depth of 2 (Middle), and Artificial Neural Network, with 1 hidden layer containing 30 nodes ran for 100 iterations maximum with Adam
optimizer (Right) on original data on a simple two-dimensional X-OR problem.

TABLE 1. List of symbols use in this work.

Notation Description
Number of qualitative attributes

K Number of quantitative attributes

n Total number of attributes, n = I + K

N Number of data points in D

D={xWM, . .. xM} Data consisting of IV objects

L={y®,. ..y Labels of data points in D

P(e) Actual probability of event (e)

P(e) Probability of event e

P(elg) Conditional probability of event e given
g

x = (X0, T1,...,Tn) An object (n-dimensional vector) and
x €D

Y Random variable associated with class
label

Y y € Y. Class label for object. Same as
o

C | Y|, Number of classes

X; Random variable associated with quali-
tative attribute ¢

x; Actual value that X ; takes.

| X5 (Applicable only to qualitative attributes)
Number of values of attribute X;

B LR parameter vector to be optimized

By.i LR parameter associated with quantita-
tive attribute ¢ for class y

By ki LR parameter associated with qualitative
attribute k for class y taking value j

By.0 LR intercept term for class y.
Regularization parameter

dren is a discrete-quantitative attribute (values determined by
counting), whereas Temperature is a continuous-quantitative
attribute (values determined by measuring).

We use the term feature, attribute and category inter-
changeably in the paper. The list of various symbols used in
this work is given in Table 1.

B. DISCRETIZATION

Discretization is a common process in machine learning that
is used to convert a quantitative attribute into a qualitative
attribute [5], [13]. The need for discretization originates from
the fact that some classifiers can only handle qualitative
attributes or operate better with qualitative attributes, e.g.,

VOLUME 8, 2020

naive Bayes or Bayesian Networks. The process of dis-
cretization involves finding cut-points within the range of the
quantitative attribute and to group values into intervals based
on these cut-points. This removes the ability to distinguish
between data points falling in the same interval. Therefore,
discretization entails information loss.

Discretization methods can be categorized into two cat-
egories: Supervised and Un-supervised. In the unsuper-
vised case, class information is not used during cut-
point determination process. Popular approaches are equal-
frequency and equal-width discretization. Equal-width dis-
cretization (EWD) divides the quantitative attribute’s range
(maximum value x/"** and minimum value xl.’"i”) into k equal-
width intervals where k is provided by the user. Each interval
will have a width of:

Equal-frequency discretization (EFD), on the other hand,
divides the sorted values of a quantitative attribute such that
each interval has approximately & number of data points.
Each interval will contain N /k data points. It is also important
that data points with identical value are placed in the same
interval, therefore, in practice, each interval will have slightly
different number of data points. Choosing EWD or EFD and
the number of bins is problem specific and can have a huge
impact on the overall performance of any model. Of course,
choosing a large k will result in less information loss, but can
result in over-fitting on small datasets.

Supervised discretization methods, on the other hand, uti-
lize the class information of the data point to better define
the cut-points. For example, state-of-the-art discretization
technique Entropy-Minimization Discretization (EMD) sorts
the quantitative attribute’s values and then finds the cut-point
such the information gain is maximized across the splits [14].
The technique is applied recursively on the successive splits
and the minimum-description-length (MDL) criterion is used
to determine when to stop splitting.
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Another distinction can be made among discretization
methods in terms of either lazy or eager nature of discretiza-
tion. The discretization algorithms discussed so far are eager
as the discretization happens at training time. Lazy methods
are computationally intensive as they delay discretization
until classification time. When a test instance has arrived, lazy
methods of discretization go through the entire data to find the
cut-point [15], [16].

C. TOWARDS QUALITATIVE FEATURES REPRESENTATION

Many models including Artificial Neural Networks can not
handle qualitative attributes, and a common strategy is to use
one-hot-encoding to convert qualitative features to quantita-
tive features (each taking either O or 1 values). The resulting
representation is storage inefficient, and also semantically
useless. The resulting binary quantitative attributes are then
fed to the model. With the emergence of Representation
Learning, and especially with the demonstrated success of
methods such as word2vec, Glove, etc. [17], [18], for pro-
viding dense and meaningful category (or feature) repre-
sentation — there is a widespread belief in community that
categorical or qualitative features, if represented properly, can
be extremely useful. Some preliminary studies of obtaining
categorical embeddings have already been shown to be quite
effective [19]-[21], however, a systematic study of convert-
ing quantitative attributes into qualitative attributes and then
learning to obtain an embedding for each category, which
later are to be fed to the model is yet to be seen. We argue, that
discretization will play an important role in any such study.

D. LINEAR CLASSIFIER - CLL
One of the best example of a linear model is Logistic Regres-
sion (LR). It is the workhorse of Statistics community and one
of the state of the art classifier. It optimizes the conditional
log-likelihood (CLL) as its objective function, which can be
defined as:

N

CLL(B) = Y _log (3" | x?), e))

=1

where
exp(By.0 + L x?)

Y (l))= ) )
U T S exp(Bn + L)

The term By o + ,ByT x® is expanded as:
O]

-+ ,3 nx(l),

where xo can be assumed to be 1 for all data points. Since
the objective function as defined in Equation 1, is linear in
x, it is a linear classifier. Equation 2 leads to a multi-class
softmax objective function. Since, a set of parameters are
learned for each class, we have made this distinction explicit
with subscript y in parameter notation, that is, fy ; denotes a
parameter for class y and attribute j.

Typically, an LR expects all input attributes to be quantita-
tive and minimizes the negative of the CLL known as negative

) I
,By,Ox(()) + ﬂy,lx + ,3» 2x( )
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log-likelihood (NLL), which is defined as:

N
-3 (o A1)
) C
— log (Z exp(Be.o + B! x‘”))) )

c=1

NLL(B) =

Note, in the following, for simplicity, we will drop the super-
script (/) notation.! Nonetheless, optimizing a standard LR
with NLL based either on Equation 3 or Equation 4 requires
substantial input manipulation, i.e., appending 1 to all data
points and then, converting qualitative attributes using one-
hot-encoding. For example, a qualitative attribute X; tak-
ing values {a, b, c}, will be converted into three attributes
Xj, Xj11, Xj12, each taking values either O or 1. An alternative
to manipulating the input is to modify the model and optimize
the following objective function instead:

NLL(B)

N K |1Xkl
Z_Z ﬁyO‘i‘Z,szxz"‘ZZﬂyk]le—x,
=1 k=1 j=1
K Xkl
10g Z eXp(ﬂc O+Z ﬂc zxz+2 Z ,30 k ]IXk—x,
k=1 j=1

&)

Note that the models expressed in Equation 3 and 5 are
exactly equivalent and will lead to the same results. The only
difference is that the model in Equation 3 requires converting
all qualitative attributes into quantitative ones using one-hot-
encoding, whereas the models in Equation 5 do not. Equa-
tion 5 can be simplified even further — for datasets with only
qualitative attributes (note, this is the case at our hand, as all
quantitative attributes will be converted into qualitative ones,
after discretization), and including only terms that are not
canceled out, we have:

NLL(B)

N K
= - Z </3y,0 + Z :3y,k,j1Xk:Xj,Y:y
=1 k=1
c K
- 10g <Z exp(ﬂc,o + Z ,Bc,k,jlxk=XJ~,Y=c))> .

c=1 k=1
(6)

1t should be noted that many software libraries for multi-class LR are
either based on implementing multi-class (softmax) objective function of
Equation 3 or they optimize a more simpler binary objective function of the
following form:

NLL(B) = % <log (1 +exp(Bo + ﬁTx(’>))) , @

and solve a one-versus-all classification problem. Note that in the case of
binary classifiers, there is only one set of parameters for the two classes as
oppose to C set of parameter that needed to be optimized for the softmax
case. At classification time, one needs to apply C different trained LR
classifiers and choose one with the highest probability.
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The typical process when using LR model is to convert
qualitative attributes into quantitative ones and optimize the
model of Equation 3. Instead, in this article, we argue that
one should convert quantitative attributes into qualitative ones
using discretization methods as discussed in Section II-B and
use the model of Equation 6.

It can be seen that with Equation 3, the number of param-
eters optimized are: (C — 1) + (C — 1)n. Whereas, with
Equation 6, (C — 1) + (C — 1) er‘l:l |X;| parameters are
optimized. Since the two models do not have equal number of
parameters, as well as the scale of each feature is different —
we claim that this will result in different training time, speed
and rate of convergence and of course, classifications.

E. LINEAR CLASSIFIER-HINGE LOSS

Hinge Loss (HL) is widely used as an alternative to CLL and
has been the basis of Support Vector Machines. A classifier
optimizing either a Hinge Loss objective function or its vari-

ant is a linear classifier and is known as the Support Vector
Classifier (SVC). Here we define L2-Loss HL as:

N
HL(B) = ) max(0, 1 — yp"x)". ™
=1
An alternative is Ll1-Loss HL which is equal to:
Z?’zl max(0, 1 — ypTx). In this work, we will focus only
on the L2-Loss. In practice, a penalty term is also added for
regularizing the objective function as:

N
1
HL(B) = S1IB7 BIP + 2. 3 (max(0, 1 —yp"x))?, (8)
=1
where X is the regularization parameter. We will discuss
the gradient and Hessian of this objective function later in
Section II-H.

F. LINEAR CLASSIFIER-MEAN-SQUARE-ERROR
Another linear classifier is based on optimizing the Mean-
Square-Error (MSE) objective function and is defined as:

1 N C _
MSE(B) = 5 3 ) (Pclx) =Pl (9

=1 c=1

where P(c | x) is given in Equation 2 and P(c|x) is the actual
probability of class ¢ given data instance x. This will be
a vector of size C with all zeros except at the location of
the label of x, where it will be 1 (assuming there are no
duplicate data points in the dataset). The objective function
of Equation 9 is similar to that optimized by artificial neural-
networks (ANN). However, in ANN, P(c|x) is defined in
terms of multiple layers. We can interpret Equation 9 as a
zero-layer ANN.

G. LINEAR CLASSIFIER-OTHER LOSSES

We have constrained ourselves to three loss functions as
described in previous sections — Negative Log-Likelihood,
Hinge Loss and Mean-Square-Error. It must be mentioned
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that many other loss functions exist, which leads to different
variants of linear models. For example, another variant of
Hinge Loss — Categorical Hinge Loss, is quite popular. There
are several alternative probabilistic losses to NLL, such as,
KL Divergence loss, poisson loss, sparse categorical cross-
entropy loss etc. Several other variants of mean-square-loss
exists as well, e.g., Huber loss, mean absolute percentage
error, mean squared log error, cosine similarity etc. As we
mentioned earlier, these different losses will lead to different
linear models. An evaluation of all these loss functions is
beyond the scope of this work. We have chosen three loss
functions as the representative of these various loss functions,
to study the effect of discretization on the performance of
linear models.

H. OPTIMIZATION

There is no closed form solution to optimizing the negative
log-likelihood, hinge loss and mean-square-error objective
function, and, therefore, one has to resort to iterative min-
imization procedures, which could be either first-order or
second-order, depending-upon if the Hessian is used for tun-
ing the step size. It is well-known that the quality of solution
found using gradient-based optimization methods is greatly
affected by the scaling of the axis, as well as the number of
dimensions. Therefore, the scale of the input features should
be taken rather seriously. We conjecture, that any decision
to discretize attributes will effect the quality of convergence,
quality of global optimum solution found, computational effi-
ciency and accuracy of the optimization results.

In iterative optimization the procedure generates a
sequence {8~ }ro | converging to an optimal solution. At every
iteration k, the following update is made: ,8"+1 = ,Bk + sk,
where s* is the search direction vector. The following equa-
tion plays the pivotal role as it holds the key to obtain s by
solving a system of linear equations:

V2 (BF)sk = —vr (), (10)

where f is the objective function that we are optimiz-
ing. There are two very important issues that must be
addressed when solving for search direction vector using
Equation 10 [22]. First, it can be infeasible to explicitly com-
pute and store the Hessian, especially on high-dimensional
data. Second, the solution obtained using Equation 10, does
not guarantee convergence. There are two main strategies
for addressing these issues, leading to distinction of first-
order and second-order optimization that we discuss in the
following two sections.

1) FIRST ORDER METHODS

Consider V2 £(B%) to be an identity matrix in Equation 10
— in this case, s = —Vf(B%). This leads to a family of
algorithms known as first-order methods such as Gradient
Descent, Coordinate Descent, etc. The step-size, however, has
to be tuned manually and plays a critical role in determining
the quality of the solution Also, the algorithm might take
much longer to converge, and could be slow. These issues
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are addressed by either mini-batch or stochastic variants of
these methods, which inadvertently leads to high-variance
problem. Several techniques to reduce the variance has been
proposed, which has to led to methods such as Adagrad [23],
RMSProp [24], Adam [25]. These methods have become
rather de-facto standard in typical machine learning and deep
learning rsearch. Note, the step-size tuning of these algo-
rithms is still an open research question, and can significantly
impact the optimization. Even though, these methods are
standard now in state of the art libraries such as Tensor Flow,
Torch, etc. — we have not used them in this work. Instead,
we rely on approximate second-order methods as discussed
in the following section.

2) SECOND ORDER METHODS

Instead of considering V2 f(8%) to be an identity matrix in
Equation 10, as discussed in the previous section, we can
aim not to compute V2 f(B%) directly, but approximate it
from the information present in V£ (8%) instead. This property
is useful for large scale problems where we cannot store
the Hessian matrix. This leads to approximate second-order
methods known as quasi-Newton algorithms, for example, L-
BFGS which, is considered to be the most efficient algorithm
(de-facto standard) for training LR.

Another possibility of solving Equation 10, might be to
use standard ‘direct algorithms’ for solving a system of
linear equations such as Gaussian elimination to solve for
sk, Several variants that are popular in this category for
optimizing LR related models is that of ‘Truncated Newton
method’” [26] — also known as TRON, conjugate gradient,
etc. [27].

3) OPTIMIZATION PROFILE

It should be noted that various optimization methods dis-
cussed so far, differ in terms of the speed-of-convergence,
cost-per-iteration, iterations-to-convergence, etc. For exam-
ple, first-order optimization method such as Coordinate
Descent updates one component of 8 at every iteration, so the
cost-per-iteration is very low, but iterations-to-convergence
will be very high. On the other hand, second-order meth-
ods such as quasi-Newton method, will have high cost-per-
iteration, but very low number of iterations-to-convergence.
It is also important to note that all optimization methods
are all affected by the scaling of the axis. Therefore, scaling
quantitative attributes or converting quantitative into quali-
tative attributes will effect the speed and the quality of the
convergence:

4) DERIVING GRADIENTS AND HESSIAN

In the following, we will define the gradient and Hessian
of the three objective functions — conditional log-likelihood,
hinge loss and mean square error. Note, we only define the

gradient and the Hessian for qualitative attributes here. For
softmax CLL, Vf(8*) and V2 £(B¥) can be written as:

N
D) S, oo,
0By i
9>NLL(B) )
BBy Zﬂ = PO PG o).

For Hinge-loss, the (sub-) gradients can be written as:

N/
aHaIZB(-ﬁ) = Bi+2C Y 0B x — Dy
i =1

where N’, are the instances for which y87x < 1 is true.
Similarly, for HL, the (sub-) Hessian can be written as:

92HL N
i = 1i=j +2C inxj
9B L

For MSE, one can write the gradients as:

IMSE(B)

Bk Gk Z Z(ly —c — P(c|x))Ag=c — P(k|x))x;,

=1 c=1

and the Hessian for MSE can be written as shown in
Equation 11, as shown at the bottom of the page.

5) ON THE CHOICE OF OPTIMIZATION

First-order methods with automated gradient computation
are new de-facto standards in emerging deep learning
research. Also, gradient calculation such as forward-mode
Auto-diff, reverse-mode Auto-diff, etc. are quite effective —so
even the gradient formula does not need to be specified. This
greatly simplifies model building process, but also increases
many number of hyper-parameters in the system, e.g., step
size, optimization method, gradient computation method,
stopping criterion, etc. In this work, we have constrained our-
selves to approximate second order-methods such as L-BFGS
and Tron, to keep the optimization free from any hyper-
parameter tuning, and to focus entirely on the discretization
and input manipulation part.

32MSE(8) a

Bj.x;. k OBy xy K =

== Z[ (_1)(1k/:c - P(k’|x))P(c|x)1]:J/

+ (y=c — P(cl))(=DApr=x — P(k'|x)P(k|x)1j=y P(c|x)

+ ( lyzc
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lIl. RELATED WORK

Discretization is often motivated by a need to adapt data
for a model that cannot handle quantitative attributes. In
Statistics and many of its related and applied branches (such
as epidemiology, medical research and consumer marketing),
it goes by names of ‘dichotomization’ and ‘categorization’
(where the two techniques differ as the former splits the
measurement scale into two while the later can have more
than two categories) — and has been examined in many stud-
ies [28]-[30]. However, in most of these studies a majority
opinion is against the use of dichotomization — and for catego-
rization, it is advised to be used with caution. The main reason
cited for this is that dichotomization and categorization lead
to information loss since the variability among the members
of the group is subsumed. For example, [31] write:

...Firstly, much information is lost, so the sta-
tistical power to detect a relation between vari-
able and patient outcome is reduced ...and con-
siderable variability may be subsumed within each
group. Individuals close to but on opposite sides of
cut-point are characterized as being very different
rather than very similar ...

In practical machine learning, the common practice is to
discretize an attribute only if necessary (i.e., if a model
expects categorical attributes). An exception is for Bayesian
classifiers, where it is common practice to discretize numeric
attributes [32].

The ambivalence towards discretization is understandable.
Obviously, the quality (and sometime quantity) of data is
the key to training accurate models and hence getting good
results. In many cases, the data are the result of costly
and time-consuming efforts (for example in breast cancer
research where there are several stake-holders involved just to
obtain a few attributes of the data). Losing some of the data (or
more precisely, losing some distinction among the instances)
due to discretization should be undesirable. However, in exist-
ing research, a number of motivations for discretization have
been put forward:

o Discretization can lead to simplification of statistical
analysis. For example, if a quantitative attribute is split
on the median, then one can compare the two groups
based on ¢, X2 or some other test to estimate the differ-
ence between the two groups. This may ease interpreta-
tion and presentation of results [31].

o If there is error in the measurement scale, discretization
can improve the performance of the model by reducing
the contamination [33]-[36].

o In many domains there exist pre-defined (or standard)
thresholds to convert a quantitative to a qualitative
scale. In these cases, a discretized attribute might bet-
ter represent the task at hand as it will be more inter-
pretable or have distinct significance. For example,
in medical research doctors might better interpret blood-
pressure as high and low rather than on a numeric
scale.
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o A discretized attribute might be better utilized than
the quantitative attribute by the learning system. For
example, consider a classifier that relies on estimation
of conditional probabilities such as P(x;|y). If X; is
quantitative, x; can take infinite many values and if the
number of training samples are small, reliable estimation
of P(x;|y) from the data is not possible. A common
approach is to impose a parametric model to estimate
the value of P(x;|y) based on this model in which case
the accuracy will depend on the appropriateness of the
parametric model selected. Discretization can obviate
this problem. By converting a quantitative attribute X;
into a qualitative one X;*, the probabilities will take the
form of P(x} | y) which may be reliably estimated from
the data as there will be many x; values falling into the
same interval [32].

o The final reason for discretization has to do with over-
coming a model’s assumptions. It might be the case that
discretization help avoid some strong assumption that
the learner makes about the data. If those assumptions
are correct, discretization will have a negative impact,
but if those assumptions are false, discretization may
lead to better results [37]. It is this final motivation that
we examine herein.

The effect of discretization on various classification algo-
rithms such as naive Bayes, Support Vector Machines and
Random Forest is discussed in [38] on many biomedical
datasets, where it is shown that discretization can greatly
improve the performance of the learning algorithm. The
role of discretization as feature selection technique is also
explored. On various contrived datasets, [39] studied the
effect of discretization on the precision and recall of various
classification methods.

The effectiveness of discretization for naive Bayes classi-
fier is relatively well studied [4], [15], [32]. Reference [4]
conducted an empirical study of naive Bayes with four well-
known discretization methods and found that all the dis-
cretization methods result in significantly reducing error rel-
ative to a naive Bayes that assumes a Gaussian distribution
for the continuous variables. Reference [15] attributes this
to the perfect aggregation property of Dirichlet distributions.
In naive Bayes settings, a discretized continuous distribution
is assumed to have a categorical distribution with Dirichlet
priors. The perfect aggregation property of Dirichlet implies
that we can learn the class-conditional probability of the dis-
cretized interval with arbitrary accuracy. It is also shown that
there exists a partition independence assumption, by virtue of
that, Dirichlet parameters corresponding to a certain interval
depend only on the area below the curve of the probability
distribution function, but is independent of the shape of the
curve in that interval.

IV. EXPERIMENTS

In this section, we compare the performance of LR with
discretized LR (denoted as LRd) on various datasets from
the UCI repository [40]. The details of datasets used in this
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(a) LR vs. LRY (CLL)

(b) LR vs. LRY (HL)
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FIGURE 6. [Figure is best seen in colour] Comparative scatter of 0-1 Loss results for LR and LRY - (Left) CLL, (Middle) HL, (Right) MSE. LR is on the
X-axis. LRY is on the Y-axis. For points below the diagonal line shaded in yellow, LR wins. Results on Big datasets are shown in red stars (*),
whereas results on Little datasets are shown in blue circles (o). Note, both axes are on log-scale.

work are given in Appendix B. For LRY, different supervised
and un-supervised discretization techniques were considered
(such as equal-width, equal-frequency, entropy-based, etc.).
As we discussed earlier, this is not a comparative study on
the relative efficacies of various discretization techniques,
we only report LRY results with supervised entropy-based dis-
cretization of [41], which we found gives better results than
other discretization methods such as equal-frequency, equal-
width, etc. We also considered both quasi-Newton method
— L-BFGS and Truncated Newton method — Tron. The two
methods provide similar results, and hence we only report
Tron results in this section.

In the following, LR means a logistic regression classifier
trained with original data (i.e., with both qualitative and
quantitative attributes). LR means a logistic regression clas-
sifier trained on discretized data (i.e., quantitative attributes
are converted into qualitative ones). As discussed, we will
compare three variants of LR and LRY based on different
loss functions that they optimize, namely Conditional Log-
Likelihood, Hinge Loss and Mean-square-error.

Each algorithm is tested on each dataset using either 5 or
10 rounds of 2-fold cross validation.

During the presentation of results, we split our datasets into
two categories — Big and Little. The Big category comprises of
datasets with more than 100, 000 instances and the Little cat-
egory comprises of the remaining datasets with < 100, 000
instances.

We compare four different metrics: 0-1 Loss, RMSE, Bias
and Variance. We also compare training-time and rate of con-
vergence. As discussed in Section I, the reason for performing
bias-variance estimation is that it provides insights into how
the learning algorithm might be expected to perform with
varying amounts of data. We expect low variance algorithms
to have relatively low error for small data and low bias
algorithms to have relatively low error for large data [42].
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There are a number of different bias-variance decomposition
definitions. In this research, we use the bias and variance
definitions of [43] together with the repeated cross-validation
bias-variance estimation method proposed by [44].2

We report Win-Draw-Loss (W-D-L) results when compar-
ing the 0-1 Loss, RMSE, bias and variance of two models.
A two-tail binomial sign test is used to determine the sig-
nificance of the results. Results are considered significant if
p < 0.05 and shown in bold.

For hinge-loss, a dataset with more than two classes was
transformed into a binary dataset. Data points belonging to
the majority class were assigned to class A and the remaining
data points were assigned to class B.

A. COMPARISON OF THE ACCURACY OF LR’ AND LR

In this section, we compare the accuracy of LR and
LRY in terms of the 0-1 Loss and RMSE on 52 datasets
in Figures 6 and 7. It can be seen that LRY with all three
objective functions results in much better accuracy than LR —
almost all the points are below the diagonal line. The results
on Big datasets are shown in red stars (*), whereas results
on Little datasets are shown in blue dots (0). It can be seen
that, on almost all Big datasets, LRY leads to better accuracy
(almost all red-stars are below the diagonal line), which is
extremely encouraging. It can also be seen that some of
the differences are substantial (note the axis are on the log-

2 Reference [43] define bias and variance as follows:

biasZ = 1 i (i’(y\x) — P(y| x))2
S =3 ,

y=1

and
1 C
Arie . ,E : )2
variance = 3 1 1P() [x)"].
y=
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FIGURE 7. [Figure is best seen in colour] Comparative scatter of RMSE results for LR and LRY - (Left) CLL, (Middle) HL, (Right) MSE. LR is on the

X-axis. LRY is on the Y-axis. For points below the diagonal line shaded in yellow, LR wins. Results on Big datasets are shown in red stars (*),

whereas results on Little datasets are shown in blue circles (o). Note, both axes are on log-scale.
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FIGURE 8. [Figure is best seen in colour] Comparative scatter of Bias results for LR and LR - (Left) CLL, (Middle) HL, (Right) MSE. LR is on the X-axis.
LRY is on the Y-axis. For points below the diagonal line shaded in yellow, LR? wins. Note, both axes are on log-scale.

scale) — this shows the effectiveness of discretization on LR
especially for big datasets.

A comparison of the win-draw-loss between the two mod-
els is given in Table 2, which provides the similar information
as shown in Figures 6 and 7, albeit in different way. It can
be seen that on big datasets, LRY wins on all except on 2
datasets — very promising result. This proves our hypothesis
that on big datasets, discretization leads to low-bias non-
linear classifier resulting in far superior results than LR with
no discretization. On small datasets, discretization is signifi-
cantly effective for Hinge-loss and non-significantly effective
for MSE. With CLL (on small datasets), LRY and LR leads to
similar performances with 13 wins and 14 losses for 0-1 Loss
and 12 wins and 15 losses for RMSE. However, one should
take into account that the scale of LRY wins is much higher
than that of LR. This can be seen from the spread of blue-dots
in the left-most plots of Figures 6 and 7.
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TABLE 2. Win-Draw-Loss comparison of 0-1 Loss and RMSE of LR9 vs.
LR with CLL, MSE and HL. Significant results are shown

in bold.
LR® vs. LR LR® vs. LR LR* vs. LR
CLL MSE HL
W-D-L P W-D-L 14 W-D-L p
All Datasets
0-1 Loss 35/1/16  0.011  39/1/12 <0.001 41/1/10 < 0.001
RMSE 34/1/7 0016  39/1/12 <0.001 47/1/4 <0.001
Big Datasets
0-1 Loss 22/0/2  <0.001 22/0/2 <0.001 23/0/1 <0.001
RMSE 22/0/2  <0.001 22/0/2 <0.001 22/0/2 <0.001
Small Datasets
0-1 Loss 13/1/14  1.000  17/1/10  0.247 18/1/9  0.087
RMSE 12/1/15 0701 17/1/10 0247  25/1/2 < 0.001
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FIGURE 9. [Figure is best seen in colour] Comparative scatter of Variance results for LR and LR9 - (Left) CLL, (Middle) HL, (Right) MSE. LR is on the
X-axis. LRY is on the Y-axis. For points above the diagonal line shaded in yellow, LR¢ loses. Note, both axes are on log-scale.
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FIGURE 10. [Figure is best seen in colour] Comparison of the rate of convergence of LR and LRY with NLL on six sample datasets. The X-axis is

on log scale.

B. BIAS-VARIANCE ANALYSIS OF LR? AND LR

Let us compare the bias and variance of LR and LRY. We plot
the scatter plots of the bias of LR and LRY with three
objective functions in Figure 8 and the scatter plots of the
variance in Figure 9. From the scatter plots, it can be seen
that LRY leads to a low-bias and high-variance model. One
can see that majority of points lies below the diagonal line
in Figure 8 — demonstrating that LR is lower biased than
LR. Whereas, majority of points lies above the diagonal
line in Figure 9 — demonstrating that LR has much higher
variance than LR.

Note that we present a bias-variance analysis on only Little
category of datasets. The reason is that results were obtained
in a heterogeneous environment (cluster computing). Of
course, to compute the bias and variance, one needs to run
the algorithms multiple time resulting in many iterations.
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For speeding-up the algorithm, one can actually run these
iterations in parallel on different computers in the cluster. The
downside of this (many-fold) speed-up is that one can not
compute the bias and variance without managing the inter-
node communication. Therefore, we computed the bias and
variance results on a desktop computer with limited memory.
Nonetheless, results confirms our hypothesis of LR¢ being
low-biased as it has more parameters than LR. This low-
bias translated into better performance on Big datasets as
discussed in the previous section.

C. COMPARISON OF THE CONVERGENCE

CURVES OF LR AND LR

As both LRY and LR are trained via iterative optimiza-
tion algorithms, they produce a sequence of values during
the optimization process — i.e., of their objective function
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which (should ideally) decrease with successive iterations
until convergence. A technique that leads to the global min-
imum faster (steeper curve) and in fewer iterations (shorter
curve) is desirable. Note that both LR and LRY are differ-
ent models (due to their parameterizations) and, therefore,
the optimization space for the two problems is also very
different. We leave it to future work, to compare the opti-
mization space of the two models. In the following, let us
compare the convergences of LR and LRY on some sample
datasets. A similar trend was observed on all datasets, here we
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report results on six representative datasets only, due to space
constraints.

A comparison of the variation in negative of conditional-
log-likelihood (NLL) objective function for LR and LRY is
shown in Figure 10. It can be seen that LRY has steeper
curve — that is, it asymptotes to its global minimum much
quickly. It is also important to see that LRY leads to much
lower NLL. Better accuracy of LRY is the result of this much
lower NLL. Figures 11 and 12 shows the variation in HL and
MSE, respectively. A similar trend to NLL can be see, where
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FIGURE 13. [Figure is best seen in colour] Comparative scatter of Training-time results for LR and LRY - (Left) CLL, (Middle) HL, (Right) MSE. LR is on
the X-axis. LRY is on the Y-axis. For points below the diagonal line shaded in yellow, LR wins. Results on Big datasets are shown in red stars (*),

whereas results on Little datasets are shown in blue circles (o). Note, both axes are on log-scale.
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FIGURE 14. [Figure is best seen in colour] Comparative scatter of Classification-time results for LR and LRY - (Left) CLL, (Middle) HL, (Right) MSE.
LR is on the X-axis. LRY is on the Y-axis. For points above the diagonal line shaded in yellow, LRY loses. Results on Big datasets are shown in red
stars (*), whereas results on Little datasets are shown in blue circles (o). Note, both axes are on log-scale.

LRY leads to a better value of the objective function while
converging more rapidly.

We argue that that this is extremely important and signif-
icant result. Not only discretization has led to a non-linear
model, but in the transformed space where features can only
take binary values, is somehow more easy for optimization
solver to traverse and find the global minima in a much
speedy manner.

D. COMPARISON OF THE LEARNING AND
CLASSIFICATION TIME LR’ AND LR

In this section, we compare the training and classification
time of LR and LRY. It can be seen from Figure 13 that
LRY trained with CLL and MSE is slightly faster than LR
(majority of points below the diagonal line), whereas LR and
LR with hinge loss leads to a similar training-time profile.
We already have seen the superior classification performance
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of LRY. These training-time results are extremely encourag-
ing as they suggest that LRY can result in much better clas-
sification accuracy without compromising the computational
performance. We have reported the results only on a subset
of Little and Big datasets. This is because, the results were
obtained by running the jobs on the local-desktop computer
(i.e., a controlled set-up), rather than in a cluster-computing
environment. The scatter plots of classification time results
for LR and LRY with three objective functions are presented
in Figure 14. It can be seen that LR has slightly better classi-
fication time than LRY.

V. CONCLUSION AND FUTURE WORKS

In this article, we studied the role of discretization for linear
classifiers in machine learning. We discussed the typical
use-case of discretization in typical machine learning mod-
els, i.e., when the model requires only qualitative attributes.
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TABLE 3. Details of datasets used in this article.

Domain Case Qualitative Quantitative Classes Missing Source
Values
HIGGS 11000000 O 28 2 N UCI
HEPMASS 10500000 O 27 2 N ucCI
kddcup 5209460 7 34 40 N ucI
SUSY 5000000 O 18 2 N ucCI
‘Watch_accelerometer 3540962 0 3 7 N UCI
Watch_gyroscope 3205431 O 3 7 N ucCl
Phone_gyroscope(40%) 2786526 0O 3 7 N ucCl
Phone_accelerometer(40%) 2612495 0 3 7 N ucClt
satellites(25%) 2176290 0 138 24 Y ucI
PAMAP2(25%) 962626 1 53 19 N ucI
MITFaceSetC 839330 0 361 2 N Non-UCI
(Libsvm)
covertype 581012 44 10 7 N ucCl
MITFaceSetB 489410 0 361 2 N Non-UCI
(Libsvm)
MITFaceSetA 474101 0 361 2 N Non-UCI
(Libsvm)
USPESExtended 341462 0 675 2 N Non-UCI
(Libsvm)
census-income(KDD) 299285 32 9 2 N ucI
SkinSegmentation 245057 0 3 2 N UucCl
WearableComputing 165632 2 15 5 N UCI
localization 164860 2 3 11 N ucI
TwitterAbsoluteSigma500 140607 0 76 2 N ucCl
MiniBooNE_PID 130065 0 50 2 N UCI
TVNewsChannelCommercial 129685 0 4124 2 N UCI
Diabetes 101766 52 9 3 Y ucI
waveform 100000 0 20 3 N ucI
shuttle 58000 0 9 7 N ucCI
adult 48842 8 6 2 N ucCI
letter-recog 20000 0 16 24 N ucCI
magic 19020 0 10 2 N UcCI
sign 12546 0 8 3 N UCI
pendigits 10992 0 16 10 N UcCI
pioneer 9150 7 29 57 N UcCI
satellite 6435 0 35 6 N UCI
optdigits 5620 0 64 10 N UcCI
page-blocks 5473 0 10 5 N ucCl
wall-following 5456 0 24 4 N UCI
phoneme 5438 0 7 50 N ucCl
waveform-5000 5000 0 40 3 N ucCl
spambase 4601 0 57 2 N ucCI
abalone 4177 0 8 3 N ucCl
segment 2310 0 19 7 N ucCl
mfeat-mor 2000 2 3 10 N ucI
volcanoes 1520 0 3 4 N ucCl
yeast 1484 1 7 10 N UCI
vowel 990 3 10 11 N ucI
vowel-context 990 1 10 11 N UcCl
vehicle 946 0 18 4 N UCI
anneal 798 32 6 3 N ucCl
pid 768 0 8 2 N ucCI
syncon 600 0 60 6 N ucCl
musk1 476 0 166 2 N ucCl
new-thyroid 215 0 5 3 N ucCl
wine 178 0 13 3 N ucI

We discussed that there exists significant aversion towards
discretization as it loses information. We argued that the
role of discretization is more than a mere pre-processing
technique. We argued that discretization — in spite of losing
information, can help model non-linear relationships in the
data and, therefore, can help reduce the representation bias of
a learner that uses linear models. A linear classifier trained on
discretized data is not linear any more which has the potential
to help in modelling non-linear decision boundaries which
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otherwise, would require the use of non-linear models such
as decision trees, multi-layer networks, etc.

We showed that discretization can greatly help improve the
performance of logistic regression and other linear classifiers
optimizing Hinge Loss and Mean-square-error especially on
large datasets. We compared the performance of LR trained
with both qualitative and quantitative attributes with LR
trained with qualitative attributes only, where quantitative
attributes were discretized first. Our empirical analysis on
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52 datasets showed that LR with discretization led to a low-
bias model and, therefore, it resulted in significantly better
0-1 Loss and RMSE performance on large datasets. Quite
surprisingly, it also reduced the training time and had more
desirable convergence.

With faster training, better convergence and low-bias we
believe that discretization is worth consideration in any con-
text where linear classifiers are learned from quantitative
data.

There are several research questions that have arisen out of
this research, that we would like to pursue:

« Given the effectiveness of discretization for linear mod-
els, it is worth analysing discretization for non-linear
models as well. This is motivated from faster conver-
gence behaviour of models trained on discretized data.
We conjecture that the optimization space span by dis-
cretized data can be useful for even non-linear models
such as deep Artificial Neural Networks, which notori-
ously suffer greatly due to the existence of saddle points.

« We are interested to explore the properties of the opti-
mization space span by discretized data and why it leads
to better convergence profile than the original data.

« Inour preliminary results, use of first-order optimization
methods such as Adam and Adagrad, led to similar
results to that of Tron and L-BFGS. However, a system-
atic study of these optimization methods is needed.

o A systematic analysis of other loss functions would
be beneficial as well, to demonstrate that the trend is
general across other loss functions.

« Investigating embeddings for quantitative features pro-
duced as a result of discretization has the potential
to produce much better results than the use of 1-hot-
encoding that is currently used in this work. We see this
as an exciting new direction of this work.

Vi. CODE
The details of the software library fastLC is given in
Appendix A. The library along with running instructions can
be downloaded from Github: https://github.com/nayyarzaidi/
fastLC.git.

APPENDIX A

fastLC-LR LIBRARY

The library can handle both quantitative and qualitative
attributes. There is no need to do a one-hot-encoding for
qualitative attributes, as the LR model built can actually
handle the data types.

One can execute the code in the library by issuing the
following command for LR with CLL: > java -cp /
fastLC.jar fastLC.BVDcrossvalx—-t/dataset.
arff -1 2 -x 2 -W LR.LRClassifier —--V -S
“overparamLR” -0 “Tron”.

For LR with HL, use: > java -cp /fastLC. jar
fastLC.BVDcrossvalx -t /dataset. arff -i
2 -x 2 -W SvVC.SVCClassifier - -V —-S“over
paramSVvC” -0 “Tron”.
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For LR with MSE, use following command: >
-cp /fastLC.jar fastLC.BVDcrossvalx -t /
dataset.arff -i 2 -x 2 -W ANN.ANNClass
ifier - -V -S “overparamANN” -0 “Tron”,

Note, -i 2 —-x 2 specifies how many rounds of how
many iterations, —V is the verbosity flag, whereas, —O spec-
ifies the solver. One can choose from the following list:
{GD, QN, CG, Tron, SGD} for gradient descent, conjugate
gradient, truncated Newton and stochastic gradient descent.

The default implementations learns parameters for all (C)
classes. One can force the library to run weights only for C —1
classes. This can be done by calling -S “vanillalLR”,-S
“vanillaSvC” and -S “vanillaMSE” for LR with
CLL, HL and MSE objective functions respectively.

For computing results on discretized data, either pre dis-
cretize the dataset, or use the —D flag to convert quantitative
attributes into qualitative one by the learner.

APPENDIX B
DETAILS OF DATASETS
Details of datasets used in this article are shown in Table 3.
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