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ABSTRACT Automatic modulation classification (AMC) is an important technology in military signal
reconnaissance and civilian communications such as cognitive radios. Most of the existing works focused
on the AMC in additional white Gaussian noise channels, but the AMC in time-varying wireless channels
is more practical and challenging. In this article, we investigate the AMC in time-varying channels by using
the deep learning method for high classification accuracy. Specifically, we take the modulation constellation
diagram (CD) as the key feature and propose a slotted constellation diagram (slotted-CD) scheme in order
to extract the feature of the time-evolution of the CD due to channel variation. We then develop an advanced
neural network for modulation classification, where the output sub-images from the slotted-CD feature
extractor are first processed separately by a number of parallel convolutional neural networks and then further
processed by a recurrent neural network for exploring their time relationship. Experimental results show that
the proposed AMC scheme achieves higher classification accuracy in both slow and fast fading channels
when compared with the traditional deep learning based AMC schemes. Such performance improvement
can be clearly illustrated by visualizing the outputs of the convolutional layers of the classifier. We also
show that visualization can help optimize the parameters of the AMC neural networks.

INDEX TERMS Automatic modulation classification, constellation diagram, time-varying, convolutional
neural network, bidirectional long short-term memory network.

I. INTRODUCTION
A. MOTIVATION AND BACKGROUND
With the explosive development of wireless communica-
tion technology and its ubiquitous applications, automatic
modulation classification (AMC) has become an essential
technique in both military and civilian fields [1]–[3]. For
example, in military electronic countermeasures, in order
to monitor enemy information, it is necessary to identify
the modulation format and then demodulate the signal and
decrypt the message. In a cognitive radio system, AMC can
assist the secondary user to detect the existence of the primary
user, especially at a low signal-to-noise ratio (SNR) [4], [5].
In addition, if the secondary user is able to recognize the
modulation format of the primary user, it can then select
a suitable modulation format for transmission to reduce its
interference to the primary user [5], [6].
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In literature, there are two main AMC methods:
likelihood-based method and feature-based method [2]. The
former treats AMC as a hypothesis testing problem based on
the likelihood function with the received signal, and aims to
maximize the likelihood function among multiple hypotheses
[7]–[9]. However, it requires some prior information that may
not always be available in practical applications, for example,
the channel state information of a time-varying channel [10].
The latter is a statistical pattern recognition method and less
subject to prior information. It usually consists of a feature
extractor and a classifier. For the feature extractor, some
specific features from the received signal are extracted, such
as instantaneous amplitude, phase and frequency [11]–[13],
higher order cumulants [14], [15], cyclostationary features
such as the spectral correlation function [16]–[18], short-time
Fourier transform [19]–[21], and constellation diagram (CD)
[22], [23], etc. For the classifier, the extracted feature is
then classified into different modulation formats. Traditional
classifiers relied on artificial decisions, such as decision
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trees [14], [24]. Recently, compressed sensing [25], [26] and
classical machine learning techniques such as support vector
machine (SVM) [27]–[30], clustering [29], and K-nearest
neighbor (KNN) [31], have been applied to the design of
classifier.

More recently, because of the superior capability of big
data processing and classification, deep learning has been
successfully applied in image classification, machine trans-
lation, and natural language processing [32]–[37], etc. Deep
learning has also been considered in the classifier design
of AMC with different network structures such as deep
neural network (DNN) [15], [38], recurrent neural network
(RNN) [39], and convolutional neural network (CNN) [40].
Specifically, because of the advantages of CNN in processing
images and according to the fact that different modulation for-
mats have different characteristics that can be demonstrated
into images, researchers have proposed different CNN-based
AMC schemes by taking different features, which include
baseband signal waveform such as the sampled in-phase
and quadrature (IQ) signals [40]–[42], eye diagram [43],
Choi-Williams distribution [44], cyclic spectrum diagram
[16], and CD related images such as the enhanced color image
generated by using constellation density [23] or the one by
masking the constellation density matrix with a proper filter
[45], etc. Most of the above works assumed the additional
white Gaussian noise (AWGN) or time-invariant channel
model. However, in practical wireless systems, the propaga-
tion channel between the two communication sides varies due
to the relative motion between them and/or the changes in the
environment. Thus, the investigation of AMC in time-varying
fading channels is more meaningful and challenging.

B. CONTRIBUTION
In this article, we investigate the AMC by using the deep
learning method. In contrast to the previous designs which
commonly assumed the AWGN channel, we particularly
aim at the AMC design for time-varying channels. Our
contributions can be summarized as follows.
• Feature Extraction: We propose a new feature extraction
scheme for the AMC in time-varying channels, which
is referred to as slotted constellation diagram (slotted-
CD). In particular, the entire sampling time window is
divided into consecutive time slots, and all the sam-
pled IQ signals are divided into consecutive segments
accordingly. The IQ signals are converted to a number
of two dimensional (2D) gray images. By doing so,
not only the trajectory of the rotation and scaling of
the CD within each time slot, but also the evolution
among the consecutive images can be utilized for better
classification.

• Design of Neural Network: We propose an advanced
classifier for the AMC in time-varying channels. In con-
trast to the conventional deep learning based classifiers,
which normally consist of a single CNN or a fully
connected DNN, the proposed classifier is a combined
network of three basic neural networks. The first part

employs several parallel CNNs and seamlessly connects
to the slotted-CD extractor, where each sub-image cor-
responding to a time slot is processed by a parallel
CNN. The second part is a bidirectional long short-term
memory network (BLSTM) which processes the outputs
of the parallel CNNs in the order of time slots, so as
to exploit the time relationship among them for better
classification accuracy. The last part is a DNN consisting
of three fully connected dense layers for outputting the
final result. It is due to the three-part structure that the
proposed classifier can make full use of the output of
the slotted-CD extractor and achieve high classification
accuracy.

• Experiments and Visualization: We provide various
experimental results to verify the effectiveness of the
proposed AMC scheme. For example, we show that the
proposed AMC scheme can achieve a high classifica-
tion accuracy rate of almost 100% among 8 modulation
formats in a slow fading channel with a moving speed
region of 1.5m/s ∼ 4.5m/s and a 97% accuracy rate in
a fast fading channel with a speed region of 22.5m/s ∼
45m/s, respectively. Furthermore, we visualize the pro-
posed neural networks. The visualization results verify
the performance improvement of the proposed AMC
scheme and also provide a means in optimizing the
parameters of the AMC neural networks.

The rest of this article is organized as follows. Section II
introduces the system model. Section III introduces the basic
scheme for extracting the feature of CD and then proposes
the slotted-CD scheme for time-varying channels. Section IV
proposes a new classifier for the AMC in time-varying chan-
nels. Section V and VI provide experimental results and visu-
alization results, respectively. Finally, conclusions are drawn
in Section VII.

II. SYSTEM MODEL
Consider a communication system with AMC in Fig. 1.
It is assumed that eight modulation formats, including three
phase-shift keying (PSK) formats and five quadrature ampli-
tude modulation (QAM) formats, are possibly taken at the
transmitter and need to be classified at the receiver, which
are binary PSK (BPSK), 4PSK, 8PSK, 16QAM, 32QAM,
64QAM, 128QAM and 256QAM. Similar to that in [23], it is
assumed that the receiver has perfect synchronizationwith the
transmitter. According to [46], the relationship between the
transmitted symbol, x[n], and the received baseband sampled
signal, y[n], at time instant n, can be represented in the
following discrete-time baseband equivalent model

y[n] = h[n] · x[n]+ w[n], (1)

where w[n] denotes the AWGN signal and h[n] denotes the
time-varying channel coefficient at time n. Usually, h[n] can
be described by some statistical models such as Clarke’s
model [46], where it is regarded as a stationary random
process with a Doppler spectrum. To characterize how the
channel varies over time, the coherence time Tc is defined
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FIGURE 1. The system diagram for the AMC in time-varying wireless channels.

as the interval over which h[n] is highly correlated and is
inversely proportional to the Doppler spread. For example,
according to [47], if Tc is defined as the interval over which
the time correlation of h[n] is above 0.5, then it can be
approximated as

Tc ≈
9

16π fm
, (2)

where fm = v/λ is the maximum Doppler shift with v
denoting the speed and λ denoting the carrier wave length.
As can be seen from (1), besides the noise effect, the chan-

nel fading h[n] makes the modulation formats more challeng-
ing to recognize. As shown in Fig. 1, the AMC at the receiver
normally consists of two steps. The first step is mainly to
pre-process the received signals by extracting their features
so that more suitable early-stage data can be obtained for
the convenience of subsequent signal processing. With the
extracted features, the second step is then to classify them
through a neural network and obtain the classification deci-
sion. In the following two sections, we elaborate our design
in these two steps, respectively.

III. FEATURE EXTRACTION OF CD
A. BASIC IDEA
For digital modulation, as the baseband signal is modulated
in both the amplitude and phase of the carrier, different
modulation formats have distinct CDs.More interestingly, for
a typical time-varying fading channel, the CD changes with
the channel coefficient in terms of rotation and scaling, which
could be used for the classification of modulation formats.

With this motivation, the next question is how to efficiently
generate a 2D image representing the CD for the classifier
with the original raw baseband sampled signals. The main
difficulties are two fold. First, the complex plane containing
the CD has infinite resolution. However, the images sent to
the classifier should have limited resolution, and from the
perspective of computational complexity: the lower resolu-
tion, the better. Second, because of the channel variation,
there will be the rotation and scaling trajectory in the CD.
How to extract the trajectory, and more importantly, extract
the evolution of the trajectory when generating the images is
another difficulty.

To deal with these difficulties, we propose to complete the
task in two levels and introduce them in the following two
subsections, respectively. In Section III-B, we introduce a
basic method to convert IQ sampled signals into a 2D gray
image. In Section III-C, considering the time variation effect,
we propose the slotted-CD scheme by dividing the sampling
window into multiple time slots and generating a series of 2D
sub-images over these slots.

B. GENERATING A GRAY IMAGE FOR CD
For ease of presentation, take the transmission of 16QAM in
an AWGN channel with bit SNR = 10dB as an example.

FIGURE 2. Conversion from a complex plane containing the IQ sampled
signal points to a gray image. (a) The original complex plane containing
the baseband IQ sampled signal points; (b) The gray image generated by
first dividing the complex plane into cells and mapping the number of
sampled signal points in each cell to a gray value.

The sampled baseband IQ signals are first converted into
pixel points and are drawn in the complex plane as shown
in Fig. 2(a). In theory, the complex plane has infinite res-
olution. However, the output image should have a limited
resolution. Thus, we equally split the complex plane contain-
ing the CD into R × R cells corresponding to a predefined
resolution level. Then, the number of dots falling into each
cell is counted and mapped to a gray value of the associated
pixel for that cell, as shown in Fig. 2(b).

However, in the time-varying fading channel, what can be
observed in the complex plane at the receiver is much differ-
ent from that in the AWGN channel. Take the transmission
of 16QAM in a time-varying channel as an example, where
the channel follows the Clark’s model with a normalized
channel power. Assume a carrier frequency fc = 2GHz,
a bandwidth W = 100kHz, SNR = 18dB, and a moving
speed v = 1.5m/s. By ignoring the effect of pulse shaping
and assuming that the sampling rate is equal to the symbol
rate and the bandwidth for simplicity, there are 36000 IQ
sampled signal points in a sampling time window of 360ms,
as shown in Fig. 3(a).

It can be clearly seen that besides the noise influence,
the CD is rotated and scaled with the channel variation.
A proper boundary should be determined in the complex
plane to convert it into a gray image for AMC. In the tradi-
tional case for the AWGN channel, since most of the ampli-
tudes of the received signal points are within a limited range,
the CD could be cut with a fixed boundary in the complex
plane [23]. However, in a time-varying channel, as can be
seen from (1), the received signal is affected by both the
channel variation and the Gaussian noise. If the boundary
is still set to a fixed value, there is always a probability
that the time-varying channel coefficient makes the received
signal points exceed the boundary, as shown by the IQ
sampled points outside the red colored boundary in Fig. 3(a).
Those points cannot be utilized for AMC. To deal with this
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FIGURE 3. Converting sampled signal points into a gray image for the AMC in time-varying channels. (a) The whole complex plane
containing all IQ baseband sampled signal points; (b) The area of the complex plane within the black boundary in (a); (c) The final 2D
gray image.

problem, considering the fact that for a finite number of IQ
sampled points, the maximum value of the signal amplitude
is finite, we then set the boundary to 101% of the maxi-
mum amplitude of IQ sampled signals. Then, all the sampled
signals are included in the image, as shown in Fig. 3(b),
which is also the area within the black boundary in Fig. 3(a).
Then, by mapping the number of sampled points in each cell
in Fig. 3(b) to a gray value as similar to that in Fig. 2, a gray
image with R = 128 is obtained, as shown in Fig. 3(c).

C. SLOTTED-CD SCHEME
Although the gray image generated according to the basic
method in Section III-B shows the trajectory of the CD rota-
tion and scaling in time-varying channels, it may not bring
enough information for better AMC because of the following
two limitations.
• If the channel fading is relatively fast and the number
of sampled points is large, there would be many points
that overlap each other. Unlike that in AWGN channels,
where the sampled points are concentrated around the
transmitted symbols, in time-varying fading channels,
the sampled points falling into one particular cell may
correspond to different constellation points in different
fading states. That is, due to rotation and scaling, dif-
ferent transmitted constellation points can be received
with very similar IQ sampled points. Thus, it becomes
difficult to associate the sample points with the original
transmitted constellation points for AMC.

• Although the gray image shows the rotation and scaling
trajectory, it does not reflect how it evolves. The IQ
signals are actually a pair of functions of time. With
only a single image, we can only see the result of a
process over a time period but not the whole evolu-
tion of the process. This is like using an oscilloscope
to display signals. Normally it has two modes: volts-
versus-time display mode and volts-versus-volts display
mode (or X-Y mode). In the time model, it shows the
two input signals as functions of time, while in the X-Y
mode, it shows one input signal against the other. The
CD corresponds to the display of the I and Q signals
in the X-Y mode. However, with only the X-Y mode,
the information is not completely provided.

Thus, it is necessary to find some sophisticated feature
extraction scheme for the AMC over time-varying channels.
In this study, we propose the slotted-CD scheme, where the
entire sampling window, Tw, is divided into a number of time
slots with time length Tst, and a gray sub-image is generated
for each time slot according to the method in Section III-B.
Not only the trajectory of the CD rotating and scaling within
one time slot, but also the evolution among the consecutive
images can be utilized for the classifier. Then, the key here is
how to set the slot length. One requirement is that the channel
should be highly correlated (described by coherence time
[47]) so that there is no significant overlap in the trajectory
of the CD within one time slot. This is similar to that in
setting the block length for channel estimation, where the
channel in the pilot part and the date part in a transmission
block should be highly correlated [48]. For another example,
for the transmit precoding with channel state information
feedback from the receiver, the channel should be highly
correlated within one estimation-feedback-precoding process
[49]. For a system with a particular bandwidth, the slot length
is then represented equivalently by the number of samples in
a slot, denoted by Nst. There are several criteria that can be
considered when setting the slot length.

1) To guarantee that the sub-image of each slot has enough
sampled points to cover almost all the original constel-
lation points. For example, take twice or three times the
number of original constellation points as a lower limit.

2) To guarantee that each sub-image contains the sampled
points in a limited number of coherence time periods.
For example, take one to three coherence time periods
as an upper limit.

3) If the above two criteria cannot be satisfied
simultaneously, then the first one has a higher priority.

It can be seen that the first criterion actually sets the minimum
value of Tst (or equivalently Nst) such that the basic feature
of a CD can be extracted in each sub-image. The second
criterion sets the maximum value of Tst such that the effect
of the trajectory overlapping problem due to the channel time
variation is limited.

To illustrate the result of the proposed slotted-CD scheme,
consider the same example system like that in Fig. 3 with a
carrier frequency fc = 2GHz, a bandwidth W = 100kHz,
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FIGURE 4. Result of the slotted-CD feature extraction scheme. (a) Result of the basic feature extraction scheme without slot division, which is
same as Fig. 3(c); (b)-(j) Nine sub-images corresponding to the nine time slots.

SNR = 18dB, and a speed v = 1.5m/s. The coherence time
is Tc = 18ms according to (2). According to Criterion 1, it is
better to setNst to be larger than 512 when taking 256QAM as
the highest modulation order. According to Criterion 2, three
times of the Tc corresponds to about 5400 samples, which
can be taken as an upper limit of Nst. Assume that the total
sampling time window is 360ms, which contains a total of
36000 samples. According to the above criteria, the window
can be divided into L = 9 slots with each slot containing
Nst = 4000 samples.

Fig. 4 demonstrates the result of the slotted-CD scheme,
where Fig. 4(a) shows the gray image of the basic process-
ing without slot division, which is the same as Fig. 3(c).
Figs. 4(b)-(j) show the nine sub-images in the nine time slots,
respectively. It can be seen that compared with Fig. 4(a),
the trajectory overlapping effect is greatly reduced. The evo-
lution of the CD can be clearly seen by taking the nine
sub-images together.

IV. DESIGN OF CLASSIFIER
In this section, we first introduce a basic classifier, where the
network structure is similar to the conventional AMCnetwork
for AWGN channels, but the parameters are optimized by
training with the samples in time-varying channels. We then
propose an advanced classifier for the AMC in time-varying
channels. Finally, we introduce some common configura-
tions of the two classifiers, such as loss function, activation
function, etc.

A. BASIC CLASSIFIER: SCDN
We start with a basic classifier in Fig. 5. Similar to the conven-
tional AMC network for AWGN channels [23], the basic clas-
sifier consists of a single CNN and a DNN in series (we refer
to this classifier as SCDN). The input to the SCDN is a single
R × R gray image, which is generated by the basic feature

extraction scheme in Section III-B. The parameters of the
SCDN are fine-tuned by training in time-varying channels,
and thus, the SCDN scheme can be regarded as a benchmark
for the AMC in time-varying channels.

As shown in Fig. 5, the CNN part of the SCDN consists
of four convolutional layers with 8, 16, 32, 16 filters and the
kernel size of 3 × 3, 3 × 3, 2 × 2, 2 × 2, respectively, and
three max-pooling layers with the same size of 2×2 for layer
one to three. A flatten layer is deployed to connect the CNN
and DNN with the output dimension of R2/4. The DNN part
consists of four fully connected dense layers with 1024, 256,
64, 8 neurons, respectively.

B. ADVANCED CLASSIFIER: MCBLDN
The basic classifier SCDN in Section IV-A has two limita-
tions in the AMC for time-varying channels. First, the input
is a single gray image containing all the received IQ signal
points over a time period. As shown in Section III-C, it does
not provide enough information about how the CD rotates and
scales with the channel variation. Second, there is no specific
design in the network structure of SCDN, for dealing with the
channel time variation effect.

In order to overcome these limitations, we first take the
proposed slotted-CD feature extractor in Section III-C, and
then design an advanced classifier to process the multiple
sub-images from the slotted-CD feature extractor. Assume
that there are totally L time slots and then L associated sub-
images. As shown in Fig. 6, the classifier consists of three
parts in series. The first part consists of multiple parallel
CNNs with the same structure, each of which processes a
sub-image separately. As shown in Fig. 6(b), each CNN con-
sists of three convolutional layers with the kernel size of 3×3,
3×3, 2×2, andNF , 2NF , andNF convolutional filters, respec-
tively. The pool size of each max-pooling layer is 2× 2. The
dimension of the output of each CNN is NF × (R/8)× (R/8).
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FIGURE 5. Network structure of the basic SCDN classifier.

FIGURE 6. (a) Network structure of the proposed MCBLDN classifier; (b) The detailed structure of the CNN block in (a); (c) The detailed
structure of the BLSTM block in (a).

It should be mentioned that these sub-images are related
in time, which inspires us to think about the RNN architec-
ture. Therefore, the second part of the advanced classifier
is BLSTM, whose detailed structure is shown in Fig. 6(c).
Assuming that there are totally L time slots, the outputs
of the preceding L parallel CNNs are first concatenated
and reshaped with a data size of L × NFR2/64 and then
sent into the BLSTM. Note that in this reshaping operation,
the original time order of L sub-images from the slotted-CD
feature extractor is retained in the input of BLSTM so that
the time relationship among these sub-images is utilized for
AMC. The BLSTM consists of two LSTMs, where the upper
one in Fig. 6(c) processes the input data in the positive
order and the lower one in the reverse order. The operation
of either LSTM consists of L steps. For each time step,
the input dimension is NFR2/64 and the output dimension is
64. For better utilization of the time sequence information,

the outputs of all steps are retained. Therefore, the output
dimension of either LSTM is L × 64. Finally, the output of
the lower LSTM is reordered, added to the output of the upper
LSTM, and converted into the data with the dimension of 64L
through a flatten layer.

The third part of the advanced classifier is a DNN which
consists of three fully connected dense layers with 32, 16,
8 neurons, respectively. As the whole advanced classifier
consists of multiple CNNs in the first part, and a BLSTM
network and a DNN in the other two parts, we refer to this
classifier as MCBLDN.

C. COMMON CONFIGURATIONS OF THE TWO
CLASSIFIERS
Some common configurations of the above two classifiers
are introduced as follows. One-hot coding is used for the
output of both the basic SCDN and the proposed MCBLDN.
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TABLE 1. System setup for the simulation over slow time-varying
channels.

The loss function is the categorical cross-entropy function.
All the layers adopt the rectified linear units (ReLU) acti-
vation function except that the last output layer adopts the
softmax function. Finally, in order to improve the fitting
ability of the two classifiers, the dropout operation is adopted
to the fully connected dense layers with the dropout rate set
to 0.2.

V. EXPERIMENTS AND RESULTS
In this section, we first compare different AMC schemes in
terms of the classification accuracy as a function of SNR in
time-varying channels. We then provide some experimental
results of the classification accuracy for different channel
time variations. Finally, we show the effect of the resolution
of the gray image on the classification performance and the
network complexity.1

A. CLASSIFICATION ACCURACY VERSUS SNR
For slow fading channels, the system setup is the same as
that in Fig. 4 and the parameters are summarized in Tab. 1,
where fc = 2GHz, and W = 100kHz. The time-varying
channels satisfy the Clark’s model with v uniformly dis-
tributed between 1.5m/s to 4.5m/s for the slow fading chan-
nels realization. The length of the sampling window is set
to 360ms so that a total of 36000 IQ sampled signal points
are used for AMC. Three AMC schemes are considered for
comparison. For the based SCDN scheme, a single 2D gray
image with R = 128 is generated according to the method in
Section III-B for feature extraction, and the SCDN in Fig. 5 is
employed as the classifier. In the proposed advanced scheme,
i.e., the MCBLDN scheme for the AMC in the time-varying
channels, the slotted-CD scheme in Section III-C is applied
for feature extraction, where the sampling window is divided
into L = 9 time slots. For comparison, we also simu-
lated the AMC scheme in [41], where a residual neural net-
work (ResNet) was developed to directly process the raw IQ
data for classification. All of the three AMC schemes use
the same training and testing data sets. In the training stage,
76800 training data sets were generated for the 24 SNR values
from 0dB to 23dB with 3200 data sets for each SNR. In the

1All source codes about producing source data sets and designing classi-
fiers are provided openly in https://github.com/zhouyu9712/AMC-TVC-DL.

FIGURE 7. AMC accuracy versus SNR for three classifiers over the slow
fading channels.

testing stage, the final accuracy was obtained by averaging
the results over 3000 testing data sets for each SNR.

Fig. 7 shows the average AMC accuracy performance ver-
sus SNR for the basic SCDN, the proposed MCBLDN, and
the conventional ResNet [41] in the slow fading channels.
It can be seen that for all the schemes, the classification
accuracy increases as the SNR increases, and it increases
rapidly at the low SNR region but slowly at the high SNR
region. In particular, the ResNet, which directly takes the
raw IQ data for classification without any feature extraction,
has not shown good performance compared with the CD
feature based schemes. This shows that the feature extraction
is necessary for the classification in time-varying channels.
Fig. 7 also shows that the SCDN scheme always has a per-
formance gap to the MCBLDN scheme over the whole SNR
range since it does not exploit specific design to deal with
the time-varying effect. By taking the slotted-CD scheme
for feature extraction and designing more specific neural
networks, the MCBLDN scheme achieves higher accuracy
and even approaches almost 100% accuracy at high SNRs.

Figs. 8(a)-(c) demonstrate the detailed classification accu-
racy in Fig. 7 for the three schemes when SNR is fixed at
10dB, where each row illustrates the detailed classification
decisions to all the eight possible modulation formats when
a particular modulation format is applied at the transmitter.
Obviously, the darker the diagonal element, the higher the
accuracy. Comparing the three sub-figures, it can be seen
that most of the classification errors happened at high-order
modulation formats, where 64QAMand 128QAMare the two
most difficult formats to recognize. In particular, the conven-
tional ResNet scheme does not performwell in distinguishing
different QAM formats, and the proposed MCBLDN scheme
achieves the best accuracy among the three AMC schemes.

B. IMPACT OF CHANNEL VARIATION
In this subsection we evaluate the impact of channel variation
on different AMC schemes. Fig. 9 shows the average AMC
accuracy performance versus SNR for the three schemes in
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FIGURE 8. The detailed classification accuracy among eight modulation formats. (a) ResNet; (b) SCDN; (c) MCBLDN.

FIGURE 9. AMC accuracy versus SNR for three classifiers over the fast
fading channels.

fast fading channels, where all the system parameters are
the same as those in the slow fading case except that the
moving velocity v is uniformly distributed between 22.5m/s
to 45m/s. As the channel coherence time becomes shorter,
for the proposed MCBLDN with the slotted-CD scheme,
the sampling window is then divided into L = 30 time slots.
Fig. 9 shows that the proposed MCBLDN scheme can still
maintain a high classification accuracy as it not only utilizes
the CD variation trajectory within each sub-image but also
exploits the evolution among the sub-images via the BLSTM
network. However, the classification performance of the basic
SCDN scheme is significantly reduced in the fast fading
channels, and the performance of the conventional ResNet is
also not as good as the MCBLDN scheme.

Next, we evaluate the impact of slot length (data segment)
to the classification performance. The system setup is the
same as that in Section V-A except that the SNR is fixed at
10dB, and the total number of training data sets is 48000. Two
moving speed regions are considered, i.e., 1.5m/s ∼ 4.5m/s
for the slow fading channels and 22.5m/s ∼ 45m/s for the
relatively fast fading channels. Furthermore, we take the slot
length (or equivalently the number of sampled points per
slot Nst) as a parameter for testing when the total sampling

TABLE 2. Total parameters of different classifiers under slot length Nst.

FIGURE 10. The AMC accuracy versus Nst for three classifiers over slow
and fast time-varying channels.

window (or the total number of sampled signal points Nw) is
fixed. Tab. 2 shows the number of the hyper-parameters of the
three different classifiers with R = 64. Note that as there is no
slot division in the SCDN and ResNet schemes, the number
of their hyper-parameters does not change with Nst.

Fig. 10 shows the average accuracy as a function of Nst for
the three classification schemes in both slow and fast fading
channels when SNR = 10dB and Nw = 36000. As there
is no slot division in the ResNet and SCDN schemes, their
performance does not change with Nst and is consistent with
that in Fig. 7 and Fig. 9. It can be seen from the Fig. 10 that the
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TABLE 3. Number of hyper-parameters of different classifiers with
different image resolutions.

performance of the proposed MCBLDN scheme is sensitive
to Nst. According to our discussion on the criteria of setting
the slot length in the slotted-CD scheme in Section III-C,
on one side, Nst cannot be too large in time-varying channels.
Otherwise, there will be significant overlap in the trajectory
of the rotation and scaling of the CD in a number of channel
coherence time periods. On the other side, Nst should be large
enough to contain a sufficient number of sampled points in
each sub-image.

This is clearly reflected in Fig. 10. In the case of slow
fading, the MCBLDN scheme reaches a peak accuracy of
99.5% when Nst = 2000, while in the case of fast fading,
a peak accuracy of 97% when Nst = 600. This is consistent
with the variation of the channel coherence time. When the
channel varies faster, the coherence time becomes shorter and
smaller Nst needs to be set. We also notice from Fig. 10 that
when Nst moves left from the peak point, the classification
accuracy does not change too much as long as Nst is larger
than the lower limit (e.g., twice of the number of constellation
points of the maximum modulation order). However, when
Nst moves right from the peak point, the accuracy gradually
decreases as more CD trajectories overlap each other within
a sub-image.

C. CLASSIFICATION ACCURACY VERSUS COMPLEXITY
Network complexity is an important issue in some appli-
cations that require hardware and power efficient solutions,
such as cognitive radio systems. The deep learning based
AMC method should be hardware and power-efficient. Since
the hardware cost and power consumption are proportional to
the network size, we investigate some key parameters in the
proposed scheme which determine the network size and pro-
vide the trade-off between performance and complexity. Note
that one property of the proposed scheme is that no matter
how many samples there are in each time slot, the dimension
(resolution) of the output gray sub-image from the feature
extractor is the same, i.e., R× R. Thus, the smaller the value
of R, the smaller the network size and the less the hardware
cost and power consumption. According to the detailed net-
work structure of the basic SCDN scheme in Fig. 5 and that
of the proposed MCBLDN scheme in Fig. 6, the number of
network parameters in the CNN part in these two schemes is
proportional toR2. Thus, the network size and complexity can
be greatly reduced with the decrease of R, as shown in Tab. 3.
Fig. 11 further demonstrates the classification accuracy for

the basic SCDN scheme and the proposed MCBLDN scheme
with different values of R. The system setup is the same as
that in Tab. 1. From this figure, we can see that when R is
reduced from 128 to 64, the classification accuracy of both

FIGURE 11. AMC accuracy versus SNR with different R for MCBLDN and
SCDN over time-varying channels.

the SCDN and the MCBLDN decreases only a little. When
R is further reduced to 32, there is an obvious performance
degradation. This shows that theremay exist a threshold in the
resolution of the constellation gray image to the classification
performance. By combining the results in Tab. 3 and Fig. 11,
we can see that the proposed AMC scheme provides a flexible
performance-complexity trade-off by adjusting R according
to the performance and complexity requirement. Meanwhile,
the proposed MCBLDN scheme can achieve higher perfor-
mance with less number of hyper-parameters than the con-
ventional SCDN scheme for the AMC over time-varying
channels.

VI. VISUALIZATION
Visualization has been shown as a useful tool to illustrate the
network performance, and even help optimize the network
parameters. In this section, we apply this tool to explain why
the proposedMCBLDN scheme outperforms the basic SCDN
scheme.We also show that visualization can help optimize the
parameters of the classifiers.

A. VISUALIZATION OF SCDN
We show the visualization result of the basic scheme SCDN
in this subsection, where the system set up is exactly the
same as that in Fig. 7 except that the SNR is fixed at 10dB.
Randomly take just one data sample for visualization when
the transmitter employs 16QAM. Fig. 12(a) shows the output
gray image of the basic feature extractor (also the input of
the classifier) and Figs. 12(b)-(e) visualize the outputs of
four convolutional layers of the SCDN classifier, respectively.
The number of small images in each sub-figure corresponds
to the number of output features calculated by each con-
volutional layer. For example, as the output dimension is
8 × 128 × 128 for the first convolutional layer (see Fig. 5),
there are eight features from this layer and thus eight small
images in Fig. 12(b).

From Figs. 12(b)-(e) we can see that the features calculated
by a convolutional layer is highly related to the features
generated by its preceding layer. In general, the low-order
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FIGURE 12. Visualization of the SCDN classifier. (a) The input layer; (b) The first convolutional layer; (c) The second
convolutional layer; (d) The third convolutional layer; (e) The fourth convolutional layer.

convolutional layers are more concerned on the information
like the outline of the input image (e.g., the small image at the
first row and the fifth column of Fig. 12(c)), or the edge of
the input image (e.g., the small image at the second row
and the fourth column of Fig. 12(d)). On the other hand,
the features of the high-order layers are more abstract.

These sub-figures also show that for a particular layer, its
output features are generally different from each other. Thus,
it can be inferred that each output feature focuses on a specific
characteristic of the layer input. For example, different small
images in Fig. 12(c) focus on different areas of their input
images in Fig. 12(b). In the experiment, we also found that the
classification accuracy cannot be further improved by adding
more layers or more filters in each layer. Actually, when fur-
ther increasing the number of filters, we observed duplicate
feature information in visualization. Therefore, visualization
provides a means for setting network parameters such as the
number of layers and the number of filters in each layer.

B. VISUALIZATION OF MCBLDN
In this subsection, we demonstrate the visualization result
of the first part of the MCBLDN classifier, which consists

of L = 9 parallel CNNs, with the same data sample as
that in Section VI-A. Fig. 13(a) shows the L sub-images
with R = 128 generated by the proposed slotted-CD feature
extractor, and Figs. 13(b)-(d) visualize the outputs of the
three convolutional layers of the L parallel CNNs, respec-
tively. According to Fig. 6(b) and Fig. 7, NF is set to 3,
and there are respectively 3, 6, and 3 output features from
the three convolutional layers of each CNN. We demonstrate
the output features of all the L CNNs column-by-column in
Figs. 13(b)-(d). That is, the output features of the three con-
volutional layers of the l-th CNN are demonstrated in the
l-th column in Fig. 13(b), the (2l − 1)-th and 2l-th columns
in Fig. 13(c), and the l-th column in Fig. 13(d), respectively.

From Figs. 13(b)-(d) we can see that the features calculated
by a convolutional layer are highly related to the features
generated by its preceding layer. As the L parallel CNNs
separately process the L sub-images, the output features
of different CNNs are generally different from each other.
By comparing Fig. 12 with Fig. 13, the reason why the
proposed MCBLDN scheme outperforms the basic SCDN
scheme is clear. In the SCDN, as all the IQ baseband signals
over a number of coherence time periods are contained in
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FIGURE 13. Visualization of the MCBLDN classifier with NF = 3. (a) The input layer; (b) The first
convolutional layer; (c) The second convolutional layer; (d) The third convolutional layer.

FIGURE 14. Visualization of the MCBLDN classifier with NF = 1. (a) The input layer; (b) The first
convolutional layer; (c) The second convolutional layer; (d) The third convolutional layer.

a single image by the basic feature extractor, the SCDN
classifier could hardly learn the trajectory of the rotation and
scaling of the CD. In contrast, in the MCBLDN scheme,
the slotted-CD feature extractor divides the original image
into a series of sub-images that could guide the parallel CNNs

to learn the information of the variation of the CD. In other
words, if the slot length is properly selected, each parallel
CNN could learn the trajectory of the rotation and scaling of
the CDwithin each sub-image, and then outputs finer features
for the succeeding network.
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FIGURE 15. Visualization of the MCBLDN classifier with NF = 5. (a) The input layer; (b) The first
convolutional layer; (c) The second convolutional layer; (d) The third convolutional layer.

C. PARAMETERS SETTING OF MCBLDN BY VISUALIZATION
It is universally acknowledged that neural networks are often
treated as black boxes as it is very hard to analyze them
theoretically. In this subsection, we show that from visu-
alization results, the setting of some hyper-parameters can

be optimized. We focus on setting the number of convolu-
tional filters in each layer of the parallel CNN part in the
proposed MCBLDN scheme as it is a significant network
parameter related to the classification performance. In par-
ticular, as shown in Fig. 6(b), it is the parameter NF that
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FIGURE 16. Classification accuracy versus NF for the proposed MCBLDN
scheme.

decides the number of convolutional filters. We investigate
the influence of different values of NF on the classification
accuracy via experiments and visualization. The system set
up is the same as that in Fig. 7 except that the SNR is fixed at
10dB with 48000 training data sets.

Fig. 14 and Fig. 15 demonstrate the visualization results
of the three convolutional layers of the CNN part of the
MCBLDN for NF = 1 and 5, respectively, where the mean-
ing of each sub-figure is the same as that in Fig. 13 for
NF = 3. That is, sub-figure (a) shows the input images
of all L = 9 parallel CNNs, and sub-figures (b)-(d) show
the output features of the three convolutional layers of all
CNNs column-by-column. That is, the output features of
the three convolutional layers of the l-th CNN are demon-
strated in the l-th column in sub-figure (b), the (2l − 1)-th
and 2l-th columns in sub-figure (c), and the l-th column in
sub-figure (d), respectively.

From Fig. 14 for NF = 1, we can see that the output
features of different CNNs are different from each other,
which shows that the features extracted by the CNNs with
NF = 1 are probably not enough. From Fig. 15 for NF = 5,
we can see that the CNNs may extract duplicate features and
even some features with useless information. There are some
completely black images in the output, which means the pixel
values of these images are all 0. For example, the one at the
first row and the fifth column and the one at the first row
and the eighth column of Fig. 15(d). This phenomenon shows
that there is probably redundancy in the network structure.
Finally, comparing these two figures to Fig. 13 for NF = 3,
we can see that there is almost no duplicate feature informa-
tion or all-black feature when NF = 3. Thus, from the above
results, NF = 3 is the best choice to balance the classification
accuracy and network complexity.

This conclusion is further verified by Fig. 16, which shows
the classification accuracy performance as a function of NF .
It can be seen that the classification accuracy increases as NF
increases. When NF increases from 1 to 3, the classification

accuracy increases rapidly. However, there is no signifi-
cant performance improvement when NF is larger than 3.
In Fig. 16, we also provide the results for R = 64 and R =
32, where similar trend is observed. Note that R determines
the size of the input sub-images and in turn determines the
network complexity as shown in Tab. 3. Thus, by combining
the results in Tab. 3 and Fig. 16, we can see that R = 64
may be the best choice considering the performance and
complexity trade-off.

VII. CONCLUSION
The channel time variation in practical systems greatly affects
the AMC accuracy rate and makes the AMC problem more
difficult to deal with. In this article, we have taken the CD as
the key feature and tried to utilize the rotation and scaling
trajectory of CD in time-varying channels for better clas-
sification performance. Specifically, we have first proposed
the slotted-CD feature extraction scheme, which outputs a
series of sub-images that can reflect the CD time variation
both within each sub-image and between the consecutive
sub-images. We have then proposed an advanced classifier,
the MCBLDN, by using the deep learning technology. The
classifier first employs multiple parallel CNNs to process the
sub-images of the slotted-CD extractor separately and then
employs the BLSTM to exploit the relationship among the
sub-images for modulation classification. Simulation results
have shown that the MCBLDN scheme can achieve much
higher classification accuracy than the traditional deep learn-
ing based AMC schemes in time-varying channels. In partic-
ular, the MCBLDN scheme can achieve an accuracy rate of
97% in fast fading channels. Furthermore, we have shown
that such performance improvement can be explained via
the visualization of the outputs of the convolutional layers.
We have also shown that some key hyper-parameters such as
NF can be optimized from the visualization results.

As for future work, we note that besides CD there are also
some other features which can be used for AMC, for example,
the cyclostationary feature [17], [18], which is sensitive to
frequency variation and suitable to classify frequency modu-
lations. Thus, if themodulation set for AMCnot only includes
bandwidth efficient modulations such as high-order PSK and
QAM, but also power efficient ones such as frequency-shift
keying modulation, a more sophisticated AMC scheme tak-
ing both the CD and the cyclostationary feature can be
developed, which is a promising design approach for future
work.
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