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ABSTRACT Image segmentation is a crucial stage of image analysis systems because it detects and
extracts regions of interest for further processing, such as image recognition and the image description.
However, segmenting images is not always easy because segmentation accuracy depends significantly on
image characteristics, such as color, texture, and intensity. Image inhomogeneity profoundly degrades the
segmentation performance of segmentation models. This article contributes to image segmentation literature
by presenting a hybrid Active Contour Model (ACM) based on a Signed Pressure Force (SPF) function
parameterized with a Kernel Difference (KD) operator. An SPF function includes information from both
the local and global regions, making the proposed model independent of the initial contour position. The
proposed model uses an optimal KD operator parameterized with weight coefficients to capture weak and
blurred boundaries of inhomogeneous objects in images. Combined global and local image statistics were
computed and added to the proposed energy function to increase the proposed model’s sensitivity. The
segmentation time complexity of the proposed model was calculated and compared with previous state-of-
the-art active contour methods. The results demonstrated the significant superiority of the proposed model
over other methods. Furthermore, a quantitative analysis was performed using the mini-MIAS database.
Despite the presence of complex inhomogeneity, the proposed model demonstrated the highest segmentation
accuracy when compared to other methods.

INDEX TERMS Active contour, intensity inhomogeneity, image segmentation, region-based, local and
global intensity.

I. INTRODUCTION
Image segmentation is a principal research direction in image
processing and is widely used in image analysis, medical
imaging, and computer vision [1]–[3]. In image segmenta-
tion, a given image is divided into several regions with spe-
cific characteristics such as color, texture, and intensity levels.
Many previous studies have been proposed for solving image
segmentation problems, such as threshold-based, supervised
learning-based, and non-supervised learning-based methods.
The threshold method is based on the assumption that clus-
ters of pixel intensity histograms correspond to a particular
object of interest. Deep learning-based image segmentation
methods fall under the category of supervised methods and
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require significant resources and data sets compared to other
methods [43].

The widely-used active contour model (ACM) [4]–[9],
can successfully manage the topological changes in the con-
tour curves over objects having distinct geometrical shapes.
The ACM, initially proposed by Kass et al. [19], can yield
a closed and smooth curve to represent the edges of an
object while constructing the energy function regarding con-
tinuous curves as the independent variable so that the seg-
mentation process calculates the minimum value of the
energy function [10]. It can be expressed by calculating the
Euler–Lagrange equation of the function. The contour move-
ment depends on the internal and external forces, and the
contour over object boundaries stops when the energy reaches
a minimum or when both the forces become equal.

ACMs can be divided into two categories: edge-based and
region-based. Edge-based ACMs are generally based on the
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assumption that the gradient information is used to detect
edges according to the size of the gradient, thus guiding the
evolving contour to move toward object boundaries near the
edges of segmented regions [11], [12]. However, the segmen-
tation results may not succeed when an image is noisy or if
the object boundary is weak.

Region-based ACMs can approximate the region of inter-
est (ROI) more precisely and accurately. Region-based meth-
ods use regional descriptors, such as intensity and color,
to capture ROIs, yielding superior performance in the pres-
ence of distorted edges and noise. Chan–Vese (C–V), which
is based on the Mumford–Shah model [13], is a widely used
region-based ACM model. The C–V [3] model computes the
difference between the averages of intensity from the inner
and outer regions. This difference is used to drive the contour
toward object boundaries. Because region-based models are
based on the assumption that the ROI is comprised only of a
homogeneous intensity, this limits the model’s performance
over inhomogeneous images. Furthermore, its non-convex
function is fixed to the local minima, thereby increasing the
computational cost.

Dealing with the intensity inhomogeneity in images and
developing a robust method to segment inhomogeneous
images is challenging. Li et al. presented their local binary
fitting (LBF) [4] model based on the standard LBF model [4]
to address this limitation. The LBF model extracts local
image information using a localized convolutional kernel
function. A scalable parameter is used to extract image fea-
tures, while local image information controls the curve evolu-
tion [14]–[17]. Another local ACM used for the segmentation
of inhomogeneous images was proposed by Zhang et al. [23].
This method uses local image fitting energy to segment inho-
mogeneous images using local image information. When the
amount of overlap in the inhomogeneous image between the
background or foreground intensity distributions is hard to be
estimated [35]–[38]. The local image information is extracted
by a local image fitting energy function interpreted as the
difference between the fitting and the original input images.
A region-based ACM using a signed pressure force function
was proposed [24]. This model uses global intensity means
for the detection of ROI. The expensive reinitialization is
avoided using a Gaussian regularization function.

Li et. al. proposed their model comprising a variational
level set with bias correction (VLSBC) for the segmentation
of images corrupted with bias conditions [25]. This method
computes the bias field and then corrects it to achieve a
smoothened final level set. Zhang et al. [23] proposed a local
statistical ACM (LCASM) targeting inhomogeneous image
objects in images. The LCASMmodel’s objects of interest are
Gaussian distributions of different means and variances. This
method uses a window to map the original image into a new
domain where inhomogeneous intensity Gaussian distribu-
tion spreads more evenly. This transformed Gaussian distri-
bution implies that adaptive estimation can be performed by
multiplying both the bias field and the original image within
the window. The model then defines a statistical function

for each local region, combining the bias field, the level set
function, and the estimated true signal.

Zhang et al. proposed a signed pressure force (SPF) [20]
to segment images. The SPF computes the average values
of the global foreground and background regions as the
comparison center and exploits the differences among image
intensities. The SPF replaces the edge stopping function in the
geodesic ACM and its level set evolution. AWeighted Hybrid
Region-based SPF (WHRSPF)[39] normalized the evolv-
ing curve’s global intensity by the inner and outer region’s
coefficient. An adaptively weighted global region-based
SPF (GRSPF) function defines the global pixel information
to avoid the parameter setting’s difficulty and improves the
ability of intensity inhomogeneity. Global and Local signed
energy-based pressure force (GLSEPF) [40] was proposed to
improve the initial curve’s robustness and compute the pixel-
by-pixel energy difference within the local region. It helps to
handle the noise in inhomogeneous images and intensity. The
regularization term and penalty term were used to avoid the
re-initialization process. A global weighted SPF (GWSPF)
and the local weighted SPF (LWSPF) [41] were proposed to
improve the segmentation performance by the difference of
information of the inner and outer regions.

In this article, a hybrid ACM based on an SPF func-
tion parameterized with a kernel difference (KD) operator
is defined. An SPF function includes information for both
the local and global regions, making the proposed model
independent of the initial contour position. An optimal KD
operator is used to capture weak edges of the object boundary
and improve the segmentation accuracy. A parameterized
weight coefficient is used to capture inhomogeneous objects
in images to improve the sensitivity of the proposed model.

The organization of the paper is as follows. The theoretical
foundations are briefly discussed in Section II. The proposed
research methodology is explained in Section III, and the
results with synthetic and real-life images are explained in
Section IV. Section V presents the quantitative comparison of
the proposed method with the previous state-of-the-art level
set methods using Synthetic color images and the mini-MIAS
database.

II. BACKGROUND
A. Mumford– SHAH ENERGY MODEL
Tsai et al. [13] proposed their energy model for image seg-
mentation and formulated the segmentation problem as find-
ing an optimal piece-wise smooth approximation function u
of the input image I (x). This approximation function varies
smoothly within each sub-region �i of the image domain
�i ⊂ R2. The Mumford–Shah energy function is understood
as the following:

EMS = λ
∫
�

(I (x)− u(x)2)dx

+ v
∫
�\

C|∇u|2dx + µLength(C), (1)
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whereµ and v ≥ 0 are the constant parameters. |C| represents
the contour length. The non-convexity of the energy function
in (1) makes it difficult to be minimized.

B. CHAN–VESE ENERGY MODEL
Chan and Vese (C–V) created their ACM based on the
Mumford–Shah model [3]. Suppose I (x) : � → R2 is an
input image, φ : � → R is the level set, and C is the closed
curve. The C–V model energy function is defined as

ECV = λ1

∫
�1
|I (x)− m1|

2Hε(φ)dx

+ λ2

∫
�1
|I (x)− m2|

2(1− Hε(φ))dx

+µ

∫
�

|δHε(φ)|2dx + v
∫
�

Hε(φ)dx (2)

where Hε(φ) represents the Heaviside function with the fol-
lowing relationship:

Hε(φ) =
1
2
+

1
π
arctan(

φ

ε
) (3)

In (2), µ, v, λ1, and λ2 are the fixed positive parameters.
ε controls the width of the Heaviside function. The Euclidean
length of curve C is scaled with the parameter µ while
parameter v scales the area term in the C–V [3] model.
m1 andm2 are the average of the intensities inside and outside
contour C , respectively. By minimizing (2) with respect to φ,
the following level set function is obtained:

∂φ

∂t
= δε(φ)(λ1(I (x)− m1)2

+ δε(φ)λ2(I (x)− m2)2

+ δε(φ)µdiv
(
∇φ

|∇φ|

)
− δε(φ)v (4)

where δε(φ) is the Dirac delta function defined as:

δε(φ) =
ε

π (φ2 + ε2)
(5)

where ε corresponds to the width of the Dirac delta func-
tion. m1 and m2 in (2) and (4) are the average intensity
means inside and outside the contour and are respectively
defined as

m1 =

∫
�

I (x)Hε(φ)
Hε(φ)

, (6)

m2 =

∫
�

I (x)(1− Hε(φ))
(1− Hε(φ))

(7)

In the C–V [3] model, the difference between m1 and m2
should be significant enough to attract the contour to the
desired boundary of the object of interest. The C–V [3] model
was designed based on the assumption that images comprise
only homogeneous regions, which limits this method in situ-
ations with inhomogeneous images.

C. LOCAL BINARY FITTING ENERGY MODEL
Li et al. proposed a solution to address the limitations of the
C–V [3] model in their LBF model [4], which can use images
corrupted by inhomogeneity. The LBF model introduces a
binary fitting energy function in a local region specified by
a Gaussian kernel [4]. The LBF energy model is defined as

ELBF

= λ1

∫
�

Kσ (x−y)|I (y)−f1(x)|2Hε(φ))dydx

+ λ2

∫
�

Kσ (x − y)|I (y)−f2(x)|2(1−Hε(φ)))dydx (8)

where I (x) : � → R2 is the input image, Kσ is a Gaussian
kernel, and f1 and f2 are the two smooth spatially- varying
local intensity means of the inner and external regions of
the contour C . λ1 and λ2 are the positively fixed parameters.
We added the distance regularizing term found in Li et al.’s
variational level set formulation [6] to penalize the deviation
of the level set function φ from a signed distance function to
ensure the stable evolution of the level set function φ. The
deviation of the level set function φ from a signed distance
function is characterized by the following integral:

P(φ) =
∫
�

1
2
(|∂φ(x)| − 1)2dx (9)

The length of the zero-level curve (surface) of φ is required
to regularize the zero-level contour of φ, given by

L(φ) =
∫
�

ε(φ(x))|∂φ(x)|dx (10)

In the LBF model, C ⊂ � is represented by the zero-level
set of the Lipschitz function φ ⊂ R [4]. Minimizing (8) with
respect to φ, the gradient descent flow equation is defined as

∂φ

∂t
= − (λ1e1 − λ2e2) δε(φ)+ µP(φ)+ vL(φ) (11)

where µ and v are nonnegative constants. In (11), e1 and e2
are respectively defined as

e1(x) =
∫
�

Kσ (x − y)|I (y)− f1(x)|2dy, (12)

and

e2(x) =
∫
�

Kσ (x − y)|I (y)− f2(x)|2dy, (13)

f1 and f2 are respectively defined as

f1(x) =
Kσ [I (x)Hε(φ)]
KσHε(φ)

, (14)

and

f2(x) =
Kσ [I (x)(1− Hε(φ))]
Kσ (1− Hε(φ))

, (15)

The standard deviation σ of the Gaussian kernel is a scaling
parameter that controls the region’s scalability from the small
neighborhood to the full image. The limitation of this model
is its dependence on the initial contour position to avoid local
minimums due to the localization property of the Gaussian
kernel.
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D. SBGFRLS ENERGY MODEL
The selective binary and Gaussian filtering regularized level
set (SBGFRLS) model was proposed based on the traditional
C–V and geodesic active contour (GAC) MODELS, having
the advantages of both [20]. a SPF function used to substitute
ESF in the GAC model; the SBGFRLS formulation can be
expressed as

∂φ

∂t
= spf (I (x)).|∇φ|.α, (16)

where spf (I (x)) is an SPF function in Equation (16), which
is defined as

spf (I (x)) =
I (x)− m1+m2

2

max(|I (x)− m1+m2
2 |)′

(17)

wherem1 andm2 represent the gray mean values of the inside
and outside of the contour regions and are computed using
Equations (6) and (7), respectively. The SBGFRLS model
reduces the cost of the expensive re-initialization process
of the traditional level set method, which is more efficient
than other traditional models. The contour’s evolution stops
without any prior training over the blurred edges. How-
ever, the model assumes that the region to be segmented is
homogeneous, which occasionally holds in general clinical
cases. The detection accuracy can be decreased significantly,
when facing heterogeneous intensity distributions, because
the fundamental assumption is violated [21], [22]. Moreover,
the SBGFRLSmodel can become trapped in a local minimum
without proper initialization, resulting in poor segmentation
performance [26]–[28], [32].

E. LOCAL IMAGE FITTING ENERGY MODEL
The local image fitting (LIF) energy model was proposed
to minimize the difference between the fitted and input
images [17]. This model is based on the piece-wise smooth
assumption that the internal and external regions can recon-
struct input images I in a local region. The LIF energy model
is defined as

ELIF =
1
2

∫
�

|I (x)− ILIF (x)|2dx, (18)

where ILIF accounts for the local fitted image, which is
defined as

ILIF (x) = f1(x)M1 + f2(x)M2 (19)

M1 = Hε(φ) and M2 = 1− Hε(φ) and f1 and f2 are the local
intensity means in the input images in (14) and (15). Using
calculus of variations, (18) is minimized to

∂φ

∂t
= (I (x)− ILIF (x))(f1(x)− f2(x))δε(φ), (20)

where δε(φ) is the regularized Dirac delta function. This
model achieves accuracy similar to that of the LBF [4] model.
However, the LIF [17] model ignores some details of small
objects because of the Gaussian filter, resulting in inadequate
image segmentation.

F. VLSBC ENERGY MODEL
Li et al. [25] proposed the variational level set with bias
correction (VLSBC) model. This method computes the bias
field of images and then attempts to correct it to ensure
an image’s smoothness through the data term in the energy
model. The VLSBC model [25] is inspired by the retinex
model to describe inhomogeneous images as

I (x) = b(x)J (x)+ n(x) (21)

where I (x) is the input image, J (x) is the true image indepen-
dent of the inhomogeneity, and n(x) is the image noise. The
true image J (x) is assumed to be constant within each object
in the image and is defined as

J (x) ≈
N∑
i=1

ciMi, for x ∈ �i (22)

The K-means clustering function is

E ≈
N∑
i=1

∫ (∫
Kσ (x − y)|I (y)− b(x)ci|2Mi(φ)dy

)
dx

(23)

where Mi is the characteristic membership function based
on the regularized Heaviside function. If the image domain
is divided into two regions �1, �2, and Mi are defined as
M1 = Hε(φ) and M2 = 1 − Hε(φ), then ci and b(x) are
expressed as

ci =

∑2
i=1 Kσ ∗ [I (x)ciMi(φ)]∑2
i=1 Kσ ∗ [c

2
iMi(φ)]

, (24)

and

b(x) =

∫
Kσ ∗ [I (x)b(x)Mi(φ)]∫
Kσ ∗ [b(x)2Mi(φ)]

(25)

This method produces suitable results for inhomogeneous
image segmentation. However, its dependence over the initial
contour position limits its performance.

III. THE PROPOSED METHOD
The proposed ACM constructs a driving force based on the
information in the region of the image. By combining local
and global SPF functions in which the region information
modulates pressure force, a hybrid SPF function is proposed.
The proposed hybrid SPF function helps the proposed model
to be independent of the initial contour position. Furthermore,
an optimal KD operator is used to capture the weak edges of
the object boundary.

A. UPGRADED SPF FUNCTION
1) GLOBAL SPF
The inclusion of the SPF function in the proposed method
contributes to the global information of an image I . The
global fitting information is defined as

s = Hε(φ). ∗ (I − m1)+ (1− Hε(φ)). ∗ (I − m2), (26)
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where Hε is the regularized Heaviside function defined in
Equation (3),.* describes the matrix multiplication, and m1
and m2 are the averages of the intensities defined in Equa-
tions (6) and (7), respectively. Based on the above defined
global fitted image, the upgraded SPF function is defined as

spfg(I (x)) =
I (x)− s(x)
max(|s(x)|)

(27)

2) LOCAL SPF
The local SPF function is introduced as the coefficient of
local internal and external regions to enable the model to use
inhomogeneous images and computed as

spfl(I (x)) =
(I (x)− f1+f2

2 )

max(|I (x)− f1+f2
2 |)

(28)

where f1 and f2 are the two smooth, specially varying local
intensity means of the internal and external regions defined
in (14) and (15).

3) UPGRADED SPF
We built an upgraded SPF function by using the global spfg
and local spfl defined in (27) and (28) to segment the weak
boundary in an inhomogeneous image.

spfUp(I (x)) = w(spfl(I (x)))+ (1− w)spfg(I (x)) (29)

w is a weighting parameter that adjusts the local and global
spf energies. Where w is the average of (CN ).(1 − CN );
the intensity changes rapidly within the local window, which
is denoted by CN , where the local window size N defined
as CN = (Imax − Imin)/Ig. The values of Both w and
(1 − w) are between 0 and 1. Imax is maximum intensity,
and Imin is the minimum intensity within the local window,
respectively. The intensity level of an image is usually 255,
denoted by Ig. The w is based on the degree value of an
image inhomogeneity, where a lower value implies a lower
degree and higher degree of inhomogeneity value implies a
higher degree. Substituting the upgraded SPF function (29)
in Equation (16), the evolution equation of the upgraded SPF
function is defined as

∂φ

∂t
= spfUp(I (x)).b|∇φ| (30)

The balloon force is defined by b, which is used to control the
contour evolution process with shrinkage or expansion over
the image. In this article, we adopted the balloon force [33]
to change the evolution rate of the level set function, which is
defined as

b = m1 + m2. (31)

Because the SPF function is less sensitive to the initialization
location, the upgraded SPF function avoids the reinitializa-
tion step.

B. KERNEL DIFFERENCE
In this article, images could be obtained by subtracting two
filtered images to separate the noise and background from the
desired object [18]. By the convolution of the original image
I (x, y), the KD can be defined with two standard deviations
σ1 and σ2.

K ∗ I (x, y) = (kσ1 − kσ2) ∗ I (x, y), (32)

where K is the KD with two standard deviations k1 and k2.
By convolutionizing the original image, the KD is further
defined as

kσ1 ∗ I (x, y)− kσ2 ∗ I (x, y), (33)

If the image is corrupted with intensity inhomogeneity and
noise, it becomes highly sensitive to the gray changes because
the kernel operator is a second-order differential operator.
An edge energy term can be constructed to solve these prob-
lems, defined as

EK (g) =
∫ ∫

ω

w((kσ1 − kσ2) ∗ g− 0)2

+ (g− α(kσ1 − kσ2) ∗ I (x, y))2dxdy, (34)

where the optimal kernel operator is represented by g, and w
is a positive weighting coefficient used to stabilize the first
and the second terms. If the image noise is greater, then the
value of w is higher. The α is used to enhance or preserve
the object edges when α is greater than 1 or equal to 1. The
boundaries of an inhomogeneous image are enhanced when g
approaches zero. Equation (34) is used to preserve the edges
of the image, and both terms are fitting terms used to measure
the proximity and approximation among the original kernel
operator, zero plane, and optimal kernel operator.

∂g
∂t
=w(kσ1−kσ2) ∗ g−(g−α(kσ1−kσ2) ∗ I (x, y)) (35)

Equation (35) was obtained by iterating the original kernel
operator 100 times. The adopted parameters and correspond-
ing values were set as w = 3.2, α = 1, σ1 = 3.5,
σ2 = 1.5, and δt = 0.01. We used the zero-level set func-
tion to represent the closed contour C. Therefore, an energy
function was proposed:

Ek (φ) = g(φ) =
∫ ∫

ω

H (φ)g(x, y)dxdy, (36)

H (φ) is Heaviside function defined in (3). By minimizing
Equation (36) with respect to φ, the corresponding gradient
descent flow equation was obtained as follows:

∂φ

∂t
= δε(φ)g (37)

where δε(φ) is the Dirac function defined in (5), and g is the
optimal kernel operator defined in (35).
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FIGURE 1. Different synthetic and medical images: column 1 = original images with different initial contour
positions, column 2 = results after 10 iterations, column 3 = results after 19 iterations, and column 4 = final
results of the proposed method.

C. ACM BASED ON KERNEL DIFFERENCE AND
UPGRADED SPF
The KD helps to detect edges in the image segmentation pro-
cess when the object edges are weak. Moreover, the upgraded
SPF function is used to construct global image information
and effectively processes inhomogeneous images through
local image information. We proposed a model that can pro-
cess inhomogeneous images with weak edges and reduce
the initialization process on the initial contour location with
minimum iterations. After combining the upgraded SPF func-
tion (30) with KD (37), the newly proposed level set equation
is defined as

∂φ

∂t
= λδε(φ)g+ (1− λ)spfUp(I (x)).b|∇φ| (38)

where λ is a positive parameter. Equation (38) defines the
proposed level set method that accurately deals with the
segmentation problem of weak edges in intensity inhomo-
geneous images and deals with over-segmentation. Further-
more, the proposed level set method overcomes models that
are sensitive to noise and the initial contour position. Finally,
iterative steps for the proposed method are summarized as
follows.

(1) Initialize level set function φ and set the constant
functions as the initial contour.

(2) Compute the optimal KD using Equation (35), (35)
and (37).

(3) Compute m1 and m2 using Equations (6) and (7),
respectively.

(4) Compute Hε(φ) and δε(φ) using Equations (3) and (5),
respectively.

(6) Calculate spfg(I (x)) and spfl(I (x)) using Equations (27)
and (28), respectively.

(7) Calculate the level set evolution using Equation (38).
(8) Regularize the level set function with the special

Gaussian filter, i.e. φ = φ ∗ Gσ .(k = 3, σ = 3).
(9) Verify where contour evolution is converged; if not, return
to Step (2).

IV. RESULTS
The proposedmethod was tested on various synthetic and real
images to assess the accuracy levels and computational times.
The implementation used MATLAB 2018R in a Windows
10 environment and an Intel Core-i7 3.40 GHz processor with
16 GB of RAM. All default parameters used to segment the
inhomogeneous intensity images with the proposed method
are defined in Table 1.

A. SYNTHETIC AND REAL IMAGES
Figure 1 illustrates the synthetic and medical images with
different intensity inhomogeneity segmentation results using
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FIGURE 2. Medical images: column 1 = original images with initial contours,
column 2 = proposed method after 10 iterations, and column 3 = final results
using the proposed method.

FIGURE 3. Synthetic images with different initial contour positions: columns 1 and 2 present the different
initial contour positions, and columns 3 and 4 present the results using the proposed method.

the proposed method. The first column illustrates the original
images with different initial contour positions, the second
and third columns illustrate the contour moving toward the
object rapidly within a few iterations, and the fourth column
illustrates the segmentation results of the proposed method.

Accordingly, the proposed method is independent of the
initial contour position and achieves superior segmentation
with fewer iterations. Figure 2 illustrates the medical images
used to verify the proposed method’s accuracy and time
efficiency. The proposed method fitted the contour smoothly
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FIGURE 4. Synthetic images: column 1 = original images with initial contours, column 2 = LBF [4],
column 3 = LIF [17], column 4 = VLSBC [25], column 5 = Min et al.’s [29], column 6 z FRAGL [30],
column 7 = LIFDG [31], and column 8 = proposed method.

FIGURE 5. Segmentation results: The first row = WHRSPF [39], Second row = GLSEPF [40], Third row = Proposed method. Column 1 and
4 = origional image with initial contour, column 2 and 5 = results after 10 iteration, column 3 and 6 = final results.

with a minimum number of iterations. Figure 3 illustrates the
contour evolutions for different initial contour positions with
different contour sizes and shapes to validate the proposed
method’s performance. The first and third columns illustrate
the original images with different initial contour positions
while columns 2 and 4 present the final segmentation results.

Figure 4 illustrates the segmentation results when using
the proposed method on synthetic images; these results
were compared with those of previous methods. The first
column illustrates the original images with different ini-
tial contour positions, column 2 presents the results of the
LBF [4] model, columns 3 and 4 present the results of the
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FIGURE 6. Left most column: Different inhomogeneous images with different levels of Salt & Pepper noise: (0, 0.02, 0.04); column 2 = C-V [3],
column 3 = LBF method [4], column 4 = LIF method [17], column 5 = VLSBC method [25], column 6 = Min et al. [29], column 7 = FRAGL [30],
column 8 = LIFDG [31], and column 9 = proposed method.

TABLE 1. The default parameters.

LIF [17] and VLSBC [25], column 5 illustrates the results of
Min et al.’s [29] Method, column 6 illustrates the results of
the FRAGL [30] method, column 7 illustrates the results
of the LIFDG [31] model, and column 8 illustrates the pro-
posedmethod’s results. The results demonstrate the improved
contour evolution of the proposed method compared to the
previous methods; however, the results are inaccurate due to
image noise and weak object edges.

The proposed method is further compared with SPF
methods, WHRSPF [39], and GLSEPF [40] to show the

proposed method’s robustness. Figure 5 illustrates the syn-
thetic image with different intensity inhomogeneity segmen-
tation results using WHRSPF [39], GLSEPF [40], and the
proposed method. The first and Forth column shows the orig-
inal image with initial contour. Row one shows the results of
WHRSPF [39]; the contour is not moving towards the prop-
erly. Row two shows the results of GLSEPF [40]; the contour
is moving towards the object smoothly. However, the pro-
posed method shows the curve evolution process’s smooth-
ness and efficiency than theWHRSPF [39] andGLSEPF [40].

B. NOISE SENSITIVITY ANALYSIS
We have used the Jaccard Similarity (JS) method to perform
the noise sensitivity evaluation. JS is used to understand
the similarity between the segmentation results of the given
images. Two types of artificial noises are used: Salt & Pepper
and Gaussian. The mathematical representation of the JS
metric is written as

JS(A,B) =
|A ∩ B|
|A ∪ B|

, (39)
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FIGURE 7. Left most column: Different inhomogeneous images with different levels of Gaussian noise: (0.01, 0.03, 0.04); column 2 = C-V [3],
column 3 = LBF method [4], column 4 = LIF method [17], column 5 = VLSBC method [25], column 6 = Min et al. [29], column 7 = FRAGL [30],
column 8 = LIFDG [31], and column 9 = proposed method.

where A and B represent the segmentation results and ground
truth in this experiment.

Figure 6 shows the segmentation results of different images
with different levels of Salt & Pepper noise. The top row to
the ninth row of each of the figures contains the segmen-
tation results of three different Salt & Pepper noise levels:
(0, 0.02, 0.04). The C-V [3] model results performed well in
a few images; LBF [4] showed inferior segmentation results.
Min et al. [29] fell in the local minima; however, it located the
object boundaries. The FRAGL [30] and LIFDG [31] showed
almost similar segmentation accuracy results to the proposed
model.

Figure 7 demonstrates the segmentation results of different
images with different levels of Gaussian noise. The top row
to the ninth row of each of the figures contains the segmen-
tation results of three different Gaussian noise levels: (0.01,
0.03, 0.04). The LBF [4] and VLSBC [25] models illus-
trated almost similar segmentation accuracy. FRAGL [30]
and LIFDG [31] attained good performance and observed
very near in segmentation accuracy to the proposed model.
LIF [17] shows a false contour over the object boundaries.

The proposed method segmented the RoI with the image
complexity tomake it robust to noise. The respective accuracy
charts of Figures 6 and 7 are represented by images a and b
in Figure 8.

V. QUANTITATIVE COMPARISON
The quantitative comparison is performed by measuring the
Accuracy, Dice Index and Sensitivity for the mini-MIAS [34]
database of mammograms, which include ROIs of differ-
ent shapes and breast tumor X-rays. At first, experiments
using the proposed method are performed with Synthetic
color images to determine accuracy; the experiments’ results
were compared with those of previous models. The following
metric is used for segmentation accuracy, Dice Index, and
Sensitivity metrics are defined:

Accuracy =
TP+ TN

TP+ TN + FP+ FN
, (40)

DiceIndex =
2× TP

2× TP+ FP+ FN
, (41)

VOLUME 8, 2020 198377



A. A. Memon et al.: Hybrid SPF and KD Operator-Based ACM for Image Segmentation

FIGURE 8. Jaccard Similarity (JS) values for Figure 7 and 8 are represtend by images a and b respectively.

and

Sensitivity =
TP

TP+ FN
, (42)

where TP defines the true-positive segmented regions,
TN defines the true-negative unsegmented regions, FP
defines the false positives inaccurately considered true, and
FN defines false negatives, i.e., undetected object regions.
Accuracy defines the segmented regions over the actual
region. DSC is a dice coefficient, which defines the detected
region’s overlapping with the actual regions, and the Sensi-
tivity detects the region belongs to the actual region.

Figure 9 illustrates the comparison of the results of the
proposed method with the ground truth and previous models.
Comparisons of the proposed method with ground truth and
other state-of-the-art methods indicate that the LBF [4] and

LIF [17] methods have weak segmentation results, whereas
the VLSBC [25] model outperformed Min et al’s model [29].
The FRAGL [30] had improved segmentation results, despite
being weak in ignoring the noise in images. The pro-
posed method had superior segmentation results and was
nearer to the ground truth. Table 2 defines the comparisons
in Figure 9, and a graphical representation of the compar-
isons is depicted in Figure 10. The proposed method demon-
strated higher accuracy to the ground truth than previous
methods.

Figure 11 illustrates the publicly accessible mini-MIAS
database [34] to confirm the segmentation accuracy of the
proposed method. Table 3 defines the accuracy of the images
while Figure 12 illustrates the graphical representation of the
accuracy of Figure 11. Table 4 and Figure 13 depict the aver-
age number of iterations and average CPU times. Figure 12
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FIGURE 9. Synthetic color images: column 1 = original images with ground truth, column 2 = LBF [4],
column 3 = LIF [17], column 4 = VLSBC [25], column 5 = Min et al.’s [29], column 6 = FRAGL [30], and
column 7 = proposed method.

FIGURE 10. Segmentation accuracy graph for Figure 9.

TABLE 2. Segmentation accuracy of Figure 9.

TABLE 3. Segmentation accuracy of Figure 11.

illustrates the segmentation accuracy of the proposed
method is significantly higher than the other previous
methods.

A. DISCUSSION
The exiting ACMs define their formulations to construct
objects in an image with local and global energy fitting.
However, the proposed energy function defines the KD tech-
nique; it also combines an upgraded SPF Model to define
global and local image information for inhomogeneous image
segmentation. The proposed energy function combines the
advantages of previous methods to generate a new method
that is more effective for weak edges of objects, more accu-
rate, and more time-efficient. The noise sensitivity analy-
sis approves the proposed method results have improved
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FIGURE 11. Typical mammogram images: column 1 = original images with initial contour, column 2 = ground truth, column 3 = CV [3],
column 4 = LBF [4], column 5 = Min et al.’s [29], column 6 = FRAGL [30], and column 7 = proposed method results.

FIGURE 12. Metric analysis of the mini-MIAS dataset [34].

TABLE 4. Average CPU time and number of iterations in Figure 10.

accuracy compared with other methods. The average pro-
cessing time and average number of iterations are presented
in Table 4. Figure 12 illustrates the comparison outcomes
of the images. The segmented results of different inhomo-
geneous intensity images corroborate the accuracy of the
proposed method with fewer iterations comparatively to all

other best practice level set approaches. The efficiency of
deep learning image segmentation models, based on the
training sample data set, also has more massive and more
extensive data sets that tend to produce better accuracy and
segmentation efficiency. Comparatively, supervised learning
tends to produce inferior results on small datasets. However,
the unsupervised level set methods perform segmentation
using preselected parameters based on ROI. The proposed
method sets the effective parameters to capture the ROI in
images.

B. THE PARAMETERS
K is the KD operator and has a significant role in enabling the
proposed model to segment objects with weak edges. In this
study, the KD operator was combined with the upgraded
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FIGURE 13. Average CPU time and number of iterations in Figure 11.

SPF function to segment local and global image information
and control the contour evolution process using the balloon
force.

VI. CONCLUSION
This article proposed a new ACM based on KD and an
upgraded SPF model to conduct image segmentation irre-
spective of weak edges or intensity inhomogeneity. The pro-
posed model uses the KD on the edge-fitting energy term
to segment weak edges and to extract the object boundary.
The local and global fitting terms were combined to inte-
grate the advantageous features of both terms for effective
image segmentation. While the balloon force was used to
facilitate the contour evolution process, the weight function
was used to adjust weights between local and global infor-
mation terms. The segmentation results with increased accu-
racy and decreased processing time are additional benefits of
the proposed method. The quality of the proposed method
was verified with experiments on synthetic and real images,
including medical images. The image segmentation results
and quantitative comparisons confirmed the contour initial-
ization independence, high time efficiency, and superior seg-
mentation accuracy of the proposed model in comparison to
other segmentation models.
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