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ABSTRACT This paper deals with the stability, stabilization and L2− gain problem of periodic piece-
wise impulsive linear system. Firstly, by developing a new Lyapunov function called multiple piecewise
time-varying Lyapunov function, a sufficient condition that guarantee the system λ∗− exponentially stable is
established.Moreover, a state-feedback controller is designed to stabilize the system. Then L2− gain analysis
is investigated to obtain a result that guarantee the system λ∗− exponentially stable and with L2− gain
performance. Finally, numerical simulation examples are provided to verify the effectiveness of the results
proposed in this paper.

INDEX TERMS Periodic piecewise impulsive linear system, stability, stabilization, L2−gain performance,
time-varying Lyapunov function.

I. INTRODUCTION
Switched systems consist of a family of continuous-time or
discrete-time subsystems and a switching rule that governs
the transitions among these subsystems. Switched systems
have been extensively investigated in the last two decades
since that the switching behavior occurs extensively in many
practical processes, such as power systems [1], network con-
trol [2], aircraft control [3] and etc. [4]. A variety of theoretic
contributions have been reported, see [5]–[7] for details.

Stability and stabilization are the research focuses of
switched systems. Stability analysis is related closely with
the form of switching rule. Generally that the switching
rules can be classified into arbitrary switching and con-
strained switching [8]. The latter could be further divided into
time-dependent switching, state-dependent switching, and
switching under stochastic constraints. The basic approach
to investigate the stability under arbitrary switching is to
find a common Lyapunov function [5] for the switched sys-
tems or to adopt joint spectral radius method [9]. However,
in many practical cases, switching rules are often under
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some constraints, which makes switched system stable under
arbitrary switching is too conservative. For the cases that
state of a switched system is difficult to measure, a time-
dependent switching rule is a viable choice for stabiliza-
tion [10], [11]. Time-dependent switching usually restrain
the dwell time (DT) of each subsystem or the average dwell
time (ADT) of a switching sequence to be within a certain
bound to make the switched system stable [12], [13]. In a
sense, the method of ADT is more flexible compared with the
DT method in that it does not have constraints on the dwell
time of each subsystem. Therefore, there are many contribu-
tions which have applied the method of ADT to the control
of varieties of systems, e.g. [14]–[16]. Recently, some new
extended results based on ADT have been proposed, namely
mode-dependent average dwell time (MDADT) [17], [18]
and persistent dwell time (PDT) [19]. In short, the idea
of MDADT is to allow each subsystem to have its own
ADT [20], [21]. [22] used MDADT approach to analyze the
stability of discrete switched systems. PDT is a more general
concept, which covers the DT and ADT from a certain point
of view [19]. In [23], the fault detection filter design for a
class of nonlinear switched systems is investigated by PDT.
For the case that the systems have abrupt random changes
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in structures or parameters [24], it adopts the switching
under stochastic constraints to model this occasion, which
generally refers to stochastic Markovain switching. In [25],
the finite-time control problem is investigated for a class
of discrete-time markovian jump systems with determinis-
tic switching and time-delay. Forthermore, sufficient condi-
tions of the exponential almost sure stability for a switching
markov jump linear system are presented [24]. The stabiliza-
tion analysis is closely related with the realization of control
inputs such as the state-feedback control[26], adaptive output
feedback control [27], observer-based nonlinear control [28],
sliding mode control [29] and fuzzy control [30].

As a special but important class of switched system [31],
periodic piecewise system has received great attention in the
past decade. Periodic piecewise systems are often applied
to describe systems in many fields, which have periodically
switching sequence and fixed dwell time of subsystems, such
as DC-DC converters, conveyors with periodically changing
loads and vibration systems [32]–[34]. Some new results
on the stability and control problems of periodic piecewise
system have been presented in recent years. The problem of
guaranteed cost control is investigated for continuous-time
periodic piecewise linear systems with delay [35]. In [31],
the stability and L2− gain analysis of periodic piecewise
linear systems is presented by discontinuous Lyapunov func-
tion which does not need to monotonically decrease in one
interval.

On the other hand, the impulsive effect, i.e. state
jump, exists extensively in various practical systems, such
as frequency-modulated systems, optimal control mod-
els in economics, neural networks [36]–[38]. Accordingly,
switched system is also subject to impulsive effect. The
co-existence of impulses and switching may cause severer
oscillation and instability, and result in poor performance.
Therefore, in the past decade, the impulsive switched sys-
tems have attracted much attention and obtained many the-
oretical results [39]. In [40], it investigates the finite-time
stability problem for a class of switched linear systems
with impulse effects. Furthermore, the finite-time stability
for impulsive switched linear time-varying systems is pre-
sented [41]. On the other hand, the exponential stability
and stabilization problems of a nonlinear impulsive switched
systems with time-varying disturbances are investigated [42].
To the best of our knowledge, although periodic piecewise
systems is an important class of switched system, there are
no results considering impulse effect in it. In fact, peri-
odic piecewise systems with impulsive effects are widely
used in practical applications, such as DC-DC converters
with non-ideal switching diodes, conveyors with periodically
jumping loads and electrical circuits with switches. This
motivate our research.

This paper deals with the stability, stabilization and
L2− gain analysis of periodic piecewise impulsive linear
system. The main contributions lie in: this paper propose a
Lyapunov function called multiple piecewise time-varying
Lyapunov function (MPTLF), which is then applied to

derive a sufficient condition of λ∗− exponential stability for
periodic piecewise linear system with impulse effects. The
sufficient condition can be degenerated to the case without
impulsive effect, and the degenerated result is more flexible
compared with [31]. Then based on the proposed exponen-
tially stability result, state feedback controller is designed.
Furthermore, L2− gain analysis of the system is also investi-
gated.
Notations:Rn andRn×n denote the space of n-dimensional

real vectors and of n × n matrices with real entries. ‖·‖
denotes the Euclidean vector norm. Z , Z+ and N denote the
sets of integers, of positive integers and of natural numbers,
respectively. NM denotes the set of natural numbers between
1 andM . P > 0(> 0) denotes the real symmetric and positive
definite (semi-positive definite) matrix. λmax (P), λmin (P)
denote the maximum and minimum eigenvalues of the matrix
P. The superscript T denotes matrix transposition.

II. PROBLEM FORMULATION
Consider a continuous-time periodic piecewise impulsive lin-
ear system:

ẋ(t) = Aσ (t)x(t)+ Bσ (t)u(t) + Cσ ( t)ω( t) , t 6= tk
1x(t) = Dkx(t), t = tk , k = 0,1,2, · · ·

y(t) = Eσ (t)x(t)+ Fσ (t)u(t) + Gσ (t)ω( t)

where x(t), u(t) and ω(t) are system state, control input and
disturbance input, respectively. 1x(tk ) = x(t+k ) − x(tk ),
x(t+k ) = limh→0+x(tk + h), x(tk ) = x(t−k ) = limh→0+x(tk −
h). In this paper, we assume that the switching of subsystem
and the jump of state happen simultaneously at tk , periodic
switching signal σ (t) ∈ NM is right continuous and satisfies
σ (t + T ) = σ (t). In the following, the impulse/switching
instant tk is rewritten by tk = lT + ti, l = 0, 1, · · · , i =
0, 1, · · · ,M , as shown in Figure 1. Accordingly, the above
system model can be rewritten as

ẋ(t) = Aσ (t)x(t)+ Bσ (t)u(t)+ Cσ (t)ω(t),

t 6= lT + ti, l = 0, 1, 2, · · · , i = 0, 1, · · · ,M ,

1x(t) = Dix(t), t = lT + ti, l = 0, 1, 2, · · · ,

i = 0, 1, · · · ,M − 1,

y(t) = Eσ (t)x(t)+ Fσ (t)u(t)+ Gσ (t)ω(t) (1)

Since the switching signal is periodic, the dwell time of each
subsystem is fixed, which is denoted by Ti = ti − ti−1,

i ∈ NM . Clearly, T =
M∑
i=1

Ti. Without loss of generality, the

subsystems S1 : (A1,B1,C1) , S2 (A2,B2,C2) , · · · , SM :

(AM ,BM ,CM ) are assumed to be activated successively in
any period T .
Definition 1 [31]: The periodic piecewise impulsive linear

system (1) with u (t) = 0 and ω(t) = 0 is said to be λ* -
exponentially stable if ‖x (t)‖ 6 ke−λ

∗t ‖x (0)‖ , ∀t > 0, for
constants k > 1, λ* > 0.
Definition 2 [43]: The periodic piecewise impulsive linear

system (1) with u (t) = 0 is said to have weighted L2− gain,
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FIGURE 1. Switching law of System (1).

FIGURE 2. Construction of P
(
t
)

in MPTLF.

if under zero initial condition(i.e., x(t0) = 0), it holds that∫
∞

0
e−αsyT (s)y(s)ds 6 γ 2

∫
∞

0
ωT (s)ω(s)ds

where α > 0 and γ > 0.

III. MAIN RESULTS
In this section, we use a new Lyapunov function, called mul-
tiple piecewise time-varying Lyapunov function (MPTLF),
to derive a sufficient condition for the λ*− exponential sta-
bility of system (1). A method of designing state feedback
controller and L2− gain performance analysis are also dealt
with in this section.
Divide the dwell time [lT + ti−1, lT + ti) into Li segments

averagely. Denote such segments by Di,m, where Di,m =[
lT + ti−1 + J

m−1
i , lT + ti−1 + Jmi

)
, Jmi = mhi, hi = Ti

/
Li,

m ∈ NLi . Clearly, ti−1+J
Li
i = ti. For simplicity of expression,

we use the notation t(l,i,m) to denote the instant lT + ti−1 +
Jm−1i .
Construct the following Lyapunov function V (t) =

x(t)TP (t) x (t) for ∀t ∈ Di,m, where

P (t) = (1− γ )Psi,m + γPei,m

and γ =
(
t − t(l,i,m)

)/
hi, Psi,m > 0, Pei,m > 0.

Clearly, when γ = 0 (/γ = 1), then P (t) = Psi,m (/ P (t) =
Pei,m) respectively, as shown in Figure 2.
Remark 1: This MPTLF technique are also applicable

for systems with some aperiodic switching signals, e.g. the
switching signal with constrains of minimum dwell time or
average dwell time.

Theorem 1: Consider periodic piecewise impulsive linear
system (1) with u(t) = 0 and ω(t) = 0, given λ∗ > 0, if there
exist a set of scalars Li, λi,m, 0 < ηi 6 1 , ϕi−1 > 0, ui > 0
and matrices Psi,m > 0, Pei,m > 0, i ∈ NM , m ∈ NLi such that

ATi P
s
i,m + P

s
i,mAi +

(
Pei,m − P

s
i,m
)
Li
/
Ti − λi,mPsi,m 6 0,

i ∈ NM , m ∈ NLi (2)

ATi P
e
i,m + P

e
i,mAi +

(
Pei,m − P

s
i,m
)
Li
/
Ti − λi,mPei,m 6 0,

i ∈ NM , m ∈ NLi (3)

Psi,m − ηiP
e
i,m−1 6 0, i ∈ NM ,m ∈ NLi ,m 6= 1 (4)

(I + Di−1)TPsi,1(I + Di−1) 6 ϕi−1Psi,1, i ∈ NM (5)

Psi+1,1 − ui+1P
e
i,Li 6 0, i ∈ NM , i 6= M (6)

Ps1,1 − u1P
e
M ,LM 6 0 (7)

M∑
q=1

ξq +

M−1∑
q=0

νq + 2λ∗T 6 0 (8)

where ξq =
Tq
Lq

Lq∑
d=1

λq,d , νq = lnϕquq+1η
Lq+1−1
q+1 , then the

system (1) is λ*− exponentially stable.
Proof: Choose Lyapunov function

V (t) = x(t)TP (t) x (t) , t ∈ Di,m

where P (t) = (1− γ )Psi,m + γPei,m, γ =
(
t − t(l,i,m)

)/
hi,

Psi,m > 0, Pei,m > 0.
For t ∈ Di,m, it follows that

V̇ (t) = xT (t)
[
(1− γ )ATi P

s
i,m + γA

T
i P

e
i,m + γP

e
i,mAi

+ (1− γ )Psi,mAi+
(
Pei,m − P

s
i,m
)
Li
/
Ti
]
x (t)

= (1− γ ) xT (t)
[
ATi P

s
i,m + P

s
i,mAi

+
(
Pei,m − P

s
i,m
)
Li
/
Ti
]
x (t)

+γ xT (t)
[
ATi P

e
i,m + P

e
i,mAi

+
(
Pei,m − P

s
i,m
)
Li
/
Ti
]
x (t)

Then by (2) and (3), we have

V̇ (t) 6 λi,mV (t) (9)

From (4)−(6), correspondingly, it follows that

V
(
t(l,i,m)

)
6ηiV

(
t−(l,i,m)

)
, i ∈ NM ,m ∈ NLi ,m 6= 1 (10)

V
(
t +(l,i,1)

)
6 ϕi−1V

(
t(l,i,1)

)
, i ∈ NM (11)

V
(
t(l,i+1,1)

)
6 ui+1V

(
t−(l,i+1,1)

)
(12)

Combining (9)−(12) leads to

V
(
t−(l,i + 1,1)

)
6 η

Li−1
i e

Ti
Li

Li∑
m=1

λi,m
V
(
t +(l,i,1)

)
6 ϕi−1η

Li−1
i e

Ti
Li

Li∑
m=1

λi,m
V
(
t(l,i,1)

)
6 ϕi−1uiη

Li−1
i e

Ti
Li

Li∑
m=1

λi,m
V
(
t−(l,i,1)

)
(13)
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Further from (7), we can get

V
(
t(l,1,1)

)
6 u1V

(
t−(l,1,1)

)
(14)

By (13) and (14), we have

V (t(l + 1,1,1))

6 u1ϕM−1uMη
LM−1
M e

TM
LM

LM∑
m=1

λM ,m
V
(
t−(l,M,1)

)
· · ·

6 (
M∏
q=1

uqϕq−1η
Lq−1
q )e

M∑
q=1

Tq
Lq

Lq∑
d=1

λq,d

V (t(l,1,1))

· · ·

6 (
M∏
q=1

uqϕq−1η
Lq−1
q )l+1e

(l+1)
M∑
q=1

Tq
Lq

Lq∑
d=1

λq,d

V (t0) (15)

Substituting (8) into (15) leads to

V ((l + 1)T ) 6 e
(l+1)

(
M∑
q=1

ξq+
M−1∑
q=0

νq

)
V (t0)

6 e−2(l+1)λ
∗TV (t0) (16)

Noticing that V
(
t(l + 1,1,1)

)
> ρ

∥∥x (t(l + 1,1,1)
)∥∥2 and

V (t0) 6 ρ‖x (0)‖2, we can obtain from (16) that

∥∥x (t(l + 1,1,1)
)∥∥ 6

√
ρ

ρ
e−(l+1)λ

∗T
‖x (0)‖ (17)

where ρ = λmin

(
Ps1,1

)
, ρ = λmax

(
Ps1,1

)
.

On the other hand, since x (t) = e
Ai
(
t−t

(l,i,1)

)
x
(
t +(l,i,1)

)
,

t ∈
(
t(l,i,1), t(l,i+1,1)

)
and x

(
t +(l,i,1)

)
= (I +Di−1)x

(
t(l,i,1)

)
,

we have

‖x (t)‖ 6 βi

∥∥∥x (t +(l,i,1))∥∥∥ (18)∥∥∥x (t +(l,i,1))∥∥∥2 6 αi−1

∥∥∥x (t(l,i,1))∥∥∥2 (19)

where βi = max
[
1, Ti

2 λmax
(
Ai + ATi

)]
, αi−1 =

max[1, λmax((I + Di−1)T (I + Di−1))].
Combining (18) with (19) and noticing that αi−1 > 1,

βi > 1, one can obtain

‖x (t)‖ 6
√
αi−1βi

∥∥∥x (t(l,i,1))∥∥∥ 6 ξ ‖x (lT )‖ ,

t ∈ [lT , (l + 1)T ) (20)

where ξ =
(
5
M
i=1
√
αi−1βi

)
.

Substituting (17) into (20) leads to

‖x (t)‖ 6 ξ

√
ρ

ρ
e−lλ

∗T
‖x (0)‖

= ξ

√
ρ

ρ
eλ
∗T e−(l+1)λ

∗T
‖x (0)‖

FIGURE 3. A special case of P
(
t
)

in MPTLF.

Noticing that t < (l + 1)T , e−λ
∗t > e−(l+1)λ

∗T , it yields that

‖x (t)‖ 6 ke−λ
∗t
‖x (0)‖

Thus the system (1) is exponentially stable.
Remark 2 [31]: investigated the stability for the peri-

odic piecewise linear system by constructing the discon-
tinuous Lyapunov function. Clearly, Theorem 1 can be
also applied to such case without impulse effect and
can obtain more flexible condition. Specifically, if we
select Pei,m =

(
1− m

/
Li
)
Psi,1 + mPei,Li

/
Li, Psi,m =(

1− (m− 1)
/
Li
)
Psi,1+ (m− 1)Pei,Li

/
Li, i ∈ NM , m ∈ NLi ,

i.e. the Lyapunov matrix P(t) of each segment have linear
relation as Figure 3, then the MPTLF is degenerated into the
Lyapunov function in [31].
In the next, the stabilization of system (1) is dealt with

by state feedback. Substituting u (t) = Ki,mx (t) into (1)

with ω(t) = 0 and denote Rsi,m ,
(
Psi,m

)−1
, Rei,m ,(

Pei,m
)−1

, then the sufficient conditions (2) and (3) in The-
orem 1 are converted into the following bilinear matrix
inequalities(BMI),

Rsi,mA
T
i + R

s
i,mK

T
i,mB

T
i + AiR

s
i,m + BiKi,mR

s
i,m

+

[
Rsi,m

(
Rei,m

)−1Rsi,m − Rsi,m]Li/Ti − λi,mRsi,m 6 0

Rei,mA
T
i + R

e
i,mK

T
i,mB

T
i + AiR

e
i,m + BiKi,mR

e
i,m

+

[
Rei,m − R

e
i,m
(
Rsi,m

)−1Rei,m]Li/Ti − λi,mRei,m 6 0

where Rsi,m > 0, Rei,m > 0.
In general, such BMIs are difficult to settle since there is

no polynomial-time solving algorithm [44]. In Theorem 2,
the BMIs are degenerated to LMIs by choosing the piecewise
Lyapunov matrices Psi,m = Pei,m = Pi,m, as shown in Figure
4.
Theorem 2: Consider periodic piecewise impulsive linear

system (1) with ω(t) = 0, given λ∗ > 0, if there exist a set of
scalars Li, λi,m, 0 < ηi 6 1, ϕi−1 > 0, ui > 0 and matrices
Ri,m > 0 and Qi,m, i ∈ NM , m ∈ NLi such that

AiRi,m + BiQi,m + Ri,mATi + Q
T
i,mB

T
i − λi,mRi,m 6 0,

i ∈ NM ,m ∈ NLi (21)

VOLUME 8, 2020 200149



Y. Liu et al.: Stabilization and L2− Gain Performance of Periodic Piecewise Impulsive Linear Systems

FIGURE 4. Selection of P
(
t
)

for Theorem 2.

Ri,m−1 − ηiRi,m 6 0, i ∈ NM ,m ∈ NLi ,m 6= 1 (22)

(I + Di−1)Ri,1(I + Di−1)T 6 ϕi−1Ri,1, i ∈ NM (23)

Ri,Li − ui+1Ri+1,1 6 0, i ∈ NM , i 6= M (24)

RM ,LM − u1R1,1 6 0 (25)
M∑
q=1

ξq +

M−1∑
q=0

νq + 2λ∗T 6 0 (26)

where ξq, νq are given as those in Theorem 1, then the system
(1) is λ∗− exponentially stable under the state feedback
controllers Ki,m = Qi,m

(
Ri,m

)−1, i ∈ NM , m ∈ NLi .
Proof: State feedback u (t) = Ki,mx (t), t ∈ Di,m, i ∈

NM , m ∈ NLi . Let Ai,m , Ai + BiKi,m. Choose the Lyapunov
function

V (t) = xT (t)Pi,mx (t) , t ∈ Di,m

By the similar proof line of Theorem 1, one can conclude that
if

ATi,mPi,m + Pi,mAi,m − λi,mPi,m 6 0, i ∈ NM ,m ∈ NLi

(27)

Pi,m − ηiPi,m−1 6 0, i ∈ NM , m ∈

NLi ,m 6= 1 (28)

(I + Di−1)TPi,1 (I + Di−1) 6 ϕi−1Pi,1, i ∈ NM (29)

Pi+1,1 − ui+1Pi,Li 6 0, i ∈ NM , i 6= M (30)

P1,1 − u1PM ,LM 6 0 (31)

hold together with (26), then the system (1) is λ∗− exponen-
tially stable.

Let Ri,m ,
(
Pi,m

)−1, Qi,m , Ki,mRi,m. It is clear that
(21) implies (27). By Schur complement, (22) is equivalent
to −

(
Ri,m−1

)−1
+ ηi

−1
(
Ri,m

)−1
6 0 which leads to (28).

By the similar proof line, (29)−(31) can be obtained from
(23)−(26). Hence, system (1) can be λ∗− exponentially
stabilized by the designed controller.
Remark 3: From (26), the convergence speed λ∗ of the

switched system can be evaluated and controlled by the con-
vergence speed λq,d , q ∈ NM , d ∈ NLq of subsystems. And,
solving a desired λ∗ is an optimization problem, which can
be solved by some mature optimization algorithms.
Remark 4: The state feedback controllers are designed for

subsystems during segments Di,m, i ∈ NM , m ∈ NLi of
dwell time, which can ensure the performance of subsystems
during segments and hence ensure the whole performance of

subsystem during the dwell time. And note that the controller
design conditions are given in the form of LMIs and can be
easily implemented on MATLAB.

Next, the L2− gain problem of periodic piecewise impul-
sive linear system (1) is investigated by adopting MPTLF.
A sufficient condition is proposed to be λ∗− exponentially
stable and with L2− gain performance.
Theorem 3: Consider periodic piecewise impulsive linear

system (1) with u(t) = 0, given λ∗ > 0, if there exist a set
of scalars Li, γ > 0, λi,m, 0 < ηi 6 1 , ϕi−1 > 0, ui >
1 satisfying 0 < ϕi−1uiη

Li−1
i 6 1 and matrices Psi,m > 0,

Pei,m > 0, i ∈ NM , m ∈ NLi such that9
(
Psi,m

)
+

(
Pei,m − P

s
i,m

)
Li
/
Ti Psi,mCi EiT

∗ −γ 2I GiT

∗ ∗ −I

 < 0,

i ∈ NM ,m ∈ NLi (32)9
(
Pei,m

)
ATi +

(
Pei,m − P

s
i,m

)
Li
/
Ti Pei,mCi Ei

T

∗ −γ 2I GiT

∗ ∗ −I

 < 0,

i ∈ NM ,m ∈ NLi (33)
Psi,m − ηiP

e
i,m−1 6 0, i ∈ NM ,m ∈ NLi ,m 6= 1 (34)

(I + Di−1)TPsi,1 (I + Di−1) 6 ϕi−1Psi,1, i ∈ NM (35)
Psi+1,1 − ui+1P

e
i,Li 6 0, i ∈ NM , i 6= M (36)

Ps1,1 − u1P
e
M ,LM 6 0 (37)

M∑
q=1

ξq +

M−1∑
q=0

νq + 2λ∗T 6 0 (38)

M−1∑
q=0

νq > −λ
∗T (39)

where 9 (X) = ATi X + XAi − λi,mX , then the system (1) is
λ* - exponentially stable and satisfies∫
∞

0
e

(
λ
↓

Min−λ
∗

)
s
yT (s) y (s) ds 6 δγ 2

∫
∞

0
ωT (s) ω (s) ds

(40)

where ξq, νq are given as in Theorem 1, ε =

minj∈NM
(
ln η

Lj−1
j

)
, λ↓Min = minq∈N↓M

(
mind∈NLq

(
λq,d

))
,

λ
↑

Max = maxq∈N↑M

(
maxd∈NLq

(
λq,d

))
, δ =

λ∗−λ
↓

Min
λ∗

·

e
−ε+

(
2λ↑Max+3λ

∗

)
T
, N↓M and N↑M indicate the set of stable

subsystems and the set of unstable subsystems respectively.
Proof: It is clear that conditions (32), (33) imply

(2) and (3) respectively. Based on Theorem 1, one can see
from (34)-(38) that the system (1) is λ∗− exponentially
stable. In the following, we show that the system is with
expected L2− gain performance.

For t ∈ Di,m =
[
t(l,i,m), t(l,i,m + 1)

)
, by (32) and (33),

we have

V̇ (t) 6 λi,mV (t)− 0(t) (41)
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where 0(t) = yT (t) y (t)−γ 2ωT (t) ω (t). Noticing (41) and
(33)−(37), it yields

V (t)

≤ ϕi−1uiη
m−1
i

i−2∏
q=0

(
ϕquq+1η

Lq+1−1
q+1

)

×e
λi,m(t−t(l,i,m))+

Ti
Li

m−1∑
q=1

λi,q+
i−1∑
q=1

ξq

V
(
(lT )−

)
− ϕi−1ui

×ηm−1i e
λi,m(t−t(l,i,m))+

Ti
Li

m−1∑
q=1

λi,q i−1∑
z=1

i−2∏
q=z

(
ϕquq+1η

Lq+1−1
q+1

)

e

i−1∑
q=z+1

ξq

Lz−1∑
k=0

ηkz e
Tz
Lz

k−1∑
q=0

λz,Lz−q

×

∫ t(l,z,Lz−k+1)

t(l,z,Lz−k)

e
λz,Lz−k

(
t(l,z,Lz−k+1)−s

)
0(s)ds

)]

−

m−1∑
k=1

ηki e
λi,m(t−t(l,i,m))+

Ti
Li

k−1∑
q=1

λi,m−q

×

∫ t(l,i,m−k+1)

t(l,i,m−k)
eλi,m−k(t(l,i,m−k+1)−s)0(s)ds

−

∫ t

t(l,i,m)
eλi,m(t−s)0(s)ds

Integrating to initial instant and reconstructing inequality,
it leads to

V (t) 6 eθ0V (0)

−

l−1∑
h=0

M∑
z=1

Lz−1∑
k=0

∫ t
(l−(h+1),z,Lz−k+1)

(l−(h+1),z,Lz−k)

eθ1(h,z,k)0 (s)ds

−

i−1∑
z=1

Lz−1∑
k=0

∫ t
(l,z,Lz−k+1)

t
(l,z,Lz−k)

eθ2(z,k)0 (s)ds

−

m−1∑
k=1

∫ t
(l,i,m−k+1)

t
(l,i,m−k)

eθ3(k)0 (s)ds

−

∫ t

t
(l,i,m)

eθ40 (s)ds (42)

where

θ0 = ψ + λi,m

(
t − t(l,i,m)

)
+ l

 M∑
q=1

ξq

+

M−1∑
q=0

νq

− ln u1

θ1 (h, z, k) = ψ + ϑ (h, z, k)+ λi,m
(
t − t(l,i,m)

)
+h

 M∑
q=1

ξq +

M−1∑
q=0

νq

+ k ln ηz + M−1∑
q=z

νq

+

M∑
q=z+1

ξq +
Tz
Lz

k−1∑
q=0

λz,Lz−q

θ2 (z, k) = λi,m
(
t − t(l,i,m)

)
+ ϑ (h, z, k)|h=−1

+ (m− Li) ln ηi + k ln ηz +
Ti
Li

m−1∑
q=1

λi,q

+

i−1∑
q=z

νq +

i−1∑
q=z+1

ξq +
Tz
Lz

k−1∑
q=0

λz,Lz−q

θ3 (k) = λi,m
(
t − t(l,i,m)

)
+ λi,m−k

(
t(l,i,m−k+1) − s

)
+k ln ηi +

Ti
Li

k−1∑
q=1

λi,m−q

θ4 = λi,m (t − s)

with

ψ = (m− Li) ln ηi +
Ti
Li

m−1∑
q=1

λi,q +

i−1∑
q=0

νq +
i−1∑
q=1

ξq,

ϑ (h, z, k) = λz,Lz−k
(
t(l−h−1,z,Lz−k+1) − s

)
.

Multiply both sides of (42) by eβ , where β = (Li −

m) ln ηi −
i−1∑
q=0

νq. Under zero initial condition and noticing

V (t) > 0, it follows
l−1∑
h=0

M∑
z=1

Lz−1∑
k=0

∫ t(l−(h+1),z,Lz−k+1)

t(l−(h+1),z,Lz−k)

e�1(h,z,k)yT (s)y (s) ds

+

i−1∑
z=1

Lz−1∑
k=0

∫ t(l,z,Lz−k+1)

t(l,z,Lz−k)

e�2(z,k)yT (s) y (s)ds

+

m−1∑
k=1

∫ t(l,i,m−k+1)

t(l,i,m−k)
e�3(k)yT (s) y (s)ds

+

∫ t

t(l,i,m)
e�4yT (s) y (s)ds

≤ γ 2
×

l−1∑
h=0

M∑
z=1

Lz−1∑
k=0

∫ t(l−(h+1),z,Lz−k+1)

t(l−(h+1),z,Lz−k)

e81(h,z,k)ωT (s)ω (s) ds

+

i−1∑
z=1

Lz−1∑
k=0

∫ t(l,z,Lz−k+1)

t(l,z,Lz−k)

e82(z,k)ωT (s) ω (s)ds

+

m−1∑
k=1

∫ t(l,i,m−k+1)

t(l,i,m−k)
e83(k)ωT (s) ω (s)ds

+

∫ t

t(l,i,m)
e84ωT (s) ω (s)ds

}
(43)

where

�1 (h, z, k)

= λi,m

(
t − t(l,i,m)

)
+$ (z, k) + ϑ (h, z, k)

+h

 M∑
q=1

ξq +

M−1∑
q=0

νq

M−1∑
q=z

νq +
i−1∑
q=1

ξq +

M∑
q=z+1

ξq
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�2 (z, k)

= λi,m

(
t − t(l,i,m)

)
+$ (z, k)+ ϑ (h, z, k)|h=−1

−

z−1∑
q=0

νq +

i−1∑
q=z+1

ξq

�3 (k)

= λi,m

(
t − t(l,i,m)

)
+ λi,m−k

(
t(l,i,m−k+1) − s

)
+ (k − m+ Li) ln ηi −

i−1∑
q=0

νq +
Ti
Li

k−1∑
q=1

λi,m−q

�4

= λi,m (t − s) + (Li − m) ln ηi −
i−1∑
q=0

νq

81 (h, z, k)

= �1 (h, z, k)− k ln ηz −
M−1∑
q=z

νq

82 (z, k)

= �2 (z, k)−
M−1∑
q=z

νq − k ln ηz

83 (k)

= �3 (k)−
M−1∑
q=i

νq − (k − m+ Li) ln ηi

84

= �4 −

M−1∑
q=i

νq − (Li − m) ln ηi

with$ (z, k) = Ti
Li

m−1∑
q=1

λi,q +
Tz
Lz

k−1∑
q=0

λz,Lz−q + k ln ηz.

Clearly, from the value range of the related parameters, one
can see that 8i > �i, i = 1, 2, 3, 4.

For convenience of description, T↑
(
tι − tς

)
and T↓(

tι − tς
)
are used to denote the time length that λq,d is

positive and λq,d is negative within the time interval
[
tι, tς

)
,

respectively.
By (39), it follows that

�1 (h, z, k)
> − (h+ 1) λ∗T + k ln ηz + λ

↓

Min (t − s)

= k ln ηz +
(
λ
↓

Min − λ
∗

)
(t − s)+ λ∗ [t − s− (h+ 1)T ]

> k ln ηz +
(
λ
↓

Min − λ
∗

)
(t − s)+ λ∗ [t − (l + 1)T ]

> k ln ηz +
(
λ
↓

Min − λ
∗

)
(t − s)− λ∗T

> ε +
(
λ
↓

Min − λ
∗

)
t − λ∗T (44)

�2 (z, k)
> k ln ηz + λ

↓

Min (t − s)

> k ln ηz +
(
λ
↓

Min − λ
∗

)
(t − s)− λ∗T

> ε +
(
λ
↓

Min − λ
∗

)
t − λ∗T (45)

�3 (k)

> ln ηLi−1i + λ
↓

Min (t − s)

> ln ηLi−1i +

(
λ
↓

Min − λ
∗

)
(t − s)− λ∗T

> ε +
(
λ
↓

Min − λ
∗

)
t − λ∗T (46)

�4

> ln ηLi−1i + λ
↓

Min (t − s)

> ε +
(
λ
↓

Min − λ
∗

)
t − λ∗T (47)

where ε = minj∈NM
(
ln η

Lj−1
j

)
. By (41), we have

81 (h, z, k)

6 λ
↑

MaxT
↑ (t − lT )+ λ↓MaxT

↓ (t − lT )

+λ
↑

MaxT
↑ [(l − h)T − s] + λ↓MaxT

↓ [(l − h)T − s]

−h
M∑
q=1

Tq
Lq

Lq∑
d=1

λq,d − 2λ∗hT + h
M∑
q=1

Tq
Lq

Lq∑
d=1

λq,d

6 2λ↑MaxT − λ
∗ (t − s)+ λ∗ (t − s− 2hT )

6 2λ↑MaxT − λ
∗ (t − s)+ λ∗ [t − (l − 1)T ]

6 −λ∗ (t − s)+
(
λ
↑

Max + λ
∗

)
2T (48)

82 (z, k)

6 λ∗T + λ↓MaxT
↓ (t − s)+ λ↑MaxT

↑ (t − s)

6 −λ∗ (t − s)+ λ∗T +
(
λ
↑

Max + λ
∗

)
T

6 −λ∗ (t − s)+
(
λ
↑

Max + λ
∗

)
2T (49)

83 (k)

6 λ∗T + λ↓MaxT
↓ (t − s)+ λ↑MaxT

↑ (t − s)

6 −λ∗ (t − s)+
(
λ
↑

Max + λ
∗

)
2T (50)

84

6 λ∗T + λ↑Max (t − s)

6 −λ∗ (t − s)+
(
λ
↑

Max + λ
∗

)
2T (51)

where λ↓Max = maxq∈N↓M

(
maxd∈NLq

(
λq,d

))
.

Substituting (44)−(51) into (43) leads to∫ t

0
e
ε +

(
λ
↓

Min−λ
∗

)
t−λ∗T

yT (s) y (s) ds

6 γ 2
∫ t

0
e
−λ∗(t−s)+

(
λ
↑

Max+λ
∗

)
2T
ωT (s) ω (s) ds

Integrating from 0 to∞ on both sides of this inequality, one
gets (40). This completes the proof.
Remark 5: From (40), one can see the L2−gain perfor-

mance is related to parameters, the convergence speed of
the switched system, the convergence speed of subsystems
during segments of dwell time and the number of segments
of dwell time.These parameters can be designed to make the
system meet certain L2− performance indexes.
Remark 6: Similar to Theorem 2, the introduction of state

feedback controller u (t) = Ki,mx (t) render the sufficient
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condition to be BMIs in Theorem 3, which can be also con-
verted to LMIs by adopting the piecewise Lyapunov matrices
Psi,m = Pei,m = Pi,m.
Remark 7: It should be noted that in the derivation of

L2−gain problem in Theorem 3, to ensure the condition (38)
and (39) are satisfied simultaneously, at least one subsystem
of the switched system should be stable. However, such
requirement does not need in Theorem 1 and 2 which only
concern with the issue of stability.

IV. NUMERICAL EXAMPLE
Example 1: Consider a periodic piecewise impulsive linear
system (1) with the two subsystems, and the dwell time of
each subsystems are T1 = 1.5s, T2 = 0.1s respectively.

A1 =
[
−0.2 1
−0.6 −0.2

]
, B1 = 0,C1 =

[
0.1
0.05

]
,

E1 =
[
0.1 0.5

]
, F1 = 0, G1 = 0,

A2 =
[

2 −2.8
2.5 −1.8

]
, B2 = 0, C2 =

[
−0.1
0.2

]
,

E2 =
[
0.1 0.5

]
, F2 = 0, G2 = 0,

D0 =

[
0.01 0
0 0.02

]
, D1 =

[
0.015 0
0 0.025

]
Given a set of scalars as below and solving (32)-(39) in
Theorem 3, L1 = 3, L2 = 2, λ1,1 = λ1,2 = λ1,3 = −0.29,
λ2,1 = λ2,2 = 3, η1 = 0.82, η2 = 0.68, ϕ0 = 1.0405,
ϕ1 = 1.051, u1 = 1.395, u2 = 1.45, γ =

√
2, one can

obtain the MPTLF matrices as below, therefore the system
(1) is λ∗− exponentially stable with λ∗ 6 0.0387, and with
L2− gain performance. Under ω (t) = 0, Figure 5 shows the
trajectory ‖x (t)‖ of system (1) with x (0) = [0.1, 0.3]T and
the corresponding state trajectory.

Ps11 =
[
8.1186 0.6122
0.6122 19.9152

]
Pe11 =

[
8.6670 1.9728
1.9728 18.3066

]
Ps12 =

[
7.0931 1.6176
1.6176 14.9267

]
Pe12 =

[
7.9832 1.9018
1.9018 12.8026

]
Ps13 =

[
6.5338 1.5572
1.5572 10.4356

]
Pe13 =

[
7.1719 0.9250
0.9250 8.8000

]
Ps21 =

[
10.3809 1.3292
1.3292 12.6437

]
Pe21 =

[
9.4392 1.2602
1.2602 16.4729

]
Ps22 =

[
6.4076 0.8587
0.8587 11.1036

]
Pe21 =

[
5.8321 0.4245
0.4245 14.3943

]
Set D0 = D1 = 0, then the periodic piecewise impulsive
system turns to be periodic piecewise system. Set L1 = L2 =
1, λ1,1 = −0.29, λ2,1 = 3, u1 = 1.395, u2 = 1.45.
From Theorem 2 in [31], one can obtain λ∗ 6 −0.1778,
which indicates the system is not exponentially stable. Hence,
comparedwith the Theorem 2 in [31], Theorem 1 of this paper
is more efficient to obtain feasible solution.

Then the L2− gain performance of the system (1) is
analyzed. Choose the disturbance ω (t) = sin (2π t) e−0.5t .
Under zero-initial conditions, the system output is shown in
Figure 6.

FIGURE 5. (a) The trajectory
∥∥x

(
t
)∥∥ of system (1) with x

(
0
)
= [0.1, 0.3]T .

(b) The corresponding state trajectory.

FIGURE 6. The output trajectory of y
(
t
)
.

Example 2: Consider a periodic piecewise impulsive linear
system (1) with two subsystems, the dwell time of each
subsystems, D0 and D1 are same as those in Example 1.

A1 =
[

0.2 1
−0.6 −0.2

]
, B1 =

[
1
1

]
A2 =

[
2 −2.8
2.5 −1.8

]
, B2 =

[
2
−3

]
Clearly, all the subsystems are unstable. Next, the state feed-
back controllers are designed to stabilize the system. Given a
set of scalars as below and solving (21)-(26) in Theorem 2,
L1 = 3, L2 = 2, λ1,1 = −0.4, λ1,2 = −0.5, λ1,3 = −0.6,
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FIGURE 7. (a) The trajectory
∥∥x

(
t
)∥∥ of system (1) with x

(
0
)
= [0.1, 0.3]T .

(b) The corresponding state trajectory.

λ2,1 = −1.4, λ2,2 = −1.5, η1 = 0.82, η2 = 0.68,
ϕ0 = 1.0405, ϕ1 = 1.051, u1 = 1.6, u2 = 1.4. One can
obtain the matrices Ri,m,Qi,m, i ∈ NM ,m ∈ NLi as below,

R1,1 =
[
9.5364 0.6708
0.6708 18.1771

]
,

R1,2 =
[
11.6886 0.8217
0.8217 22.2700

]
R1,3 =

[
14.3200 1.0069
1.0069 27.2900

]
,

R2,1 =
[
10.2794 0.7299
0.7299 19.5891

]
R2,2 =

[
15.1833 1.0689
1.0689 28.9545

]
,

Q1,1 =
[
−7.2238 −2.3360

]
Q1,2 =

[
−8.9013 −3.4402

]
,

Q1,3 =
[
−10.9982 −4.9552

]
Q2,1 =

[
−13.4520 −6.1922

]
,

Q2,2 =
[
−19.8209 −8.8987

]
Then the gains of state feedback controllers are obtained by
Ki,m = Qi,m

(
Ri,m

)−1
, i ∈ NM ,m ∈ NLi ,

K1,1 =
[
−0.7504 −0.1008

]
,

K1,2 =
[
−0.7526 −0.1267

]
K1,3 =

[
−0.7571 −0.1536

]
,

K2,1 =
[
−1.2897 −0.2685

]
K2,2 =

[
−1.2872 −0.2598

]

The closed-loop systemmatrices are obtained by Ai,m = Ai+
BiKi,m, i ∈ NM ,m ∈ NLi ,

A1,1 =
[
−0.5504 0.8992
−1.3504 −0.3008

]
,

A1,2 =
[
−0.5526 0.8733
−1.3526 −0.3267

]
A1,3 =

[
−0.5571 0.8464
−1.3571 −0.3536

]
,

A2,1 =
[
−1.0897 0.7315
−1.8897 −0.4685

]
,

A2,2 =
[
−1.0872 0.7402
−1.8872 −0.4598

]
Therefore the system (1) is λ∗-exponentially stable under
the state feedback controllers with λ∗ = 0.15, as shown in
Figure 7.

V. CONCLUSION
In this paper, the λ*− exponential stability, stabilization
and L2− gain analysis of periodic piecewise impulsive
linear system are investigated. Firstly, we propose a suf-
ficient condition of λ*− exponentially stability for peri-
odic piecewise impulsive linear system by constructing the
so-called MPTLF. Next, the obtained result is used to design
state feedback controller by solving LMIs. Then for the
case that the time-varying disturbance exists, sufficient con-
dition to guarantee L2− gain performance is presented.
Finally, numerical examples are given to verify the effective-
ness of the proposed results. Note that the proposed Lya-
punov function is time-varying quadratic, further research
is needed to consider some more general nonlinear Lya-
punov functions. On the other hand, we will consider adap-
tive control when the state information is unknown or SMC
when system parameters are uncertain. The influence of
pulse characteristics, such as impulse occur sequences and
impulses gain, on system stability is also a future research
direction.
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