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ABSTRACT Earlier detection of individuals at the highest risk of developing diabetes is crucial to avoid
the disease’s prevalence and progression. Therefore, we aim to build a data-driven predictive application
for screening subjects at a high risk of developing Type 2 Diabetes mellitus (T2DM) in the western region
of Saudi Arabia. In this context, we designed and implemented a questionnaire-based cross-sectional study
using conventional diabetes risk factors for studying the prevalence and the association between the outcomes
and exposure (s). We used the Chi-Squared test and binary logistic regression to analyze and screen the
most significant diabetes risk factor for T2DM risk prediction. Synthetic Minority Over-sampling Technique
(SMOTE), a class-balancer, was used to balance the cross-sectional data. We used the balanced class data
to screen the best performing classification algorithm to classify patients at high risk of diabetes with
a higher F1 Score. The best performing classifier’s hyper-parameters were further tuned using 10-fold
cross-validation for achieving an improved F1 Score. Additionally, we validated our proposed model with
the existing models built using the National Health and Nutrition Examination Survey (NHANES) dataset
and Pima Indian Diabetes (PID) dataset. The results of the Chi-squared test and binary logistic regression
showed that the exposures, namely Smoking, Healthy diet, Blood-Pressure (BP), Body Mass Index (BMI),
Gender, and Region, contributed significantly (p < 0.05) to the prediction of the Response variable (subjects
at high risk of diabetes). The tuned two-class Decision Forest (DF) model showed better performance with
an average Flscore of 0.8453 £ 0.0268. Moreover, the DF based model adapted reasonably well in different
diabetes dataset. An Application Programming Interface (API) of the tuned DF model was implemented and
deployed as a web service at https://type2-diabetes-risk-predictor.herokuapp.com, and the implementation
codes are available at https://github.com/SAH-ML/T2DM-Risk-Predictor.

INDEX TERMS Application, cross-sectional study, predictive model, statistical techniques/model, type
2 diabetes mellitus (T2DM).

I. INTRODUCTION

Type 2 Diabetes mellitus (T2DM) is a chronic metabolic
disorder characterized by insulin resistance and high blood
glucose, a kind of sugar in humans. T2DM develops primarily
due to an inactive lifestyle, lack of exercise, and obesity [1].
Some individuals are more genetically at risk of T2DM since
their family has a history of diabetes. As per the World Health
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Organization (WHO) reports, approximately 3 million people
in KSA are on the verge of diabetes, i.e., prediabetes condi-
tion, and around 7 million of the population of the kingdom
are affected with diabetes and its associated vascular com-
plications [2]. Therefore, the proportion of people affected
with diabetes and with its related medical complications is
alarming.

In the past, many countries and international forums have
developed their country-specific brief questioners, which
consider the typical diabetes risk factors (attributes) to assess
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FIGURE 1. A flow diagram of the methodology employed to build a T2DM risk predictor application.

the risk of developing T2DM in an individual over the fol-
lowing period of 2-10 years [3]. International Diabetes Fed-
eration (IDF) has developed an online questionnaire-based
diabetes risk assessment tool based on the Finnish Diabetes
Risk Score (FINDRISC) [4] to predict an individual’s risk of
developing diabetes in the upcoming years. Several studies
have used a set of questioners, and each question is assigned
a weighted score to build an online diabetes risk evalua-
tor [5]-[7]. Besides, the FINDRISC model allows health
care providers and clinicians to apply preventive measures
to prevent disease progression in individuals at high risk of
developing T2DM. However, there are apprehensions, for
instance, that “most clinical risk scores are useless’ and that
“assuming linearity of predictors” is a common method-
ological mistake generally made by investigators that lead
to the making of diabetes predictive models that cannot be
trusted [7], [8].

The scoring models based on diseases with long latency
(e.g., Framingham heart study) are more time-consuming and
expensive. So, we must look into other alternative approaches
to build and validate risk models for predicting disease risk
and progression with high reliability. Thereby, we will check
the prevalence of diabetes and allow patients at high risk to
make an appropriate decision concerning their healthiness.

Machine learning (ML) techniques in recent years have
been used in a variety of problems, including diagnosis of
cancer [9]-[11], Covid-19 [12], meningitis [13], coronary
heart disease [14], [15], and hypertension [16]. Machine
Learning-based application can convert the point-in-time data
into valued knowledge prerequisites for making data min-
ing predictive tool to characterize patients at high risks of
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diabetes [17]-[23]. However, only a few researchers in the
past have implemented a machine-learning algorithm to build
an online real-time assessment tool to predict the risks of
individuals for T2DM [24]. The precision and recall of such
a web-based model are not satisfactory, so the predictions
are not trustworthy. Therefore, in this regard, we intend to
build an ML-based application to predict the risks of T2DM
in Saudis based on specific diabetes risk factors.

Our ML based web application, called ‘“T2DM risk pre-
dictor”, will provide probability-based diabetes risk pre-
diction in real-time using the patient’s input data. The
input to our ML-based workflow predictive model will be
a set of close-ended questionnaire based on the follow-
ing six diabetes risk factors: 1) Smoking, 2) Healthy diet,
3) Blood-Pressure (BP), 4) Body Mass Index (BMI), 5) Gen-
der and 6) Region. Our ML-based web-application will
enable the detection of high-risk diabetes subjects with bet-
ter precision and sensitivity than an earlier Support Vector
Machine (SVM) based on real-time application to predict
the risks of T2DM [22]. Moreover, our application based
on typical diabetes risk factors will be the first ML-based
real-time prediction tool for predicting the risk of diabetes in
individuals belonging to the western region of the Kingdom
of Saudi Arabia. The Azure Machine Learning Services was
used to develop our predictive application. Figure 1 repre-
sents the flow diagram of the implemented ML-based T2DM
risk predictor application.

The rest of the paper’s layout is as follows: Firstly,
Section II presents details about the survey questionnaire,
cross-sectional survey dataset, statistical tools, prediction
model, and application. Secondly, Section III describes the
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results of the experiments in detail. Finally, Section IV con-
cludes the paper with future work.

Il. METHODOLOGY

A. SURVEY METHODOLOGY

The methodology followed for our cross-sectional diabetes
survey is as follows:

1) CROSS-SECTIONAL STUDY

In a cross-sectional survey, the researcher measures the
exposure(s) in the population, the outcome and may study
their relationship concurrently. The cross-sectional survey
studies are typically economical and more rapidly imple-
mented. These kinds of observational studies give us on-time
information about the frequency of exposure (s) or out-
comes. Thus, the information obtained from the retrospective
cross-sectional study will be useful as a baseline for a cohort
study [25]. In our study, we intend to use a cross-sectional
diabetes survey to estimate the prevalence of the disease in
the western region of the Kingdom of Saudi Arabia (KSA).
Furthermore, the strength of association between the out-
comes and exposure (s), i.e., Odds Ratios (OR), will also be
analyzed.

Collecting research data for the cross-sectional survey
using traditional approaches can be both time consum-
ing and costly. In this regard, Internet-based technolo-
gies (e.g., e-mail and online platform using fill-in forms
[https://www.qualtrics.com/, https://www.google.com/docs/
about/, https://www.surveymonkey.co.uk/]) provides a cost-
effective approach to conduct online research questionnaire-
based survey to collect a large amount of data in a short frame
of time [26].

The dataset for the preparation of the “T2DM risk
predictor system’ was built using a cross-sectional sur-
vey conducted using an e-mail containing a fill-in form
for participants belonging to King Abdulaziz Univer-
sity (KAU). The online survey fill-in form contain-
ing closed-ended research questioners based on diabetes
risk factors (attributes) are available at the following
link: https://www.munnamotorgarage.com/fcitrabet/saudi_
diabetise_survey_2019-2020-En.php. Our study used the
most frequently used attributes from recent papers on diabetes
prediction models [17], [19]-[23]. These attributes are either
directly observable or non-invasive tests. The Deanship of
Graduate Studies of KAU gave the necessary permission for
performing the diabetes cross-sectional survey. The partici-
pants involved in the survey were students, non-teaching, and
teaching staff currently studying or working in KAU.

2) SURVEY RESEARCH QUESTIONNAIRE

In this cross-section survey, we focused on the following
closed-ended research questioners for identifying partici-
pants at high risk of diabetes:

1. Choose the region of your residence.
2. How old are you?
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3. What is your Gender?
4. What is your Body Mass Index (BMI)?
Use the height and weight table to find your BMI (The
table will appear upon clicking the button).
5. What is your Waist size?
Measured below the ribs (usually at the level of the
navel)
6. Do you daily engage in at least 30 minutes of physical
activity?
How often do you eat fruits and vegetables?
Have you ever taken hypertension medicine?
9. Have any members of your family been diagnosed with
diabetes?
10. Have you ever had high blood glucose (for exam-
ple, in a health examination, during an illness, during
pregnancy)?

®

3) DATASET COLLECTION, TRANSFORMATION, AND
VARIABLE CHARACTERIZATION

The cross-sectional survey dataset consists of 4896 subjects
or participants (990 diabetic cases and 3906 non-diabetic
cases). Among the ten diabetes risk factors considered for
data analysis, region, gender, and age were demographic by
nature. Region was categorized into ten different regions
labeled as Abwa = 1, Jeddah = 2, Khulays = 3, Medina = 4,
Masturah = 5, Mecca = 6, Rabigh =7, Sabar = §, Thual = 9,
Yambu =10. The gender was coded as Female = 0, and
Male = 1. Age was divided into three categories labeled as
0 =< 40 Years, 1 = 40 - 49 Years, 2 = 50 - 59 Years, and
3 => 60 Years. Body Mass Index (BMI) is calculated as body
weight in kilograms divided by the square of body height
in meters. The BMI was divided in to three levels labeled
as 0 =< 25 Kg/m2, 1 =25 - 30 Kg/m2, 2 => 30 Kg/m2.
Waist size for male and female divided into three categories
each labeled as Opale =< 94 cm (37”°) or Opemale =< 80 cm
(31.5”), Imatle = 94 — 102 cm (37" — 40”) or 1remale = 80
-88 cm (31.5” -35”"), 2pate => 102 cm (40”") or 2pemale =>
88 cm (35”"). Physical activity is defined as daily at least
30 minutes of exercise or physical activity labeled as Yes =
0 and No = 1. A healthy diet indicated how regularly the
subject eats fruits and vegetables labeled as “0” = every day
and “1” = Not Every day. Subjects not undertaking medi-
cation for Blood Pressure (BP) labeled as ““0”’. Whereas the
subjects who were taking BP medicines were labeled as “1”°.
Family history of diabetes is defined as “do any members
of the subject family been diagnosed with diabetes.” The
attribute Family history is categorized into three categories
labeled as “0” = No family history of diabetes, “1” =
Yes: Grandparents, and “2” = Yes: Parents. Smoking habits
categorized into two categories, non-smoker were labeled as
“0” and smokers labeled as *“1”. Finally, the dataset included
a response variable (diabetic and non-diabetic) based on sub-
ject exposure to fasting plasma glucose = 5.6 mmol/L [23]
in a health examination or pregnancy. We collected a large
set of cross-sectional diabetes data over time and even-
tually developed a cross-sectional diabetes survey dataset
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comprising KAU subjects. The research questionnaire from
the above-mentioned QI to Q 9 includes the explanatory
variables (predictors) and is categorical. While the attribute,
High Fasting Blood Glucose level, was selected as a cate-
gorical response variable. The samples with a response of
“YES” for the dichotomous class (high blood glucose) will
fall in the category of “‘high risk” of diabetes, and conversely,
the samples with a response of “NO” for the response vari-
able will fall in the category of “low risk” of diabetes. Our
cross-sectional survey dataset has been uploaded and avail-
able at https://ieee-dataport.org/open-access/cross-sectional-
type-2-diabetes-survey-saudi-arabia-western-province

B. PEARSON'’S CHI-SQUARE TEST OF INDEPENDENCE

In our study, we have employed the Pearson Chi-squared
statistical test [27], [28] to assess the alternate hypothesis
that the association we observe in the data between the
independent variables (risk factors) and the dependent vari-
able (high risk or Low-risk of diabetes) are significant and
can be valid for a larger population from which the data
was drawn. Alternatively, accept the null hypothesis that the
association obtained between the variables could just be a
coincidence due to sampling variability. If the association
obtained is just by chance due to sampling variability. More-
over, by the Chi-square (x2), we can also investigate exactly
which categories of an independent attribute contribute to any
significant association found with the categorical dependent
variable. To demonstrate the calculation and analysis of the
X2 statistic, we used the following steps:

Step 1: Stating the Hypothesis

1. Null Hypothesis (H,): There is no significant associa-
tion between the two categorical variables {explanatory
variables (risk factors) and the dependent variable (high
or low risk of diabetes)}.

2. Alternate Hypothesis (H1): There is a significant asso-
ciation between the two categorical variables. { Explana-
tory variables (risk factors) and the dependent variable
(high or low risk of diabetes)}.

Step 2: The Idea of the Chi-Square Test

How different is the observed count (our data) from the
expected count when the explanatory and dependent variables
are independent. Our cross-sectional data’s observed count is
shown in the respective Crosstabulation table of the exposure
(s) and the outcome variable. The expected count was calcu-
lated using the formula shown below in “equation 1”’:

Column Total X Row Total
Expected Count = (1)
Table Total

Step 3: Measure how different the observed count is dif-
ferent from the expected count.

1. Finding the P-value

2. Evaluating the significance of variables association

The p-value for the Chi-squared test is the probability of

getting counts of the explanatory variable (risk factors) like
those obtained, assuming that the two variables are not depen-
dent. Suppose a significance level of 0.05 is used, assuming
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that the p-value is less than 0.05. In that case, we will reject
the null hypothesis and accept the alternate hypothesis, which
states that: “‘there is a significant relation/association between
the explanatory variable and the dependent variable.”

1) MEASUREMENT OF ASSOCIATION BETWEEN VARIABLES
The Chi-square is a tool to determine a significant association
between the two categorical variables and should be followed
with a statistical test to measure the strength of the relation-
ship between the variables. For the Chi-square, the generally
employed strength estimation test is the Cramer’s V test [29].
Cramer’s V is a form of correlation and hence is interpreted
similarly. The Cramer’s V test was calculated using the for-
mula shown below in ““equation 2”:

(pz x2

Here in “equation 3", “t” is the lesser of the total number of
columns (¢) minus one or the total number of rows (r) minus
one, and “n” is equal to the sample size, then:

t = Minimum{(r — 1), or (c — 1)} 3)

The Cramer’s V test value ranges from 0 to 1. Where “0”
means no correlation between the variable and on the other
hand, “1” signifies a strong correlation between the vari-
ables, regardless of the sample size and dimensions of the
contingency table.

C. BINARY LOGISTIC REGRESSION

The techniques for summarizing and analyzing categorical
Cross-sectional survey data using stacked bar charts, con-
tingency tables, and Pearson’s Chi-squared tests provide a
more fundamental approach to exploring and identifying an
association between the explanatory and the response vari-
able. Besides, we can extend this descriptive data analysis
using a generalized linear model (Such as the Log-Linear
model) to get a more detailed understanding of the direction
and strength of the association between exposure and the
outcomes in this design. Furthermore, by the exponentiation
of the log-linear model’s coefficient, we will study the odd
ratios to measure the relative importance and effect of the
different explanatory variable (s) on the response variable
(class). We can also calculate a 95 % confidence interval to
determine the uncertainty in the odds ratio estimation. Since
the response variable in our cross-sectional study is binary
(Yes/No), we use the binary logistic regression [30] to explore
the individual explanatory variable’s direction and effect on
the subjects’ probability to be a member of the diabetes group.
As we are using numbers to represent an individual indepen-
dent variable’s categories, the nominal variable is converted
into categorical using SPSS software statistical tool.

1) SETTING UP OF A REFERENCE GROUP FOR BINARY
LOGISTIC REGRESSION

A category of an explanatory variable is set as a reference
to investigate the other categories’ independent effect on
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the response variable compared to the reference category.
We selected each explanatory variable’s category with a rela-
tively minimum distribution of subjects falling in the diabetes
high-risk group as a reference for estimating the direction and
the strength of association between the categorical explana-
tory variable and the binary response variable.

2) VARIABLE INCLUSION AND SELECTION

The selection of a potential predictor (explanatory variable)
with higher statistical power is an essential step toward
both in-sample fitness (training) and out-of-sample vali-
dation for predicting the sample at a high risk of dia-
betes. We used the forward logistic regression method to
choose the explanatory variables with higher statistical sig-
nificance [31]. In the Forward-LR method, we started with
the intercept term (No variables). We tested each explanatory
variable’s addition using a model-fitness criterion, namely
the Hosmer-Lemeshow test [32]. The Hosmer-Lemeshow
goodness calculates the Pearson chi-square value, where a
small chi-squared value with a p-value close to 1 indicates
a statistically insignificant deterioration of the LR-model
fit, which is a good fit. In comparison, a model with a
higher Chi-squared value and a small p-value (p < 0.5)
indicates a poor fit (statistically significant deterioration of
the LR-model). Therefore, testing the model-fit criteria at
each step for variable (s) inclusion helped us screen the most
significant and informative variables for building models that
appropriately fit our cross-sectional survey data.

D. DATA PREPROCESSING FOR MODEL BUILDING AND
CLASSIFIER COMPARISON

The cross-sectional dataset was pruned by having only
the explanatory variables screened following binary logistic
regression analysis. We used the following edit metadata
module of the azure machine learning studio (classic) for
the editing of the metadata associated with the columns in
the dataset: 1) Converting Boolean or nominal columns as
categorical, 2) Indicating the column which we want to label
as a class or the dependent variable, 3) marking columns as
features and 4) renaming columns for our understanding. The
transformed dataset was further partitioned using a stratified
split into 80 % training and 20 % independent test data for
model validation.

Since the transformed dataset was imbalanced were only
22.22 % of samples lie in the diabetic group, we, there-
fore, used the Synthetic Minority Oversampling Technique
(SMOTE) [33] to increases the number of only the minority
instances (samples) in the training data without affecting
the number of majority cases. The minority class samples
(diabetic group) in the training data were balanced using the
following SMOTE parameters: 1) SMOTE percentage = 295,
2) Number of nearest neighbors = 1, Random seed = 1.

We applied nine two-class classification algorithms of the
azure machine learning studio to train and thereby assess
the best model to classify subjects at high risk of diabetes
with better precision and sensitivity. The Nine two-class
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classification algorithm trained and validated in this study are
as follows:

1) TWO-CLASS BAYES POINT MACHINE
The Bayes Point Machine (BPM) is a Bayesian linear clas-
sifier, which by using the kernel method, can be used to
convert a Bayesian linear classifier into a nonlinear classifier.
A function mapping an input vector to a predicted label is
designated as a classifier or hypothesis. Moreover, a set of
hypotheses or possible classifiers for a given training data is
termed the version space. In the version space, the margin seg-
regating the positive and negative samples corresponds to the
distance between a data point (classifier) and space’s nearest
margin. The BPM algorithm tends to build a hypothesis by
locating the center of the whole version space. The center of
the entire version space is called the Bayes Point. The BPM
algorithm theory is based on Bayes classification, where the
classifier is selected based on all applicable solutions across
the complete version space [34], [35]. The BPM algorithm
can be mathematically represented as follows:

Suppose we have been given a training set as represented
below in “equation 4 of size, say m.

2=,y = (Y1), e (o, Ym)) € (X x YY" (4)

The Bayes algorithm aims to classify a test instance, say x,
to label y with the lowest expected loss, with weight set as the
posterior possibility as shown in “equation 5 and 6.

Pr1zm=z)(h) ' (%)
Bayes;(x) = argygy Enjzn=[I(H(X), y)] (6)

Here, the loss function is described using “‘equation 7”” shown
below:

1, y#y

l(y’ y/) =
0, y=y

(N

2) TWO-CLASS AVERAGE PERCEPTRON

The Two-Class Averaged perceptron is a supervised learning
algorithm used to classify a tagged dataset into two class val-
ues [36], [37]. The AP algorithm is a type of linear classifier
where the inputs are classified into many outputs based on a
linear predictor function, and later the outputs are combined
with a set of weights derived from the feature vector. The
Average perceptron algorithm begins with a zero prediction
vector, wo = 0. The AP algorithm predicts the label of a new
instance x; as shown in ‘“‘equation 8”’:

y’ :sign(Wthi) (8)

If the predicted value of x; differs from the original label y;,
the AP algorithm updates the prediction vector to the one
shown using “‘equation 9”:

wt+1 «— Wt + r(yixi) )

If the predicted value is correct, then “w” is not changed.
The process then repeats with the next example. A mathe-
matical expression of the implementation of the Two-Class
Averaged perceptron algorithm is shown below:
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Input: A sequence of training examples (x1, y1), (x2, y2),

Where allxi € W%, yi € {—1, 1}

Here Xi is i instance and yi is its corresponding class label
in the dataset
In the current study case, the perception algorithm -1 signi-
fies Low-Risk diabetes, and +1 signifies high-risk diabetes.
1. Initialize wo = 0 € RY
2. for each training example (x;, y;) :

1. Predicty’ = sgn(w! x;) (10)
2.Ify #yi:

Updatew; +1 < W; + r(yvixi)
3.Return final weight vector (11

Here, (yi, and x;) in the above equation signifies:

A mistake on positivew; +1 <« W, + rxi (12)

A mistake on positivew; +1 < W; — rxi  (13)

While “r” represents a learning rate, which is a small
positive integer <1

The equation y’ # y; updates only on error. The average
perceptron is a mistake- driven algorithm. The mistake can
be written as

yiwlx; <0 (14)

3) TWO-CLASS DECISION FOREST

The decision forest (DF) algorithm is an ensemble-learning
method used for solving two-class classification prob-
lems [38]. Typically, ensemble-learning provides a better
generalized and accurate model as compared to single deci-
sion trees based models. There are many ways in ensemble
learning to create individual models and combine them in
an ensemble. A decision forest algorithm-based ensemble
model is implemented by making several decision trees and
then using voting, a better-known method for generating
the results in an ensemble model. In the Two-Class deci-
sion forest, the bagging technique was selected to generate
many individual trees. In bagging, the original dataset is
randomly sampled with replacement until the new dataset’s
size is equivalent to the original dataset. Thereby, using each
newly sampled data, an ensemble of trees is grown for voting
the most voted output class label. The bagging equation is
depicted using “‘equation 15,” provided x is the training data,
x' is the test data, and b is the number of times resampling
(bagging) is performed.

B

1 !
=5 ;ﬂ?(x ) (15)

In the decision forest, a forest with a “T” number of trees,
we have t € {I, - - -, T}). Each tree in the decision forest is
trained individually (and possibly in parallel). All through the
testing phase, each test point v is concurrently passed across
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each tree from the root node to its corresponding leaves.
Individual tree predictions are combined into a single forest
prediction by multiplying the tree output together using a
partition function z, thereby confirming probabilistic normal-
ization as shown by “equation 16”. The trees with higher
prediction confidence will have a more considerable weight
in the ensemble model’s final output prediction.

T
plelv) = %Ept(cm (16)

4) TWO-CLASS LOCALLY DEEP SUPPORT VECTOR MACHINE
Two-Class Locally Deep Support Vector Machine is a super-
vised learning algorithm that builds a two-class, nonlinear
support vector machine (SVM) classifier optimized for better
output prediction [39]. The LD-SVM model was developed
by applying the localized multiple kernel learning method
to enhance the nonlinear SVM prediction. The following
optimization formula, as shown in “equation 17,” enables
an exponentially faster training of the LD-SVM model as
compared to training standard linear SVM models.

. w A0
th/1}91f19/P(W,9,9’) =T w'w) + ST )

+ %/Tr (9” 9/)

N
+ ) L0 ¢ )W x) (17)

i=1

5) TWO-CLASS SUPPORT VECTOR MACHINE

The support vector machine is a supervised machine learning
method used for solving both classification and regression
problems. In the two-class Linear SVM algorithm, the data
points with similar properties are clustered into two data clus-
ters. A linear SVM model’s basic idea is that the data point
is considered an n-dimensional vector space separated into
two-classes using a maximum of n-1 planes called hyper-
planes. The selection of an optimal hyper-plane depends
on the distance between the two classes that it segregates.
The plane that creates a maximum margin between the two
classes is called the maximum-margin hyper-plane. In a mul-
tidimensional classification or regression problem, the SVM
algorithm performs a classification or regression by con-
structing an optimal multidimensional hyperplane that opti-
mally discriminates between two classes by maximizing the
two data clusters’ margin. Figure 2 represents an example of
a non-separable two-dimensional vector space that turns into
separable once the lower dimensional input vector space is
converted into a multidimensional vector space.

The SVM algorithm attains higher classifying power by
using certain special nonlinear kernel functions (namely
polynomial, Radial basis functions (RBF), and sigmoid)
to convert the input lower-dimensional space into a
higher-dimensional space [40]. For example, mathematically
for “n” data points, the SVM algorithm can be implemented
as follows:
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Feature Space
Input Space

FIGURE 2. The conversion of the non-separable low-dimensional vector
space into a separable multi-dimensional vector space using the SYM
algorithm.

Here “N” data points in Linear SVM are represented by
“equation 18”’:

IR 2) T (X Y1) (18)

Here x is the real vector, and y; can be 1 or -1, representing
the response variable to which x; is categorized.

A hyperplane to maximize the margin between the
two classes y = 1 and y = -1, can be represented by
“equation 19”:

WX —-b=0 (19)
Here W represent a normal vector and ”]’7” is offset of hyper-

plane alongside .

6) TWO-CLASS DECISION JUNGLE
The Two-Class Decision Jungle is a supervised ensemble-
learning algorithm [41], [42]. The DJ algorithm is an exten-
sion of the Random forest-based machine learning model.
Here, in place of trees as in the RF algorithm, the DJ algo-
rithm comprises of Directed Acyclic Graphs (DAGs). In the
DJ algorithm, the DAGs are chosen as the base classifiers.
The DJ has the following advantages over the decision forest
algorithm:
1. The DAG architecture in the DJ algorithm is far more
memory-efficient, therefore improved performance.
2. The nonlinear decision boundaries can be represented by
using the DJ algorithm.
3. Using the DJ algorithm, both integrated feature selection
and classification can be executed.

Mathematically the DJ algorithm is represented as follows:

A decision jungle is an ensemble of m random decision
DAGs Gy,..., Gy, i.e., ] = (Gy,..., Gn). A classifier fj in
an ensemble J = (Gy,..., Gy) can be defined as shown in
“equation 20”’:

m
f R {1, Ch X =8 S T e fGitv)
i=1
(20)
Here || is the indicator function, as shown in “‘equation 21°:

1, if x=
I, y) = fx=y @1
0, otherwise
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Consider ry,..., ry be the root nodes of classifier Gy,..., Gp,.
Correspondingly, we can define the empirical decision con-
fidence for ensembles, as shown in “‘equation 22”’ analogous
to a single DAG (fy).

1
pl iR > R X1 =) (i) (22)

i=1

7) TWO-CLASS LOGISTIC REGRESSION

The logistic regression algorithm is a well-known supervised
learning technique used to predict an outcome’s probabil-
ity in different classification problems [43]. In most cases,
the logistic regression algorithm is used to solve a two-class
classification problem. The logistic regression algorithm
is based on the linear regression model represented using
“equation 23 as follows:

P=a+p x14+p x1+4+..... + BinXm (23)

The LR algorithm fits the training data to a logistic sig-
moid function and predicts the target categorical dependent
variable’s probability. The estimated probability of the target
variable in Logistic regression varies from 0 to 1. Moreover,
a threshold is set to classify a particular instance into a
specific target class. Depending on the threshold, the obtained
estimated probability is classified into a specific target class.
The estimated predictive value for a given xi value can be
interpreted as sample xi’s chances to be a member of a target
class variable. Let us say, if the predicted value of a sample
x11is > 0.5, then classify the sample under the ““at high-risk”
category else under the “at low-risk” diabetes category. The
main ‘“‘equations 24, 25, and 26" of the LR algorithm are
shown below:

Pr(Y = +1|X)"8.X and Pr(Y = —1|X) =Pr

x (Y = +1|X) (24)
Jokx):= = € [0, 1] (the sigmoid function) (25)
Pr(Y = +1|X) 7 0(B.X) and Pr(Y = —1|X) =1

—Pr(Y = +1X) (26)

In this study, we have two categorical dependent variables,
namely high-Risk and Low-Risk diabetes groups. Here “Y”
signifies the dependent target variable ‘“High-Risk™ diabetes
group. While “X” in equation 8 represents the independent
explanatory variable in the dataset. Every independent vari-
able “X” is assigned a coefficient value “B” representing
weight. Different weights represent the different correlations
between variables X and Y.

8) TWO-CLASS BOOSTED DECISION TREE

A boosted decision tree is an ensemble learning technique for
solving regression and classification problems. In a boosted
decision algorithm, each weak learner is combined iteratively
to form a single strong learner [44]. The boosted decision
tree algorithm aims to build a decision tree using gradient
descent to minimize the expected value of a specific loss
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function (L(y, F(x)). The pseudo-code of the boosted deci-
sion tree algorithm in Azure Machine Learning studio classic
is as follows:

Input: training dataset{(x;, y;)}?__, {(x;, ¥:)}7_,, number of
iterations “M” and a differentiable loss functionL(y, F(x))

Algorithm:

1. Initialize the training model with a constant value as

shown in “equation 27”:

n
Fo(x) = argmin ) | L(yi. 7). 27)
Yooz

2. For values of “m” ranging from 1 to M:
1. Calculate the pseudo-residuals as shown in “equation

28”:
[ IL(yi, F(xi))
Fim=—| =

fori=1,...,n.
F (x;)

L(x)sz_ 1)
(28)

2. Fit a base classifier, i.e., an individual tree (%,,(x)to
pseudo-residuals (train the classifier using the train-
ing set {(x;, rim)}?zl {(xi, rim)}?:]

3. Calculate multiplier y,, by changing the follow-
ing one-dimensional optimization problem as shown
using “‘equation 29”:

n
Y = argmin Y L (i, Fu1(6) + yhn(x) (29)
[

4. Update the model using “‘equation 30”:
Fin(x) = F—1(x) + Yimhm(x). (30)
5. Output
Fu(x). 31

9) TWO-CLASS NEURAL NETWORK

The two-class Neural Network is a supervised learning tech-
nique to create a NN model that includes a labeled target
variable column (class) with two values [45]. For instance,
the two-class neural network model can be used to predict
binary outcomes, for example, as in our case, whether or
not a subject is at high risk of diabetes. The structure of the
neural network comprises a set of interconnected layers of
multiple nodes. All of these nodes can transfer information
to each other. The input layer (first layer) is connected to
an output layer by an acyclic graph consisting of weighted
nodes and edges. The nodes and edges are weighted based on
their importance or strength in the system. The data travels
from an input to an output layer via multiple middle layers
known as hidden layers, every layer of the hidden layer
transform the data into some appropriate information, and
finally, we get our desired output. The association between
inputs and outputs is realized after training the NN model
on the input data using two specialized functions: transfer
and activation function. The transfer function sums up all
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the weighted inputs from previous layers, as shown using
“equation 32”:

n
z= Z wix; + wpb (32)

x=1

Here in the above equation, “b” corresponds to a bias value
that is generally 1.

An activation function further applied to the weighted sum,
which typically flattens the transfer function’s output to a
linear or nonlinear range. A typical activation function is
represented by “equation 33”’:

f@=z (33)

Further, a sigmoid function is used to provide limits to the
data as the activation function does not provide the same. The
sigmoid function can be represented by “equation 34”’:

1
14+e2

a=o0() = (34
E. CLASSIFIER PERFORMANCE MEASURES EVALUATION
In our case, both precision and recall are essential since we
were interested in finding the association of the target vari-
able (high risk of diabetes) with the explanatory variable(s).
So, we selected a classification algorithm that maximizes
an F1 score metric, a harmonic mean of both recall and
precision [46]. A set of classification algorithms was screened
based on the F1 score, and the algorithm with the highest
F1 score was selected. The ““equations 35-37” were used to
determine the following matrices, namely recall, precision,
and F-measure, respectively.

. TP
Precision = ——— 35)
(TP 4+ FN)
TP
Recall = ——— (36)
(TP + FP)

precision.recall

F1 Score = 2 (37)

"precision + recall

The separating ability of the classification-algorithms can
be quantified using an Area under the Curve (AUC) value,
amodel performance measure whose value ranges from 0 to 1
with a value close to 1 indicating that the model is better
at achieving a blend of recall and precision (i.e., indicating
better classification performance).

F. TUNING HYPERPARAMETERS OF BEST PERFORMING
ALGORITHM

The classifier selected based on the ability of the classifier to
classify sample at high risk of diabetes with greater sensitivity
and precision will be tuned using the training survey dataset
and 10-fold cross-validation method to obtain the optimal
set of hyperparameters that yields the highest sensitivity and
precision in classifying sample at high risk of diabetes.
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G. COMPARING THE PERFORMANCE AND ADAPTABILITY
ON ANOTHER DATASET

To demonstrate our proposed ML-based application’s adapt-
ability to predict the risk of diabetes on different diabetes
datasets, we compared our model with the SVM-based
online-predictive application [24] for discriminating pre-
diabetes Non-diabetes cases (Scheme II). We used the
same National Health and Nutrition Examination Sur-
vey (NHANES) dataset [47] used to build the SVM model.
Initially, we selected the same fourteen common diabetes risk
factors for developing the SVM-based predictive model, sim-
ilar data preprocessing, and feature selection techniques to
preprocess the data. Moreover, the features employed to build
the SVM-based model were similar to our set of selected fea-
tures, namely Smoking, Healthy diet, Blood-Pressure (BP),
Body Mass Index (BMI), Gender, and Region. We performed
the only extra step to balance the response variable (Class)
using the SMOTE algorithm. The class balancing was per-
formed since the prediabetes number was comparatively
lesser than that of non-diabetes (prediabetes = 1709 and pre-
diabetes = 3209). Post-processing, NHANES data was seg-
mented into 80 % training sample to train our best performing
model, and the remaining 20 % NHANES independent test
data was used to validate our proposed model.

To demonstrate our model’s prediction accuracy and adapt-
ability, we applied our model in a new secondary diabetes
dataset taken from https://www.kaggle.com/uciml/pima-
indians-diabetes-database. Pima Indian Diabetes (PID)
dataset has been widely used for building predictive models
for the diagnosis of diabetes [48]. We preprocessed the
dataset by transforming the attribute ‘“‘number of pregnan-
cies” from numeric into Boolean (where O indicates non-
pregnant, and 1 indicates pregnant). The attributes with
missing values were replaced using the mean or median
value from the PID dataset’s corresponding attribute column.
As there is a class imbalance; therefore, the class balancing
algorithm SMOTE was applied to create a balance between
the class values. Finally, we used the Z-score normalization
to normalize the numeric variable data points. The following
formula was used to normalize the data points of the numeric
variables, as shown in “equation 38:

value — X'

Value' = ——— (38)
s

X’ is the mean value for the attribute, and ‘s’ is the standard
deviation (SD). Value’ is the new normalized data point of the
numeric variable.

H. WEB-BASED CLASSIFICATION APPLICATION

The best performing model was implemented as a
web-based application called “T2DM Risk Predictor”
using Azure Machine learning Web Services. Our appli-
cation made live on Heroku at https://type2-diabetes-risk-
predictor.herokuapp.com. A score probability of the outcome
variable (high risk of diabetes) and a corresponding output
label is generated for an end-user. If the predicted outcome’s
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scoring probability is > 0.5, then the end-user will be classi-
fied as a subject at a high risk of diabetes group. Concurrently,
if the target class’s end-user scoring probability is less than
0.5, the subject is classified under the diabetes group’s low
risk.

IIl. RESULTS AND DISCUSSION

A. ANALYZING THE RELATION OF THE EXPLANATORY
VARIABLE “REGION” WITH THE CLASS VARIABLE

Null hypothesis: (Hg) = There is no relation between the
region and individuals’ membership in high-risk and low-risk
diabetes (independent).

Alternate hypothesis: (H;) = There is a relation between
the region and the membership of individuals in the High-risk
and Low-risk groups of diabetes (dependent).

The Chi-square test and Cramer V test were used to inves-
tigate the association between the subject belonging to the
Urban-Rural location and the risk of diabetes [49].

TABLE 1. Representing the association of the explanatory variable
“Region” categories with the class variable.

Region * Class Crosstabulation

Class Total
NO YES
Region Abwa Count 305 57 362
Expected (0.91)288.8  (3.59)73.2 362.0
Count
Jeddah Count 845 212 1057
Expected (0.003) (0.014) 1057.0
Count 8433 213.7
Khulays Count 209 49 258
Expected (0.05)205.8  (0.196) 52.2 258.0
Count
Medina Count 350 65 415
Expected (1.08)331.1  (4.26)83.9 415.0
Count
Masturah Count 320 87 407
Expected (0.068) (0.27) 82.3 407.0
Count 324.7
Mecca Count 447 127 574
Expected (0.26)457.9 (1.02) 116.1 574.0
Count
Rabigh Count 461 172 633
Expected (3.83) 505.0 (15.13) 633.0
Count 128.0
Sabar Count 346 72 418
Expected (0.47) 3335  (1.85)84.5 418.0
Count
Thual Count 297 76 373
Expected (0.001) (0.005) 75.4 373.0
Count 297.6
Yambu Count 326 73 399
Expected (0.19)318.3  (0.73) 80.7 399.0
Count
Total Count 3906 990 4896
Expected 3906.0 990.0 4896.0
Count

The exact x2 value for each of the cells in the ten by
two contingency table of variables (region and Class) was
estimated as shown within parenthesis in Table 1, and then
the individual cells x2 value was summed to obtain the
final Chi-square value (x2 = 33.934) of association between
Region and Class. The degree of freedom for the ten by two
contingency table was calculated (({10-1} x {2-1}) = 9) and
was found to be 9. The exact significance of the Chi-square
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value (x2=33.934) for the “9” Degree of Freedom (df) was
calculated using SPSS and was found to be P = 0.000092
(p < 0.0001) shown in Supplementary Table 1 (A).

As the P-value of the contingency table is less than P <
0.0001, we accept the alternate hypothesis and reject the null
hypothesis. The Cramer’s V test was performed to check
the strength of the Chi-square-based measure of association
between two dependent variables (Region and Class). The
Cramer’s V test obtained a significant (P < 0.0001) corre-
lation value of 0.083 between the two dependent variables,
as shown in Supplementary Table 1 (B). A significant Chi-
square value (P < 0.0001) offers evidence that the two vari-
ables (Region and Class) are not independent. However, a
significantly lower Cramer’s V test value signifies a weak
relationship between the two dependent variables. Never-
theless, the results do not specify what contributes to an
overall statistically significant relationship between the two
dependent variables (Class and Region).

To look into the reasons, we looked into each cell x 2 values
of Table 1. We found that the largest x 2 value of 15.13 occurs
in the cell that reflects the relationship of the class “High-risk
of diabetes” with the subjects of Rabigh. The larger x2 value
for this cell can be attributed to a higher number of observed
“High-risk™ cases (observed = 172) while a lesser number of
“High-risk” expected by chance (Expected = 128). More-
over, a greater Chi-square value of 3.83 in the cell reflects
a relationship of “high-risk diabetes” class with subjects
belonging to Rabigh. The Chi-square value of the cell signify-
ing the relation, as mentioned earlier between two variables,
can be attributed to a significantly lower number of observed
cases (observed = 461) than the expected (Expected = 501)
numbers obtained by chance. As mentioned above, the result
signifies that a significantly lower number of subjects were
normal (i.e., having a low-risk of diabetes) than would
be expected if the variable were independent. Therefore,
the x2 values from both the cells indicate a higher risk
for subjects of Rabigh to suffer from diabetes than would
be expected if the null hypothesis is true. Similarly, we
observe mecca also has a Chi-square value greater than 1.0
(x2 = 1.01) that suggests a greater number of observed cases
belonging to the “high risk” group (Observed = 127) than
the expected value obtained by chance (Expected = 116).
Thus, Mecca’s subjects have a higher tendency to suffer from
diabetes than would be expected if the two attributes (Class
and Region (Mecca)) are independent. Additionally, we also
observed three x 2 values greater than 1.0 for cells reflecting
the number of subjects at high risk of diabetes in Medina
(x2 =4.26), Abwa (x2 = 3.6), and Sabar (x2 = 1.85). In the
above-mentioned cells, we discover that the observed values
are lower than the expected for Medina (Observed = 65,
Expected = 83.9), Abwa (Observed = 57, Expected = 73.2)
and Sabar (Observed = 72, Expected = 84.5). The above
results signify that a significantly lower number of subjects
in these regions tend to suffer from diabetes than expected if
there is no relation between region and class.
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None except those mentioned above have a cell Chi-square
value higher than 0.99. The cells in the table with a Chi-
square value less than 1.0 must be interpreted as the number
of the observed cases approximately equal to the number of
expected cases, implying a marginal or no relation between
the variables, i.e., the null hypothesis is valid for these cells.
The overall results of Table 1 show that Rabigh and Mecca’s
subjects have a significantly higher tendency to suffer from
diabetes than people belonging to Medina, Abwa, and Sabar.
Thus, for subjects belonging to Rabigh, Mecca, Abwa, Sabar,
and Medina, we accept the alternative hypothesis and reject
the null hypothesis. Thus, we can say that the weak associa-
tion between the subjects belonging to urban and rural areas,
namely Rabigh, Mecca, Abwa, Sabar, and Medina, with the
dichotomous class (High-risk and Low-risk groups) lead to
an overall statistically significant association between the two
variables (Region and Class).

B. ANALYZING THE RELATION OF THE EXPLANATORY
VARIABLE “AGE” WITH THE CLASS VARIABLE
Null Hypothesis (Hp) = There is no relation between age and
the membership of subjects in the High-risk and Low-risk
groups of diabetes (independent)

Alternate Hypothesis (H1) = There is a relation between
age and the membership of individuals in the High-risk and
Low-risk groups of diabetes (dependent)

TABLE 2. Representing the association of the explanatory variable “Age”
categories with the class variable.

Age * Class Crosstabulation

Class Total
NO YES
Age <40 years Count 948 219 1167
Expected (0.31)931.0 (1.22) 1167.0
Count 236.0
40 -49 Count 1028 214 1242
Years Expected (1.39)990.9 (5.48) 1242.0
Count 251.1
50 - 60 Count 872 243 1115
Years Expected (0.34) 889.5 (1.22) 1115.0
Count 225.5
> 60 Years Count 1058 314 1372
Expected (1.27) (4.83) 1372.0
Count 1094.6 2774
Total Count 3906 990 4896
Expected 3906.0 990.0 4896.0
Count

The Chi-square test and Cramer V test were used to inves-
tigate the association of age and the risk of diabetes between
various age groups [50]. The Chi-square value for each of
the cells present in the 4 x 2 contingency table comprising
of variables (Age and Class) was estimated (shown within
parenthesis) and then summed to obtain the final Chi-square
value (x2 = 16.16) as shown in Table 2. The degree of
freedom for the four by two contingency table was calculated
{[(4-1) x (2-1)] = 3} and was found to be 3. The exact
significance of the Chi-square value (x2=16.6) for three df
was calculated and was found to be P = 0.001047 (p < 0.05)
shown in Supplementary Table 2 (A). A Cramer’s V test was
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performed to check the strength of the chi square-based mea-
sure of association between the two dependent variables (Age
and Class). The Cramer’s V test obtained a significant (P =
0.000849, i.e., P < 0.05) but smaller Cramer’s V value (0.057)
[shown in Supplementary Table 2 (B)], indicating a rel-
atively weaker relationship between the two dependent
variables.

As the P-value of the contingency Table 2 is less than
P < 0.05, we reject the null hypothesis (HO) and accept
the alternate hypothesis (H1), which states: “There is a
relation between age and the membership of individuals in
the “high-risk and low-risk of diabetes groups.” Besides,
the Cramer’s V correlation value obtained between the
two variables signifies a weak but statistically significant
(P < 0.05) relationship. Nevertheless, the Chi-square and
Cramer’s V test results do not explain the reason behind
achieving an overall weak but statistically significant asso-
ciation between the two, not independent variables (Class
and Age). To explain the possible reasons behind a weak but
significant relationship between the variables, we looked into
each cell x2 value of Table 2. We observed that the highest
x 2 value of 4.83 occurs in the cell that reflects the association
of the outcome, i.e., High-risk of diabetes with a category
(age of the subject > 60 years) of the Age variable. A higher
x2 value for the cell mentioned above can be attributed
to a significantly higher number of observed ‘“High-risk”
cases (Observed = 314) than the expected value (Expected =
277.4) obtained when the variables are independent. More-
over, a Chi-square value greater than 1.0 (1.27) in another
cell which represents an association of the occurrence (i.e.,
Low-risk of diabetes) with the dependent variable (the age of
the subject > 60 years) yields a significantly lower number
of observed “High-risk” cases (Observed = 1058) than the
expected value obtained by chance (Expected = 1094.6). The
x 2 values in the cells described above signify that the subjects
with age greater than sixty have a higher risk of suffering from
diabetes than other age groups.

Likewise, we observe that subjects varying in age between
50 - 60 years also have the chi-square value greater than 1
(x2 = 1.22) that suggests a significantly higher number of
observed “High-risk’ cases than the expected value obtained
by chance (Observed = 127, Expected = 116). Thereby,
a higher risk of diabetes for subjects whose ages vary from
50 to 60 years than would be expected by chance (i.e., the null
hypothesis is correct). Additionally, we also observed three
x2 values greater than 1.0 in cells reflecting the association
of the subjects with the phenomenon (membership of subjects
of the different age groups in “High-risk” and ‘“‘low-risk”
groups). The subjects varying between age 40 to 49 years
show a Chi-square value of 1.39 and 5.48 for the “low-
risk” and “High-risk” class. We observed that in the age
group (40 to 49 years), the observed values are lower than
the expected value for the subjects in the “High-risk” group
(Observed = 214, Expected = 251.1).

On the other hand, subjects under the “Low-risk” group
have an observed number of low-risk cases higher than
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the expected value obtained by chance (Observed = 1028,
Expected = 990.9). The subjects under the age group
of 40 years show a lower observed value of high-risk cases
than the expected value obtained by chance. These results
signify that a significantly lower number of subjects in the
two age groups (i.e., < 40 years and 40 to 49 years age
groups) have a lesser chance to suffer from diabetes than
would be expected if there no relation between the dependent
variables (Age and Class). None, except those mentioned
above, have a cell Chi-square value greater than 1.0. The cells
in the table with a Chi-square value less than 1.0 must be
inferred as the number of the observed cases approximately
equal to the expected number of cases, implying that there is
relatively no association between the variables, i.e., the null
hypothesis is valid for these cells.

The overall results of Table 2 show that subjects belonging
to age groups 50 to 60 years and above 60 years have a
significantly higher tendency to suffer from diabetes than
subjects belonging to age groups 40 to 49 years and below
40 years [51]. Thus, we conclude that a significant but weak
correlation between the age group as mentioned above is
expected since the occurrence of subjects in the two groups
(High-risk and Low-risk groups) are partially dependent
(i.e., lower Chi-square values) on the given variables (Age
and Class).

C. ANALYZING THE RELATION OF THE EXPLANATORY
VARIABLE “GENDER” WITH THE CLASS VARIABLE
Null Hypothesis (Hy) = There is no relationship between
gender and the membership of high-risk and low-risk diabetes
(independent).

Alternate Hypothesis (Hy;) = There is a relationship
between gender and individuals’ membership in high-risk and
low-risk diabetes (dependent).

TABLE 3. Representing the association of the explanatory variable
“gender” categories with the class variable.

BMI * Class Crosstabulation

Class Total
NO YES
BMI Lower than 25 Count 342 64 406
kg/m2 Expected (1.01) (4.0)82.1  406.0
Count 3239
2530 kg/m2 Count 1876 463 2339
Expected (0.05) 0.21) 2339.0
Count 1866.0 473.0
> 30 kg/m2 Count 1688 463 2151
Expected (0.46) (1.82) 2151.0
Count 1716.1 434.9
Total Count 3906 990 4896
Expected 3906.0 990.0 4896.0
Count

The Chi-square and Cramer V tests were used to examine
the association between gender and the risk of diabetes in
different gender types [52]. The Chi-square value of the
2 x 2 contingency table between the two variables (Gender
and Class) tabulated in Table 3 was estimated by summing
each cell’s chi-square values (shown within parenthesis).
The exact Chi-square value with and without continuity
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correction of the 2 x 2 contingency table was calculated
and was found to be 10.878 and 11.13, respectively. The
degree of freedom for the 2 X 2 contingency table was calcu-
lated {[(2-1) x (2-1)] = 1} and was found to be 1. The exact
significance (2-sided) value of the Chi-square values with
continuity (x2=10.878) and without continuity correction
(x2=11.13) for the one df was calculated and was found
to be P = 0.000849 (p < 0.05) as shown in Supplementary
Table 3 (A). A Cramer’s V test was performed to check
the strength of the Chi-square-based measure of association
between two dependent variables (Gender and Class). The
Cramer’s V test obtained a significant (P = 0.000849) but
smaller Cramer’s V value (0.048) [shown in Supplementary
Table 3 (B)] indicating a weaker association between the two
dependent variables.

Since the P-value of the 2 x 2 contingency table showing
a relation between gender and class is less than P < 0.05,
we thereby reject the null hypothesis and accept the alternate
hypothesis, which states that “There is a relationship between
gender and the membership of individuals in the High-risk
and Low-risk groups.” Moreover, the Cramer’s V correla-
tion value between the two variables signifies a weak but
statistically significant (P < 0.05) association. Nevertheless,
the Chi-square and Cramer’s V test results do not provide an
appropriate explanation for a weak but statistically signifi-
cant association between the two, not independent variables
(Gender and Class).

To understand the possible reasons behind a weak but
significant relationship between the two dependent variables,
we looked into each cell x2 value of Table 2. We detected
that the most substantial x2 value of 6.06 occurs in the cell,
reflecting the association of the target variable (High-risk
of diabetes) with the explanatory variable (Gender-Female).
A higher x2 value for the cell mentioned above can be
attributed to a significantly lower number of observed “High-
risk” cases (Observed = 270) than the expected value
(Expected = 316.6) obtained considering there is no relation
between the two variables. Moreover, a Chi-square value
greater than 1.0 (x2 = 1.27) in a cell that represents an asso-
ciation of female subjects with a “Low-risk” group returns
a higher number of observed “Low-risk” cases (Observed
= 1281) than expected obtained by chance (Expected =
1237.4). The x 2 values obtained from the cells, as mentioned
earlier, signify that the female subjects have a weak but
negative association with the “High-risk” group than with
the “Low-risk” group where it shows a weak but positive
association.

Likewise, we observe that subjects belonging to gender
males also have the Chi-square value greater than 1.0 (x2 =
2.81) that suggests a significantly higher number of observed
“High-risk™ cases (Observed = 127) than would be expected
(Expected = 116) provided the null hypothesis is correct.
The results show that males have a higher association with
diabetes than would be expected if the variables are inde-
pendent. Not any, except those mentioned above, have a cell
Chi-square value greater than 1.0. The cells in the table with
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a Chi-square value less than 1.0, implying that the number
of the observed cases is nearly equal to the expected cases,
and hence there is a marginal association between the vari-
ables, i.e., the null hypothesis is correct for these cells. Thus,
on the whole, we can conclude from the 2 x 2 contingency
Table 3 that females have a lower but statistically significant
association with the “High-risk” group than males or vice
versa. Furthermore, it should be noted that a weak correla-
tion obtained is expected since the phenomenon ‘“‘Risk of
diabetes” (class) is only partially associated with gender
(independent variable).

D. ANALYZING THE RELATION OF THE EXPLANATORY
VARIABLE “BMI” WITH THE CLASS VARIABLE
Null Hypothesis (Hyp) = There is no relation between BMI
and high-risk subjects’ membership and low-risk diabetes
(independent).

Alternate Hypothesis (H1) = There is a relationship
between BMI and the membership of high-risk and low-risk
diabetes (dependent).

TABLE 4. Representing the relation of the explanatory variable “BMI”
categories with the class variable.

BMI * Class Crosstabulation

Class Total
NO YES
BMI Lower than 25 Count 342 64 406
kg/m2 Expected (1.01) (4.0) 82.1 406.0
Count 3239
2530 kg/m2 Count 1876 463 2339
Expected (0.05) (0.21) 2339.0
Count 1866.0 473.0
> 30 kg/m2 Count 1688 463 2151
Expected (0.46) (1.82) 2151.0
Count 1716.1 4349
Total Count 3906 990 4896
Expected 3906.0 990.0 4896.0
Count

The Chi-square and Cramer V tests were used to study the
association between BMI and the risk of diabetes in different
BMI groups [53]. The Chi-square value of each cell in the 3 x
2 contingency table was estimated (shown within parenthesis)
and summed to compute the total Chi-square value of the
contingency Table 4. The exact Chi-square value of the 3 x
2 contingency table was found to be 7.531. The degree of
freedom for the three by two contingency table was calculated
{[(3-1) x (2-1)] = 2} and was found to be two, as shown
in Supplementary Table 4 (A). The exact asymptotic signif-
icance (2-sided) value of the Chi-square value (x2=7.531)
for the 2 df was worked out to be P = 0.023159 (p < 0.05)
[shown in Supplementary Table 4 (B)].

A Cramer’s V test was performed to check the strength of
the Chi-square-based measure of the association between two
dependent variables (BMI and Class). The Cramer’s V test
obtained a significant (P = 0.023159) but lesser Cramer’s V
value (0.039), indicating a weaker association between the
two dependent variables. As the P-value of the 3 x 2 con-
tingency table showing the relation of BMI and the outcome
variables is less than P < 0.05, we thereby reject the null
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hypothesis and accept the alternate hypothesis: “There is a
relationship between BMI and the membership of individu-
als in the “High-risk” and “High-risk™ groups.” However,
the Cramer’s V correlation value between the two variables
signifies a weak but statistically significant (P < 0.05) asso-
ciation. Still, the Chi-square and Cramer’s V test results do
not explain the reasons for attaining a statistically significant
relationship between the two dependent variables (BMI and
Class).

To understand the possible reasons for a weak but sig-
nificant relationship between the two dependent variables,
we looked into each cell x2 value of Table 4. We observed
that the cell that reflects the association of the “High-risk™
group with the BMI category (lower than 25 kg/m2) shows
the most substantial x 2 value of 4.0. A smaller x 2 value for
this cell can be attributed to a significantly lower number of
observed ‘“High-risk™ diabetes cases (Observed = 64) than
the expected number obtained by chance (Expected = 82.1).
Moreover, a Chi-square value greater than 1.0 (x2 = 1.01) in
the cell which represents an association of the phenomenon
(occurrence of subjects in the “Low-risk group) with the
BMI category (less than 25 kg/m2) yields a significantly
lesser x2 value due to a lower number of observed “‘Low-
risk” cases (Observed = 1058) than the expected cases
obtained by chance (Expected = 1094.6). The x2 values
in the cells mentioned above signify that the subjects hav-
ing a BMI lesser than 25 kg/m2 have a higher tendency
to remain healthy, i.e., free from the risk of diabetes, than
would be expected if the two variables are independent.
Also, we observe that subjects having a BMI higher than
30 kg/m2 also have the Chi-square value greater than 1.0
(x2 = 1.82) that suggests a significantly higher number
of observed “High-risk cases (Observed = 463) than the
expected value (Expected = 434.9). Thereby, a higher ten-
dency of subjects having a BMI greater than 30 kg/m2 to
suffer from diabetes would be expected if the null hypothesis
is correct.

Nothing, except those cells mentioned above, have a cell
Chi-square value greater than 1.0. The cells in the table with
a Chi-square value less than 1.0 are inferred as the number
of observed cases is almost equal to the number of expected
cases; this means that the two variables are independent,
and there is no association between the variables. In total,
the results of Table 4 show that subjects with a BMI lesser
than 25 kg/m2 have a significantly lower risk of suffer-
ing from diabetes than subjects having a BMI higher than
30 kg/m2 [53]. However, the weaker association between the
variables mentioned above is expected since the outcome is
only weakly associated with BMI.

E. ANALYZING THE RELATION OF THE EXPLANATORY
VARIABLE “WAIST SIZE” WITH THE CLASS VARIABLE

Null Hypothesis (Hy) = There is no relation between waist
size and high-risk subjects’ membership and low-risk dia-
betes (independent).
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Alternate Hypothesis (H1) = There is a relationship
between waist size and high-risk subjects’ membership and
low-risk diabetes (dependent).

TABLE 5. Represent the relation of the explanatory variable “Waist Size”
categories with the class variable.

Waist Size * Class Crosstabulation

Class Total
NO YES
Waist Under 94 cm Count 1227 343 1570
Size 37" Expected (0.52) (2.05) 1570.0
Count 1252.5 317.5
94-102 cm (37- Count 1334 369 1703
40") Expected (0.45) (1.64) 1703.0
Count 1358.6 3444
Over 102 cm Count 1345 278 1623
(40") Expected (1.87) (7.68) 1623.0
Count 1294.8 328.2
Total Count 3906 990 4896
Expected 3906.0 990.0 4896.0
Count

The Chi-square and Cramer V tests were used to report
the association between Waist Size and the risk of diabetes
in different waist size groups [54]. The Chi-square value of
every single cell of the 3 x 2 contingency table was calcu-
lated (shown within parenthesis) and summed to compute the
overall Chi-square value of Table 5. The overall Chi-square
value of the 3 x 2 contingency table was found to be 14.403.
The degree of freedom for the three by two contingency table
was calculated {[(3-1) x (2-1)] = 2} and was found to be 2.
The asymptotic significance (2-sided) value of the Chi-square
value (x2=7.531) for the two df was calculated and was
found to be P = 0.000746 (p < 0.05) as shown in Supplemen-
tary Table 5 (A). A Cramer’s V test was performed to check
the strength of the Chi-square-based measure of the associa-
tion between two dependent variables (Waist Size and Class).
The Cramer’s V test obtained a significant (P = 0.000746)
but lesser Cramer’s V value (0.054) [shown in Supplementary
Table 5 (B)] indicating a weaker association between the two
dependent variables.

As the overall P-value of the 3 x 2 contingency table
depicting a relation between the waist size and the outcome
variable is less than P < 0.05, we thereby reject the null
hypothesis and accept the alternate hypothesis: “There is a
relationship between Waist size and the membership of indi-
viduals in the “‘high-risk” and “low-risk’ groups.” Besides,
a significant but smaller value of Cramer’s V signifies a weak
but statistically significant (P < 0.05) relationship between
the two dependent variables. Nevertheless, the Chi-square
and Cramer’s V test results do not explain why attaining a sta-
tistically significant relationship between the two dependent
variables (Waist size and Class). To understand the possible
reason for a weak but significant relationship between the two
dependent variables, we looked into each cell x2 value of
Table 5.

We observed that the largest x2 value of 7.68 occurs in
the cell that reflects the relationship of “high-risk” with
subjects having a waist size greater than 102 cm (40”).
However, in the cell described above, the number of observed
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“high-risk” cases is much lower than expected (Observed =
278, Expected = 328.2). The results signify that a consider-
ably lower number of subjects having waist size over 102 cm
(40’") are at a high risk of diabetes than would be expected
if the null hypothesis is true. Furthermore, we also observed
a Chi-square value greater than 1.0 (x2 = 1.87) of a cell
that represents an association of subjects having a waist
size greater than 102 cm (40”’) with the “Low-risk™ group.
A Chi-square value greater than 1.0 for the cell, as mentioned
above, can be attributed to a significantly higher number
of observed “Low-risk™ cases than would be expected by
chance (Observed = 1345, Expected = 1294.8). The x2 val-
ues in the cells above signify that the subjects having a waist
size greater than 102 cm (40”) have a higher tendency to
remain healthy, i.e., free from the risk of diabetes, than would
be expected if the two variables are independent. This result
is, however, not meaningful as normally obese people who
have a waist size above 102 cm (40”’) have a greater chance of
suffering from diabetes [55]. Moreover, we observe that sub-
jects having waist size 94-102 cm (37°°- 40”"), and waist size
under 94 cm (37”), also have the Chi-square value greater
than 1.0 (x2 = 1.64 and x2 = 2.05). A higher Chi-square
value for both the cells mentioned above can be recognized
by anoticeably higher number of observed ‘“High-risk” cases
than expected by chance in these cells. The results imply a
higher tendency of subjects with waist size (94 to 102 cm)
to suffer from diabetes than expected if the null hypothesis
was true. However, the same explanation provided above is
not valid for a subject having a waist size less than 37 cm,
even though the number of observed “High-risk™ cases is
significantly higher than expected when the null hypothesis
is true. It is generally observed that subjects whose waist size
is less than 37 cm are less likely to develop diabetes [54].

Nothing, except cells mentioned above, have a Chi-square
value greater than 1.0. The cells in the table with a Chi-square
value of less than 1.0 are interpreted as cells that show no
association between the two dependent variables. Overall,
the results of Table 5 show that subjects having a waist size
94- 102 cm (37’- 40”°) have a significantly higher chance to
suffer from diabetes as compared to subjects having a waist
size greater than 102 cm (40°’). Moreover, a weak association
between the variables mentioned above can be extrapolated
because the outcome variable is only partially dependent on
the independent variable (BMI).

F. ANALYZING THE RELATION OF THE EXPLANATORY
VARIABLE “PHYSICAL ACTIVITY” WITH THE CLASS
VARIABLE

Null Hypothesis (Hy) = There is no relation between physical
activity and subjects membership in high-risk and low-risk
diabetes (independent).

Alternate Hypothesis (H;) = There is a relationship
between physical activity and individuals’ membership in
high-risk and low-risk diabetes (independent).

The Chi-square and Cramer V tests were used to report
the association between Physical Activity and the risk of
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TABLE 6. Represent the relation of the explanatory variable “Physical
activity” categories with the class variable.

Physical activity * Class Crosstabulation

Class Total
NO YES
Physical Yes Count 2201 686 2887
Activity Expected (4.53) (17.9) 2887.0
Count 2303.2 583.8
No Count 1705 304 2009
Expected (6.51) (25.71) 2009.0
Count 1602.8 406.2
Total Count 3906 990 4896
Expected 3906.0 990.0 4896.0
Count

diabetes in subjects performing physical activity or not [58].
The chi-square value of the 2 x 2 contingency table between
the two variables (Physical activity and Class) was estimated
by summing each cell’s chi-square values (shown within
parenthesis) in Table 6. The Chi-square values with and
without continuity correction of the 2 x 2 contingency table
were calculated and were observed to be 54.16 and 54.69,
respectively, as shown in Supplementary Table 6 (A). The
degree of freedom for the 2 X 2 contingency table was
calculated {[(2-1) x (2-1)] = 1} and was found to be 1.
The significance (2-sided) value of the Chi-square values
with continuity (x2=54.16) and without continuity correc-
tion (x2=54.69) for the 1 df was calculated and was found
to be P = 1.8524E-13 and P = 1.4119E-13, respectively i.e.,
p < 0.05 [shown in Supplementary Table 6 (B)]. A Cramer’s
V test to check the strength of the Chi-square-based measure
of association between two dependent variables (Physical
activity and Class) was performed. The Cramer’s V test
obtained a significant (P = 1.4119E-13) but smaller Cramer’s
V value (0.106) [shown in Supplementary Table 6], indicating
a moderate relationship between the two dependent variables.

The overall P-value of the 2 x 2 contingency table showing
a relationship between physical activity and the outcome
variable is less than P < 0.05; we thereby reject the null
hypothesis and accept the alternate hypothesis: “There is
a relationship between physical activity and the member-
ship of individuals in the High-risk and Low-risk groups.”
Moreover, the Cramer’s V association strength value obtained
between the two dependent variables signifies a moderate
but statistically significant (P < 0.05) relationship. However,
the Chi-square and Cramer’s V test results do not offer an
appropriate reason for a significant but moderate associa-
tion between the two variables (Physical activity and Class).
To comprehend the possible reasons for a moderate but sig-
nificant relationship between the two dependent variables,
we looked into each cell x 2 value of the contingency Table 6.
We found that a higher x2 value of 25.71 occurs in the cell,
reflecting the association of the “High-risk™ group with the
variable “No physical activity.”” A moderate x2 value for the
cell, as mentioned above, can be attributed to a significantly
lower number of observed “High-risk™ cases (Observed =
304) than the expected value (Expected = 316.6) obtained by
chance.
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Moreover, a Chi-square value greater than 1.0 (x2 =
6.51) in a cell that represents an association of the vari-
able “No physical activity” with the “Low-risk” group
returns a significantly higher number of observed ‘“‘Low-
risk” cases (Observed = 1705) than the expected value
obtained by chance (Expected = 1602.8). As mentioned
earlier, the x2 values obtained from the cells signify that
the subjects with no physical activity have a positive but
moderate association with the “Low-risk” group. The above
results are meaningless since an active subject with at least
30 minutes of physical activity has a lower chance of diabetes
than a subject with no physical activity [55].

Similarly, we also observe that subjects with at least
30 minutes of physical activity have a Chi-square value
greater than 1.0 (x2 = 17.9). A moderate value of Chi-
square, which signifies a moderate association between the
variables, can be attributed to a significantly higher num-
ber of observed ‘“High-risk” cases (Observed = 686) than
would be expected (Expected = 583.8) by chance. Moreover,
a Chi-square value of a cell greater than 1.0 (x2 = 4.51)
that represents a relationship between physical activity and
the “Low-risk™ group returns a significantly higher number
of observed “Low-risk” cases (Observed = 2201) than the
expected value obtained by chance (Expected = 2303.2).
The results mean that the subjects with at least 30 minutes
of physical activity tend to develop diabetes than would be
expected if the variables are independent. Thus, we interpret
that the survey data depicts a moderate and statistically sig-
nificant association between the variables (Physical activity
and Class) but are rationally unrealistic.

G. ANALYZING THE RELATION OF THE EXPLANATORY
VARIABLE “DIET” WITH THE CLASS VARIABLE

Null Hypothesis (Hyp) = There is no relation between a
healthy diet and the membership of high-risk and low-risk
diabetes (independent).

Alternate Hypothesis (H;) = There is a relationship
between the non-healthy diet and individuals’ membership in
high-risk and low-risk diabetes (dependent).

The Chi-square and Cramer V tests were used to study
the association between Healthy diet habits and the risk of
diabetes in different dietary habit groups [56]. The chi-square
value of the 2 x 2 contingency table between the two variables
(healthy diet and Class) was estimated by adding all the
Chi-square values of each cell (shown within parenthesis),
as shown in Table 7. The Chi-square values with and without
continuity correction of the 2 x 2 contingency tables were
calculated and were observed to be 60.17 and 60.75, respec-
tively. The degree of freedom for the 2 X 2 contingency
table was calculated {[(2-1) x (2-1)] = 1} and was found
to be 1. The significance (2-sided) value of the Chi-square
values without continuity correction (x2=60.75) and with
continuity (x2=60.17) for 1 degree of freedom (df) was
calculated and was found to be P = 6.4971E-15 and P =
8.7146E-15, respectively, i.e., p < 0.001 as shown in Supple-
mentary Table 7 (A). A Cramer’s V test to check the strength
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TABLE 7. Representing the relation of the explanatory variable “Diet”
categories with the class variable.

Diet * Class Crosstabulation

Class Total
NO YES
Healthy  Every day Count 1493 247 1740
Diet Expected (7.91) (31.22) 1740.0
Count 1388.2 351.8
Not every Count 2413 743 3156
day Expected (4.36) (17.21) 3156.0
Count 2517.8 638.2
Total Count 3906 990 4896
Expected 3906.0 990.0 4896.0
Count

of the Chi-square-based extent of association between two
dependent variables (Healthy diet and Class) was performed.
The Cramer’s V test obtained a smaller Cramer’s V value
(0.111) but a significant (P = 6.4971E-15) correlation [shown
in Supplementary Table 7 (B)], indicating a moderate yet
significant relationship between the two dependent variables.

The overall P-value of the 2 x 2 contingency table depicting
the relationship between a healthy diet and the outcome
variable is less than P < 0.05; we thereby reject the null
hypothesis and accept the alternate hypothesis: “There is a
relationship between a healthy diet and the membership of
individuals in the High-risk and low-risk groups.” Further-
more, the Cramer’s V association strength value obtained
between the two dependent variables signifies a moderate
but statistically significant (P < 0.05) association. How-
ever, the Chi-square and Cramer’s V test results do not pro-
vide valid reasons for a significant but moderate association
between the two variables (Healthy diet and Class). To realize
the possible reasons for a moderate but significant relation-
ship between the two dependent variables, we looked into
each cell x2 value of the contingency Table 7. We found that
the cell that reflects an association between the variables, i.e.,
“High-risk” group and variable healthy diet “every day,”
showed a higher x2 value of 31.22. A higher x2 value for
the cell mentioned above can be attributed to a significantly
lesser number of observed “High-risk™ cases (Observed =
247) than the expected value (Expected = 316.6) obtained by
chance (considering the null hypothesis is valid).

Moreover, a Chi-square value greater than 1.0 (x2 =
6.51) in a cell that represents an association of the variable
(healthy diet every day) with the “Low-risk™ group returns
a significantly higher number of observed “Low-risk’ cases
(Observed = 1493) than the expected value obtained by
chance (Expected = 1388.2). The x2 values obtained from
the cells, as mentioned earlier, signify that the subjects with
a healthy diet every day have a moderate association for
the “Low-risk” group (i.e., they are less likely to suffer
from diabetes). Similarly, we also observed Chi-square values
greater than 1.0 (x2 = 17.21, x2 = 4.36) in two other cells
representing an association between the subjects who do not
take healthy food every day and the class (i.e., “High-risk”
and “low-risk” groups). A Chi-square value of 17.21 in
a cell, which signifies an association between the subject
who do not take healthy food every day and diabetes, can
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be attributed to a significantly higher number of observed
“High-risk™ cases (Observed = 743) than would be expected
by chance (Expected = 638.2). Moreover, a Chi-square value
of a cell greater than 1.0 (x2 = 4.36) that represents a rela-
tionship between a healthy diet, not every day, and the ‘“Low-
risk” group returns a significantly lower number of observed
“Low-risk’ cases (Observed = 2413) than the expected value
obtained by chance (Expected = 2517.8). The results mean
that the subjects who do not take a healthy diet every day have
a moderate association with the phenomenon (High risk of
diabetes) than expected if the variables are independent [56].
Thus, we understand that the significant difference between
the number of observed and expected cases in the categories
(healthy diet every day and not every day) for the membership
of “High-risk” and “Low-risk’ group lead to an overall mod-
erate but significant association between the two dependent
variables (Healthy diet and Class).

H. ANALYZING THE RELATION OF THE EXPLANATORY
VARIABLE “BLOOD PRESSURE” WITH THE CLASS
VARIABLE
Null Hypothesis (Hy) = There is no relation between BP
and subjects membership in high-risk and low-risk diabetes
(independent).

Alternate Hypothesis (H;) = There is a relationship
between BP and individuals’ membership in high-risk and
low-risk diabetes (dependent).

TABLE 8. Representing the relation of the explanatory variable “Blood
pressure” categories with the class variable.

BP * Class Crosstabulation

Class Total
NO YES

BP NO Count 1478 248 1726
Expected Count  (7.41) 1377.0  (29.23) 349.0 1726.0

YES Count 2428 742 3170
Expected Count  (4.03)2529.0  (15.91)641.0  3170.0

Total Count 3906 990 4896
Expected Count 3906.0 990.0 4896.0

The Chi-square and Cramer V tests were used to iden-
tify the association between Blood Pressure and the risk of
diabetes in subjects with and without BP [57]. Chi-square
values of each cell (shown within parenthesis) of the two by
two contingency table depicting the association between the
two variables (BP and Class) was calculated and represented
in Table 8. The Chi-square values with and without continuity
correction of the 2 X 2 contingency table was calculated
and was observed to be 56.03 and 56.59, respectively. The
degree of freedom for the 2 X 2 contingency table was
calculated {[(2-1) x (2-1)] = 1} and was found to be 1.
The asymptotic significance (2-sided) value of the Chi-square
values without continuity correction (x2=56.59) and with
continuity (x2=56.03) for one degree of freedom (df) was
calculated and was found to be P = 5.3602E-14and P =
7.1225E-14, respectively, i.e., p < 0.0001 as shown in Sup-
plementary Table 8 (A). A Cramer’s V test was performed to
check the strength of the Chi-square-based extent of associ-
ation between two dependent variables (BP and Class). The
Cramer’s V test obtained a smaller Cramer’s V value (0.108)
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but a significant (P = 5.3602E-14) correlation [shown in
Supplementary Table 8 (B)], indicating a moderate but a sig-
nificant association (P < 0.0001) between the two dependent
variables (BP and Class).

The overall P-value of the 2 x 2 contingency table depicting
the relation between BP and the response variable is less than
P < 0.0001; we thereby reject the null hypothesis and accept
the alternate hypothesis: “There is a relationship between a
BP and the membership of individuals in the High-risk and
Low-risk groups.” Furthermore, the Cramer’s V association
strength value obtained between the two dependent variables
signifies a moderate but statistically significant (P < 0.0001)
relationship. Still, the Chi-square and Cramer’s V test results
do not offer appropriate reasons for a significant but moderate
association between the two variables (BP and Class).

To know the possible reasons for a moderate but significant
relationship between the two dependent variables, we looked
into each cell x 2 value of the contingency Table 8. We found
that the cell that reveals an association between the variables,
i.e., “High-risk” group and No_BP show a higher x 2 value of
29.23. The moderate x 2 value for the cell described above can
be attributed to a significantly smaller number of observed
“High-risk” cases (Observed = 248) than the expected value
(Expected = 349) obtained by chance (considering the null
hypothesis is real). Moreover, a Chi-square value greater than
1.0 (x2 = 6.51) in a cell that represents a relationship of ‘““No
BP issues’ with the “Low-risk” returns a significantly higher
number of observed “Low-risk” cases (Observed = 1478)
than the expected value obtained by chance (Expected =
1377). The x2 values obtained from the cells, as mentioned
above, signify that the subjects with “No BP”” have a moder-
ate association with the “Low-risk” group (i.e., they are less
likely to develop diabetes).

Similarly, we also observed Chi-square values greater
than 1.0 (x2 = 1591, x2 = 4.03) in two other cells rep-
resenting an association between subjects who have “BP
issues” and the class (i.e., High-risk and Low-risk groups).
A Chi-square value of 15.91 in a cell, which signifies a
moderate association of subjects who has BP issues with
the “High-risk groups, can be attributed to a significantly
higher number of observed “High-risk” cases (Observed =
742) than would be expected by chance (Expected = 641).
Furthermore, a Chi-square value of another cell greater than
1.0 (x2 = 4.03) that represents an association between sub-
jects with “BP issues” and the “Low-risk” group returns
a significantly lower number of observed ‘“Low-risk” cases
(Observed = 2428) than the expected value obtained by
chance (Expected = 2529). The results obtained mean that
the subjects who have BP issues are more disposed to suffer
from diabetes than would be expected if the variables are
independent. Thus, we interpret that the moderate x2 values
observed in the cell representing an association of variables
(No_BP issues and Yes_BP issues) with the ‘““High-risk™ and
“Low-risk” groups contribute to an overall moderate but
significant association between the two dependent variables
(BP and Class).
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I. ANALYZING THE RELATION OF THE EXPLANATORY
VARIABLE “FAMILY HISTORY” WITH THE CLASS VARIABLE
Null Hypothesis (Hyg) = There is no relation between Family
history and the membership of subjects in high-risk and
low-risk diabetes (independent).

Alternate Hypothesis (H;) = There is a relationship
between Family history and individuals’ membership in
high-risk and low-risk diabetes (dependent).

TABLE 9. Representing the relation of the explanatory variable “Family
History” categories with the class variable.

Family History * Class Crosstabulation

Class Total
NO YES
Family No Family Count 579 115 694
History History Expected  (1.16) (4.56) 694.0
Count 553.7 140.3
Grandparents/ Count 1331 363 1694
Uncles/Aunty/Co  Expected ~ (0.31) (1.23) 1694.0
usins Count 13515 3425
Parents/Brothers/ Count 1996 512 2508
Sisters Expected  (0.01) (0.05)  2508.0
Count 2000.9  507.1
Total Count 3906 990 4896

Expected  3906.0  990.0  4896.0
Count

The Chi-square test and Cramer V test were used to inves-
tigate the association between family history of diabetes and
the risk of diabetes [58], [59]. The Chi-square value of every
single cell of the 3 x 2 contingency table was calculated
(shown within parenthesis) and summed to compute the
overall Chi-square value of Table 9. The overall Chi-square
value of the 3 x 2 contingency table was found to be 7.332.
The degree of freedom for the three by two contingency
table was calculated {[(3-1) x (2-1)] = 2} and was found
to be 2. The asymptotic significance (2-sided) value of the
Chi-square value (x2=7.332) for the two df was calculated
and was found to be P = 0.026 (p < 0.05) as shown in
Supplementary Table 9 (A). A Cramer’s V test was performed
to check the strength of the Chi-square-based measure of
the association between two dependent variables (Family
_History of diabetes and Class). The Cramer’s V test obtained
alesser (0.039) but a significant (P = 0.026) value [shown in
Supplementary Table 9 (B)], indicating a weaker association
between the two dependent variables.

As the overall P-value of the 3 x 2 contingency table
depicting a relationship between family history of diabetes
and the response variable is less than P < 0.05, we thereby
reject the null hypothesis and accept the alternate hypoth-
esis: “There is a relationship between a Family history of
diabetes and the High-risk and Low-risk groups.” Moreover,
we observed a lower (0.039) but significant (P < 0.05)
Cramer’s V test value indicating a weaker but significant
association between the two dependent variables. Neverthe-
less, the Chi-square and Cramer’s V test results do not explain
the reasons for attaining a weak but statistically significant
relationship between the two dependent variables (Family
history of diabetes and Class).

To understand the possible reason for a weak but sig-
nificant relationship between the two dependent variables,

VOLUME 8, 2020

we looked into each cell x2 value of Table 9. We saw that the
cell that reflects the association of the outcome (High-risk of
diabetes) with variable (Subjects having No Family history
of diabetes) displays a higher x2 value of 4.56. In the cell
described above, the number of observed “High-risk” cases
is much lower than the expected value (Observed = 115,
Expected = 140.3). The results obtained indicate that a signif-
icantly lower number of subjects having ‘“No Family history
of diabetes” have a chance to suffer from diabetes than would
be expected if the null hypothesis is correct. Furthermore,
we also observed a Chi-square value greater than 1.0 (x2 =
1.16) of a cell that represents an association of subjects having
“No Family history of diabetes’” with the “Low-risk” group.
A Chi-square value greater than 1.0 for the cell, as mentioned
above, can be attributed to a significantly higher number
of observed “Low-risk™ cases than would be expected by
chance (Observed = 579, Expected = 553.7). The x2 values
in the cells described above signify that the subjects having
No Family history of diabetes tend to remain healthy, i.e., free
from the risk of diabetes than would be expected if the two
variables are independent. However, this result is reasonable
since the chance of diabetes increases for a subject who has
predisposed to diabetes than subjects that do not have any
family history of diabetes [58], [59].

On the other hand, we observe that subjects whose
“Grandparents/ Uncles/Aunty/Cousins” have a history of
diabetes have the Chi-square value greater than 1.0 (x2 =
1.23). A Chi-square value for the cell mentioned above
can be attributed to a significantly higher number of
observed “High-risk” cases than expected by chance
(Observed = 363, Expected = 342.5). The results obtained
mean a higher tendency of subjects whose ‘‘Grandparents/
Uncles/Aunty/Cousins’ have a history of diabetes to suffer
from diabetes. Nothing, except cells mentioned above, have
a Chi-square value greater than 1.0. The cells in the table with
a Chi-square value of less than 1.0 are interpreted as cells that
show no association between the two dependent variables.
Overall, Table 9 shows that subjects whose ‘“‘Grandparents/
Uncles/Aunty/Cousins’ have a history of diabetes have a
significantly higher tendency to suffer from diabetes than
subjects having No Family history of diabetes. Moreover,
it needs to be pointed out that a weak but significant asso-
ciation can be deduced when the phenomenon (High-risk of
diabetes) is only partially dependent on the variable (Family
History of diabetes).

J. ANALYZING THE RELATION OF THE EXPLANATORY
VARIABLE “SMOKING” WITH THE CLASS VARIABLE

Null Hypothesis (Hp) = There is no relation between smoking
and subjects membership in high-risk and low-risk diabetes
(independent).

Alternate Hypothesis (H1) = There is a relationship
between smoking and individuals’ membership in high-risk
and low-risk diabetes (dependent).

The Chi-square and Cramer V tests were used to find
the association between smoking and the risk of diabetes in
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TABLE 10. Representing the relation of the explanatory variable
“Smoking” categories with the class variable.

Smoking * Class Crosstabulation

Class Total
NO YES
Smoking  NO Count 2804 113 2917
Expected (97.69) (385.45) 2917.0
Count 23272 589.8
YES Count 1102 877 1979
Expected (144.0) (568.06) 1979.0
Count 1578.8 400.2
Total Count 3906 990 4896
Expected 3906.0 990.0 4896.0
Count

subjects with and without Smoking habits [60], [61]. The
Chi-square value of every single cell of the 2 x 2 contin-
gency table was calculated (shown within parenthesis) and
summed to compute the overall Chi-square value of the 2 x
2 contingency Table 10. The overall Chi-square value of the
2 x 2 contingency table was found to be 1195.39. The degree
of freedom for the 2 X 2 contingency table was calculated
{[(2-1) x (2-1)] = 1} and was found to be 1. The asymptotic
significance (2-sided) value of the Chi-square values with-
out continuity correction (x2=1195.39) and with continuity
(x2=1192.88) for 1 degree of freedom (df) was calculated
and was found to be P = 6.1227E-262 and P = 2.1453E-261,
respectively, i.e., p < 0.0001 as shown in Supplementary
Table 10 (A). A Cramer’s V test was performed to check
the strength of the Chi-square-based extent of association
between two dependent variables (Smoking and Class). The
Cramer’s V test obtained a larger (0.494) and a significant
(P = 5.3602E-14) Cramer’s V value of correlation [shown
in Supplementary Table 10 (B)], indicating a high and sig-
nificant association (P < 0.0001) between the two dependent
variables (Smoking and Class).

The overall P-value of the 2 x 2 contingency table showing
a relationship between smoking and the response variable
is less than P < 0.0001; we thereby strongly reject the null
hypothesis and accept the alternate hypothesis: “There is a
relationship between smoking and the membership of indi-
viduals in the High-risk and Low-risk groups.” Furthermore,
the larger Cramer’s V value obtained between the two depen-
dent variables signifies a substantial and statistically signifi-
cant (P < 0.0001) association. However, the Chi-square and
Cramer’s V test results do not provide an appropriate reason
for a strong association between the two variables (Smoking
and Class).

To know the possible reasons for a significantly strong
relationship between the two dependent variables, we looked
into each cell x 2 value of the contingency Table 10. We found
that the cell that reveals a strong association between the
variables, i.e., “High-risk group and Yes_Smoking,” displays
a higher x2 value of 568.06. The more substantial x2 value
for the cell described above can be attributed to a signifi-
cantly higher number of observed ‘“High-risk™ cases than
the expected value obtained by chance (Observed = 877,
Expected = 400.2). Moreover, we also observed a Chi-square
value greater than 1.0 (x2 = 6.51) in a cell that represents a
relationship of *“Yes_Smoking” with the “Low-risk” returns
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a significantly lower number of observed non-diabetic cases
(Observed = 1102) than the expected value obtained by
chance (Expected = 1578.8). The x2 values obtained from
the cells, as mentioned earlier, signify that the subjects with
“smoking habit” have a higher association with the ‘“High-
risk” group.

Similarly, we also observed Chi-square values greater than
1.0(x2=15.91, x2 =4.03) in two other cells representing an
association between subjects who are “Non_smoking” and
the class (i.e., “‘High-risk” and “Low-risk’ groups). A Chi-
square value of 385.45 in a cell that signifies association
between the subjects who are “Non_smoking” and “High-
risk” can be attributed to a significantly lower number of
observed “High-risk” cases (Observed = 113) than would
be expected by chance (Expected = 589.8). Furthermore,
a Chi-square value of another cell greater than 1.0 (x2 =
144.0) that represents an association between subjects who
are “Non_smoking” with the “Low-risk” group returns a
significantly higher number of observed ‘“‘Low-risk” cases
(Observed = 2804) than the expected value obtained by
chance (Expected = 2327.2). The results obtained mean that
the subjects who have no smoking habit are less likely to suf-
fer from diabetes than would be expected if the variables are
independent [60], [61]. Thus, we estimate that the significant-
high association between the variables (Non_smoking and
Yes_Smoking) with the “High-risk” and “Low-risk” group
leads to an overall considerable and significant association
between the two dependent variables (Smoking and Class).

Selection of a Reference Category for Binary Logistic
Regression Analysis:

A list of a specific category (as reference) for each explana-
tory variable selected using the frequency of subject with a
High risk of diabetes as the criterion to measure the associa-
tion between the variables is provided in Table 11.

TABLE 11. List of a specific category selected as a reference for each
explanatory variable for Binary Logistic Regression analysis.

Sl. No. Explanatory Variable Reference category Prevalence
of “High-risk”
subjects
1 Region Abwa 0.011
2 Age Age < 40 years 0.044
3 Gender Female 0.055
4 BMI Lower than 25 kg/m2 0.013
5 Waist Size over 102 cm (40”) 0.057
6 Physical Activity Not Everyday 0.062
7 Healthy Diet Everyday 0.05
8 Blood Pressure No 0.05
9 Family History NO History 0.023
10 Smoking No 0.023

As per Table 11 for the independent variable ‘“Region” cat-
egory Abwa was selected as a reference since the prevalence
of subjects with high risk of diabetes in Abwa was the least
(Prevalence = 57/4896 = 0.011). In the same way, for Age
the category ‘“‘age ranging from > 40 years” was selected
(Prevalence = 219/4896 = 0.044), in Gender the category
“Female” was selected (Prevalence = 270/4896 = 0.055),
BMI the category “Lower than 25 kg/m2” was selected
(Prevalence = 64/4896 = 0.013), Waist Size the category
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“over 102 cm (40”) was selected (Prevalence = 278/4896 =
0.057), Physical activity the category ‘“‘not every day” was
selected (Prevalence = 304/4896 = 0.062), Healthy diet the
category “‘everyday”’ was selected (Prevalence = 247/4896 =
0.05), BP the category “NO” was selected (Prevalence =
248/4896 = 0.05), Family history the category “NO history”
was selected (Prevalence = 115/4896 = 0.023) and Smoking
the category “NO” was selected (Prevalence = 113/4896 =
0.023).

K. ANALYZING SURVEY CATEGORICAL DATA USING
BINARY LOGISTIC REGRESSION

Running the binary logistic regression model using the SPSS
statistical software package, we obtained the coefficients (log
odds), Wald Chi-square test value, degree of freedom (df),
p-value, odd-ratio, and 95 % confidence interval of the odds
ratio for each category of the different explanatory vari-
ables in the dataset as shown in Table 12. We observe from
Table 12 that all the explanatory variables except the vari-
ables “waist size” and ‘“Age” have a statistically significant
(at a 5 % significance level) Wald Chi-squared value esti-
mated on their respective degree of freedom (i.e., rejecting
the null hypothesis that there is no association between the
explanatory variable and the response variable).

TABLE 12. The explanatory variable associated with the Forward
Selection Logistic Regression model.

Steps of Variables Wald Degree of Significance.
Forward Freedom P <0.05
Logistic (df)
Regression
Region 23.474 9 .005
Age 7.843 3 .051
Gender (Male) 6.213 1 013
BMI 10.840 2 .004
Last Step Physical 18.944 1 .000
Activity (No)
Healthy Diet 39.878 1 .000
(Not Every
Day)
BP (Yes) 42.155 1 .000
Family History 11.322 2 .003
Smoking (Yes) 745.406 1 .000
Waist Size 3.848 2 146

The results of the Forward LR method suggest that each of
these explanatory variables except “‘waist size” and “‘age”
have a significant independent effect on the probability of
subjects to be a part of the “High-risk’ group.

Moreover, to study the direction (positive or negative)
and strength of the relationship between the explanatory
and the response variable, we looked into coefficients,
i.e., B (Log odds), exponentiate of the coefficients, i.e., Exp
(B) (odds ratio) and the 95 % confidence interval of the odds
ratio (i.e., 95% C.I. for OR). Supplementary Table 11 pro-
vides a comprehensive explanation of the effects and the
association of the risk factors with the outcome variable.

Also, a reasonable explanation of the confidence interval to
capture the uncertainty of the odds ratio calculated between
the sub-categories and the reference sub-category of each
significant explanatory variable has been provided in the
above-mentioned Supplementary Table 11.

So, after detailed binary logistic regression analysis,
we have screened the most informative and significant
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explanatory variable (region, gender, BMI, healthy-diet, BP,
and smoking) from the ten significant explanatory variables
obtained using the earlier Pearson Chi-square test. Besides,
using the coefficient and OR, we could even figure out
the right reasons for the direction and strength of associ-
ation between each explanatory variable and the outcome
(i.e., predicted probability to be a member of the diabetes
group). In our study sample smoking demonstrated a higher
association with the “High-risk” group (odds ratio 21.314
[95 % CI, 17.112-26.550}, p < 0.00001). The odds ratio of
variables such as BMI, healthy-diet, region (Region 2, 5 &
6) ranges from 1 and 2. Thus the association of these vari-
ables, as mentioned above, has a strong association with the
“high risk” group. However, the gender (male) and High-risk
group association were not very strong, with an odds ratio
of 0.771 as tabulated in Supplementary Table 11. Among the
screened predictors, region and gender are non-modifiable
risk factors, while the remaining predictors are modifiable
risk factors. Besides, the existing literature also indicates
that modifiable risk factors play a significant role in reduc-
ing the risk of developing diabetes [62]. Thus, the presence
of more modifiable risk factors (variables) in risk predic-
tion will contribute significantly to implementing a Machine
Learning-based model for creating awareness and decreasing
the incidence of diabetes in Saudi’s.

L. MODEL FITNESS ANALYSIS

Hosmer-Lemeshow test [32], a model-fit criterion, was tested
at each step of the forward logistic regression method. The
results of the Hosmer-Lemeshow test of the final step of the
forward-logistic regression are depicted in Table 13.

TABLE 13. Hosmer-Lemeshow goodness of fit analysis at each step of
the Forward LR model.

Hosmer and Lemeshow Test

. Significance
Step Chi-square Df P <005

1 .000 0 .

2 .095 2 953
3 17.508 5 .004
4 34.108 8 .000
5 23.366 8 .003
6 23.354 8 .003
7 15.993 8 .042
8 14.590 8 .068
9 11.283 8 .186

A small chi-squared value (11.283) with a p-value close
to 1 at the last 9" step of the Forward-LR indicates
a statistically insignificant deterioration of the LR-model,
i.e., a good fit. Therefore, testing the model-fit criteria at
each step for variable (s) inclusion using the Forward-LR
method helped us screen the most significant and informative
variables for building the LR model that appropriately fit our
cross-sectional survey data.

M. CLASS IMBALANCE DATASET BASED CLASSIFICATION
MODELS EVALUATION

The trained classification algorithms’ performance evalu-
ation was performed using various statistical performance
evaluators such as accuracy, sensitivity, precision, F1 score,
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TABLE 14. Comparative Performance Measures evaluation of nine classification algorithms using 20 % independent unbalanced and balanced test data.

Precision
(Bal d

Precision
(Imbal

Machine
Learning

Accuracy
(Imbal

Accuracy

Ral d

a

Recall

F1 Score
(Imbal

F1 Score

(Balanced

AUC
(Imbal

AUC

R

Recall
d (Bal

d d

Algorithm
Logistic
Regression
Averaged
Perceptron
Naive Bayes

ced data)
0.808

data)
0.798

data)
0.527

data)
0.747

0.812 0.799 0.541 0.748

0.808
0.808

0.798
0.815

0.526
0.590

0.747

Neural 0.780
Network
Support
Vector
Machine
Locally-Deep
Support
Vector
Machine

Decision
Jungle

0.815 0.795 0.564 0.744

0.794 0.814 0.476 0.775

0.791 0.816 0.463 0.775

Decision 0.789 0.821 0.464 0.776

Forest

Boosted
Decision
Tree

0.793 0.808 0.476 0.770

data)
0.354

0.374

0.369
0.118

0.318

0.349

0.323

0.400

0.405

d data)
0.847

data)
0.887

data)
0.423

data)
0.811

data)
0.846

0.887 0.442 0.812 0.846 0.847

0.887
0.884

0.434
0.197

0.811
0.827

0.845
0.836

0.847
0.853

0.882 0.407 0.807 0.837 0.816

0.885 0.402 0.826 0.795 0.854

0.878 0.381 0.823 0.831 0.854

0.890 0.430 0.829 0.822 0.867

0.875 0.438 0.819 0.832 0.847

and ROC_AUC on 20 % independent test data. Our study
focuses on nine classification algorithms, such as Logistic
Regression, Average Perceptron, Naive Bayes, Neural Net-
work, Support Vector Machine, LD Support Vector Machine
decision jungle, Decision Forest, and Boosted Decision
tree. The results of the classification algorithms mentioned
above are tabulated in Table 14. We can summarize from
Table 14 that virtually all the classification algorithm-based
models show lower precision, recall, and F 1 score values
while a higher AUC and accuracy values on the tested data.
The lower precision and sensitivity value can be attributed to
a class imbalance in the survey dataset since the number of
samples in the control (healthy) group is approximately four
times that of the sample present in the diabetes group. There-
fore, higher AUC and accuracy values obtained result from a
bias developed for the negative sample (Healthy sample).

The biasness developed for the control group (negative
class) is due to the overwhelmingly higher representation of
the negative sample over a comparatively lesser represented
diabetes group (Response variable). Therefore balancing the
instances in the respective classes is required to obtain better
precision, recall, and F1 score values to correctly classify
the original positive instances with minimum type I (false
positives) and type II error (False Negatives).

N. BALANCE DATASET BASED CLASSIFICATION MODELS
EVALUATION

The classification model built using class balanced trained
data (80 %) was evaluated using the 20 % independent test
data. The results of the nine classification models built using
the balanced dataset are shown in Table 14.

We can observe a significant enhancement in the preci-
sion, recall, and F1 score in each tested classification model.
Besides, we also observe an increase in the accuracy and AUC
values of each model. The increase in the recall and precision
score is due to the decrease in type 1 (false positives) and
type II (false negatives) error. Since the F1 Score is a har-
monic mean of both precision and recall, we see a significant
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increase in each model’s F 1 score. Further, an increase in
the accuracy and AUC values (due to a decrease in FP’s)
increases the classification models’ ability to predict the TP
(diabetic sample) with higher efficacy.

In this comparative performance study, the two-dimen-
sional Decision Forest algorithm demonstrated a higher effi-
cacy in detecting TP’s (Accuracy: 0.821, precision: 0.776;
Recall: 0.890; AUC: 0.867 and F1 Score: 0.829) as compared
to other classification techniques used in this study.

O. TUNING AND VALIDATION OF HYPERPARAMETERS
The optimum set of hyperparameters of DF obtained using
the training dataset is as follows: the minimum number of
samples per leaf node is 16; the number of random splits
per node is 1024; the maximum depth of the decision trees
is 64; the number of decision trees is 32. We used the 10-fold
cross-validation to validate the optimal set of hyperparame-
ters, we obtained the following results: Precision (0.800 £
0.0137); Recall (0.896 £ 0.0131); FI Score (0.8453 =+
0.0268); Accuracy (0.833 4 0.018); AUC (0.8801 £ 0.016).

Thus, the model upon validation shows an enhancement in
classifying the TP’s and TN’s as indicated by higher average
AUC, precision, and recall values. Moreover, we observe a
trade-off between precision and recall. Moreover, it is dif-
ficult to maximize precision and recall at the same time as
one maximizes at the other’s expense. Nevertheless, in our
case, both recall and precision are essential (avoiding both
FP’s and FN’s). Therefore, the F1 Score, which is a harmonic
mean of recall and precision, comes in handy as one can select
the tuning parameters that maximize the F1 score. Moreover,
we observed an increase in the F1 score of our tuned model.
Thus, the tuned DF model shows higher reliability to screen
subjects at a high risk of diabetes.

P. COMPARISION AND ADAPTABILITY OF OUR MODEL
WITH ANOTHER DIABETES DATASET

The proposed method was compared to the SVM based
Application [24], and the comparative performances of dif-
ferent metrics are tabulated in Table 15.
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TABLE 15. Comparative model performance evaluation between SVYM
and our proposed DF based model.

F1

Model Dataset Sensitivity precision AUC
Score
SVM
[25] Classificatio 0.7359 0.5061 0.60 0.738
n Scheme II
Decision
Forest Cross-
[Our sectional 0.9091 0.814 0872 0.896
Proposed Diabetes

model] survey

TABLE 16. Comparative model performance evaluation of our model with
other model built using the PID dataset.

SL

NO. Method Accuracy Reference
I Komean * Logistic 9542%  Wuetal,2018[64]
egression
. Kaur and kumari.
o N
2 Linear Kernel SVM 89 % 2018 [65]
3 Deep Neural network with 88.41 Ashiquzzaman et al.,
Dropout : 2017 [66]
4 Decision Forest 82.0 Our Proposed Model
Maniruzzaman et al.
o
5 LDA, QDA, NB, GPC 81.97% 2017 [67]
SVM, KNN, NB, o Farahmandian et al.
6 ID3,CART,5.0 81.00% (2015) [68]

As tabulated in Table 15, experimental results show that the
AUC, precision, recall, and F1 Score of our proposed model
is better than the SVM model [24] built using the NHANES
cross-sectional survey dataset. The results obtained show that
our model can adapt to the NHASNES dataset and therefore
have the potential to identify people who are more likely to
develop T2DM from those who will not.

Moreover, our model was also compared to other
ML-based models built using the Prima Indian Diabetes
Dataset. The classification accuracy obtained using this
model and the accuracies achieved using other studies
for Pima Indian diabetes disease dataset are presented
in Table 16.

The results in Table 16 show that our DF based model
showed a considerable ability to predict diabetes as compared
to model from previous studies [63]-[67] as depicted by the
Accuracy (82 %), as well as ROC_AUC value (0.88) [not
shown in Table 16]. Even though our model is not as par
with some recent hybrid model built using the Prima Indian
dataset, we can observe that with an accuracy of 82 % and
the AUC value of 0.88, our model performance is better
than many other models built using single classifiers. We are
confident that our model can perform better with the existing
better performing hybrid models by applying existing hybrid
techniques.

Thus, by performing validation of our DF-based model in
two different diabetes datasets, we can say that our model can
adapt to other diabetes datasets for a reliable prediction of the
subject who is likely to develop T2DM.

Q. IMPLEMENTATION OF THE MODEL

A REST Application Programming Interface (API) key
(Cf7t8gkUie]z2QGDImAsyqez6/PGtU/HD 1 gJmGr95wzlst7
arPnKKMwztfyhGP9+H2E2GddIb6ZEYF+{fUkVBhQ==)
of our predictive analytic model was created as soon as we
deployed the predictive model as a web service using the
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Machine Learning Studio (classic) web services. The user
using our application hosted at https://type2-diabetes-risk-
predictor.herokuapp.com can send input data to the Machine
Learning Studio (classic) workflow scoring analytical model
via the REST API key and receive prediction in real-time. The
application implementation codes and details are available
at https://github.com/SAH-ML/T2DM-Risk-Predictor. The
web services built using the Machine Learning Studio (clas-
sic) web services provide an ideal platform to perform a
Request-Response Service (RRS) for an end-user. Thus, our
web-based application can be used for real-time diabetes risk
prediction in the Kingdom of Saudi Arabia.

IV. CONCLUSION AND FUTURE SCOPE

Our cross-sectional study’s main contribution was to estimate
the disease’s prevalence and calculate the odds ratio to mea-
sure the association between the exposure (explanatory vari-
able) and the outcome variable in this questionnaire-based
research plan. We could also build a web-based predic-
tive solution using azure machine learning studio (classic)
web services to assess diabetes risk participants. We applied
classical statistical model/techniques and advanced machine
learning methods to our cross-sectional survey dataset.
We dealt with the issues of imbalanced data using the SMOTE
algorithm. Our model’s ability to identify potentially vul-
nerable individuals at high risk of developing diabetes is
acceptable with high precision and sensitivity.

Our model has performed reasonably well on the
NHANES and Prima Indian Diabetes dataset that speaks
volumes about our model’s adaptability in predicting diabetes
and its risk using different diabetes datasets. The predictive
web-application has been developed and validated on a sam-
ple of Saudi populations, reflecting the risk patterns of T2DM
among the western province participants of the Kingdom of
Saudi Arabia. Further, presently our model can be used by the
physician for assessing the risk of diabetes among Saudi’s and
expatriates residing in the western province of the Kingdom
of Saudi Arabia.

In the future, we are planning to use the present study
as a baseline to perform a cohort study to investigate the
incidence, causes, and prognosis of diabetes for the entire
population of the Kingdom of Saudi Arabia. The cohort study
will provide an appropriate dataset for developing a predictive
model for predicting the risk of developing diabetes for KSA’s
entire population.
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