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ABSTRACT There is large and growing amounts of textual data that contains information about human
activities. Mining interesting knowledge from this textual data is a challenging task because it consists of
unstructured or semistructured text that are written in natural language. In the field of artificial intelligence,
event-oriented techniques are helpful in addressing this problem, where information retrieval (IR), informa-
tion extraction (IE) and graph methods (GMs) are three of the most important paradigms in supporting
event-oriented processing. In recent years, due to information explosions, textual event detection and
recognition have received extensive research attention and achieved great success. Many surveys have been
conducted to retrospectively assess the development of event detection. However, until now, all of these
surveys have focused on only a single aspect of IR, IE or GMs. There is no research that provides a complete
introduction or a comparison of IR, IE, and GMs. In this article, a survey about these techniques is provided
from a broader perspective, and a convenient and comprehensive comparison of these techniques is given.
The hallmark of this article is that it is the first survey that combines IR, IE and GMs in a single frame and
will therefore benefit researchers by acting as a reference in this field.

INDEX TERMS Event detection, event recognition, information extraction, information retrieval.

I. INTRODUCTION
Written language is the most convenient format for express-
ing human thought and behavior. It has been widely adopted
for recording human knowledge. For example, the SiKuQuan
Shu is the largest collection of Chinese literature compiled
during the years 1773-1782 in the Qianlong period of the
Qing dynasty. The collection contains 36,304 volumes and
approximately 0.8 billion Chinese characters. Due to the
emergence of the Internet, textual data have been accumulat-
ing rapidly. For example, the indexed Web contains at least
6.04 billion pages,1 Google Scholar has 160 million indexed
documents, and PubMed,2 a search engine accessing the
MEDLINE database, contains more than 29 million citations.

1Sunday, 09 February, 2020. https://www.worldwidewebsize.com/
2https://www.ncbi.nlm.nih.gov/pubmed/
The associate editor coordinating the review of this manuscript and

approving it for publication was Gianmaria Silvello .

Besides the large volume, there are two important aspects
of the current textual data: accessibility and interactivity.
Accessibility is supported by the development of the Inter-
net. High-speed Internet infrastructure and high-performance
computing terminals enable frequent and convenient brows-
ing and downloading at anytime and anywhere. Various kinds
of data (e.g., news, comments, papers, encyclopedias or nov-
els) are available to anyone who is searching for information
through the Internet. The interactivity prompts individuals to
post their opinions. When exploring information, we are not
just information consumers but also information producers
or more accurately information prosumers. Diverse social
media, such as Facebook and Twitter, make it easier for
individuals to express opinions easily and freely. Accelerated
by accessibility and interactivity, information is exploded,
developed and spread more quickly and more influentially
than ever before. This information explosion provokes the
desire to mine valuable information from the mass of textual
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data. The data can be beneficial for various applications,
e.g., information acquisition, collaborative recommendation,
knowledge management or decision making.

Event-oriented methods provide effective ways to support
the requirements for handling the surge of information. They
are helpful for understanding the when, where and what of
events that have happened around the world. However, the
definition of an ‘‘event’’ is very vague. It has been adopted in
many fields and has been used in reference to many seman-
tic concepts. Various definitions have been presented by
researchers. In this survey, we focus on ‘‘events’’ expressed
through text. We named these events as ‘‘textual events’’.
In the field of artificial intelligence, information retrieval (IR)
and information extraction (IE) and graphic methods (GMs)
are three of the most important paradigms to support textual
event detection and recognition. Before presenting our tax-
onomy about event detection, these paradigms are introduced
briefly as follows.

Traditionally, an IR system ranks documents relative to
a query [1]. In this paradigm, textual data is processed
at the document level. A document is seen as a bag-of-
words and is represented by a word vector. Elements of
the vector are assessed with term weighting, e.g., the term
frequency–inverse document frequency (TF-IDF) [2]. The
model is known as the vector space model (VSM) [3]. It maps
a document into a high-dimensional space. The similarity
among documents is calculated as the distance between vec-
tors. In this paradigm, an event is defined as a cluster of docu-
ments, which describes a particular ‘‘story’’ that occurred at a
specific time and place [4]–[6]. The IR-based system is effec-
tive for retrieving similar documents. The main shortcoming
of this paradigm is that it does not support content-based
recognition. Users still need to skim through the document
content, which is a laborious and time-consuming task.
To reduce ‘‘information overload’’ caused by the flooding of
documents, IE provides an effective complementary solution.

Instead of processing textual data at the document level,
IE systems extract designated information from the content
of documents, e.g., named entities, temporal expressions, and
entity relationships. In this field, an event is often defined as
a frame or a template with slots, which can be filled with
parameters such as actors, location, and time. Every event
has a predefined structure. For example, a birthday event
may contain parameters such as host, guest, location, and
time. An event is triggered by special words (anchor words,
e.g., a verb) [7]. When an event is triggered, the relevant
parameters are extracted according to a predefined structure.
In this paradigm, the detection task is often modelled as a
sequence labeling process, where the hidden Markov model
(HMM) [8], conditional random fields (CRF) [9] or long
short-termmemory (LSTM) [10] are commonly adopted. The
main problem is that processing at the sentence level suffers
from a serious sparse feature problem because a sentence
often contains a limited number of words.

There are many knowledge bases (e.g., Freebase and
Yago) that have been developed to support event-oriented

information exploration [11], [12]. In this paradigm, linguis-
tic units or semantic concepts (e.g., named entities and entity
relations) are extracted and organized into a graph represen-
tation [12]–[14]. A graph contains topological information
about documents. In this paradigm, an event can be defined
as a subgraph (or a node). A graph representation is helpful
when mining the underlying structure of events in documents
and it gives rise to novel solutions for event detection and
recognition. Event detection and recognition can be imple-
mented by graph mining algorithms (e.g., community detec-
tion [15]). It can be used to support many analytical methods
(e.g., statistical relational learning and entity disambiguation)
and to provide a visual interface for human-oriented informa-
tion exploration.

As discussed above, according to the characteristics of IR,
IE and GMs, we divide definitions of events into three cate-
gories: documental events, frame events and graphic events.
A documental event is a cluster of documents that contains
ample information about an event. A frame event is a template
with a predefined semantic structure. A graphic event is a
graph representation with coupled semantic information from
a semantic graph. In this article, we conduct a survey about
event detection and recognition. The rest of this article is
organized as follows. In Section II, the information retrieval,
information extraction and graphic method are introduced
as a background of event detection and recognition. The
discussions of documental events, frame events and graphic
events are presented in Section III, Section IV and Section V,
respectively. We provide the conclusion in Section VI.

II. BACKGROUND
Three types of event definitions are presented in this article.
They are relevant to three fields: IR, IE and GMs. In the
following, we introduce these fields as the background for
textual event detection and recognition.

A. INFORMATION RETRIEVAL
The idea of IR originated from the discipline of library
science. It dates back to approximately 3000 BC. It was
used by Sumerians for accessing archived clay tablets [16].
At its early stages, IR was mainly used by librarians to
retrieve indexed items, such as books or documents [17].
The catalogues are often alphabetically ordered by author,
title and subject. For example, catalogue cards were widely
used to index archived items. After the catalogue compilation,
the retrieval task was performed by human labor. At the
beginning of the nineteenth century, mechanical devices were
designed to operate catalogue cards automatically [18].

The phrase, ‘‘information retrieval’’, was first coined in
March of 1950 by Calvin Mooers at a conference [19].
The reliability of automatically retrieving documents has
been proven by Cleverdon and Keen [20]. It has been
shown that automatic indexing is comparable to manual
indexing. The conclusion is induced from the Cranfield
collection corpus constructed in the late 1960s’, which
contains 1400 documents and 225 queries [21]. Research on
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IR has been accelerated by the development of the Internet.
The Internet is full of unstructured or semi-structured docu-
ments [22], [23], which poses a challenge for traditional IR
methods.

In traditional IR systems, a query is required as an input.
The query can be structured (e.g., regular expression) or
unstructured (e.g., noun phrase or natural language). An IR
system retrieves relative documents bymeasuring the similar-
ity between queries and documents. Various approaches have
been proposed to measure the similarity between queries and
documents, e.g., Boolean models [24], natural language pro-
cessing (NLP) models [25] and vector space models (VSMs)
[16], [22].

In Boolean models, documents are indexed by a set of
terms (or keywords) collected manually or automatically
extracted from titles, abstracts or documents. The match
between queries and documents is based on the satisfac-
tion of the indexed terms. It is mainly implemented by a
string matching method or Boolean operations. In addition to
indexed terms, syntax or semantic information are explored
by NLP methods. NLP methods have the advantage of uti-
lizing techniques developed in natural language processing.
The VSM represents a document (paragraph or sentence) as
a term vector with a fixed-length dimension [3]. The similar-
ity between documents is calculated by using the distances
between the term vectors. Compared with the Booleanmodel,
the VSM has robust performance, and no manually annotated
keywords are required.

According to Carpineto and Romano [26], the average
query length is 2.30 words. Many of these queries are poorly
defined. Therefore, researchers have developed many tech-
niques for improving the quality of queries, for example, rel-
evance feedback, interactive query refinement or word sense
disambiguation [27]–[30].
There are many evaluation communities that aim to pro-

mote state-of-the-art technologies to support IR research.
We introduce two of them as examples: the Text REtrieval
Conference (TREC)3 and topic detection and tracking
(TDT).4

TREC has been co-sponsored by DARPA and NIST since
1992. It is an on-going series of workshops organized by
the retrieval group under the TIPSTER Text Program [21].
Every TREC workshop consists of a set of tracks in which
particular tasks are defined, such as the web track, microblog
track, medical records track, and legal track. For each round,
the TREC publishes a large-scale evaluation collection and
provides the evaluation techniques in advance. All partic-
ipants receive a static set of documents and are asked to
return ranked documents, where the documents are ordered
by probabilities according to whether they are relevant to
queries. It enables the results to be compared across different
systems. In the early stage, TREC mainly focuses on retriev-
ing relevant documents in a given corpus. At later stages,

3http://trec.nist.gov/
4http://www.itl.nist.gov/iad/mig//tests/tdt/

many tracks were defined for extracting factual information
from documents, e.g., the knowledge base acceleration track
or question answering track.

TDT is another evaluation community belonging to the
TIDES5 project of the DARPA. The TDT started with a pilot
study in 1997 and ended in 2004. Under the TDT setting,
topics (or events) are detected to enable users to manage text
streams in real time (e.g., newswire and broadcast news).
To process text streams, newmethodologies are required, e.g.,
segmenting a stream of data, finding new topics or keeping
track of topics. In each conference, the community proposed
several tasks to evaluate the methodologies developed in this
field. For example, for the TDT evaluation in 2004, there
are five research tasks: story link detection, new event detec-
tion, topic detection,6 topic tracking and hierarchical topic
detection.

B. INFORMATION EXTRACTION
Information extraction (IE) focuses on extracting semantic or
syntax units from documents [31]–[36]. The first IE model
was proposed by Schank [37] and is known as conceptual
dependency theory (CDT). It assumes that the main concep-
tualizations in a sentence are expressed by concepts (actions
and concrete nouns) and the dependencies among them.
It assumes that an action is the focus of a linguistic structure.
The structure defines the dependency relationships among
concepts. Given an input string, scripts (stereotyped causal
chains) are used to extract the relevant ‘‘conceptual cases’’ of
each action (e.g., objective, recipient or instrumental). Based
on this theory, Yale University designed a system named
SAM. It modifies scripts of CDT by using sketchy scripts to
extract important events with lower-level text analyses [38].
Frame theory is another popular theory proposed by Min-

sky [39], where ‘‘a frame is a data structure representing
a stereotyped situation’’ Minsky [39]. A frame defines the
structure of an event with a certain number of slots. The slots
can be filled with information about a specific event. For
example, all children’s birthday parties have hosts, guests and
a birthday cake. These objects and the relationship among
them constitute a birthday party event. Therefore, a frame
of a birthday party event has slots that can be filled with
parameters such as host, guest, and action. To define a frame,
the number of slots and the type of each parameter should be
predetermined according to a common structure of a specific
event.

Lehnert [40] presented a plot unit connectivity graph for
story summaries. Plot units are conceptual structures used
to represent the conceptual content. Four types of relations
are defined to link plot units, e.g., motivation, termination,
actualization and equivalence. The relations have three types
of affect states: negative events, positive events and mental
states. When all plot units of a story are connected, the graph

5The Translingual Information Detection, Extraction, and Summarization
project.

6It was replaced by hierarchical topic detection which is a new research
task in TDT 2004.
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may grow to a complex network. To reduce the complexity,
Rumelhart [41] proposed a story grammar for plotting human
narrative stories. Sager [42] introduced a sublanguage anal-
ysis method to extract information from clinical reporting.
Many systems were designed between the 1980s and 1990s.
An overview of these systems can be found in Hahn [43].

IE research has been prompted by a series of evalua-
tion conferences [44]. Five conferences (or communities)
are influential: SemEval (semantic evaluation),7 the Mes-
sage Understanding Conference (MUC),8 Automatic Content
Extraction (ACE),9 the Text Analysis Conference (TAC)10

and the BioNLP shared task series.11

SemEval is an ongoing series of evaluation conferences.
It is developed from the word sense evaluation series.12

SemEval focuses on evaluating semantic analysis systems.
It tries to promote mechanisms and methodologies for
linguistic computation with meaning. From Senseval-1 to
Senseval-3, word sense disambiguation received special
attention. The recent workshops focus on areas regarding tex-
tual similarity and question answering, detecting sentiment,
coreference, information extraction, etc. [45].
During the 1990s, the MUC was supported by the Sci-

ence Applications International Corporation (SAIC) to foster
the development of novel and improved methods for IE. The
MUC saw the development of information extraction. In the
firstMUC, there was no definition for the format of the output
and evaluation criterion. Participants were free to determine
the output format according to their understanding of the task.
Then, the community summarized the results and defined the
direction of the following conference. The MUC-2 crystal-
lized event recognition as frame filling tasks, whereas the
MUC-6 coined the task of ‘‘named entity’’ recognition to
support sophisticated extraction tasks. From 1987 to 1997,
the MUC was held seven times and was then replaced by the
ACE program.

ACE was inherited from the MUC. The tasks of ACE
were more complex and subtle than those of the MUC. The
ACE program extracted linguistic units from the point of
natural language understanding. Five linguistic units were
defined by the ACE evaluation criteria: entities, times, val-
ues, relations and events. Four tasks were proposed: entity
detection and tracking (EDT), relation detection and char-
acterization (RDC), entity linking (LNK), and event detec-
tion and characterization (VDC) [7]. ACE was held annually
from 1999 to 2008. It was replaced by a track in the Text
Analysis Conference (TAC) in 2009.

The Text Analysis Conference (TAC) was initiated and
organized by the retrieval group of the Information Access
Division (IAD) in the National Institute of Standards and
Technology (NIST). TAC has four tracks: recognizing textual

7http://www.senseval.org/index.html
8http://www-nlpir.nist.gov/related_projects/muc/
9http://www.itl.nist.gov/iad/mig/tests/ace/
10http://www.nist.gov/tac/
11http://2011.bionlp-st.org/
12https://en.wikipedia.org/wiki/SemEval

entailment, question answering, summarization and knowl-
edge base population (KBP), where KBP is similar to ACE
event recognition. KBP aims to populate knowledge bases
through systems that automatically extract information from
texts. This track has three areas: slot filling, entity linking and
cold start knowledge base population.

The BioNLP refers to a series of shared tasks and is
characterized by the evaluation data [46]–[49]. It focuses on
acceleratingmethods and strategies developed for biomedical
and molecular biology texts. The BioNLP shared tasks incor-
porate theories and methodologies developed from natural
language processing, computational linguistics and medical
informatics. The tasks of the BioNLP are similar to those of
the ACE, e.g.; named entity recognition, relation recognition
and event recognition. In contrast to named entities such as
person, organization or location, BioNLP focuses on bacte-
rial molecules, cells, proteins and genes [50]. Relation types
among them are implicit renaming, biological proof, and
protein encoding [50]. Event types are transcription, binding
and regulation [46].

C. GRAPHIC METHOD
Extracting linguistic units into networks or graphs is helpful
to reveal the potential relationships among linguistic units in
a document (or documents). A graphic representation enables
topological analyses such as social networks and complex
networks. It can give rise to novel solutions for a variety of
NLP tasks. Based on graphic representations, the topological
properties of linguistic units show the macroscopic character-
istics of languages (e.g., Zipf’s law [51]). They are useful for
modeling language with a flexible approach.

Graphic representations show an increased interest in the
field of natural language processing. Various networks or
graphs are proposed to represent knowledge in a struc-
tured form. In this article, according to the abstract level
of nodes in a network, we roughly class them into three
categories: co-occurrence network, syntactic network and
semantic network.

1) CO-OCCURRENCE NETWORK
In co-occurrence networks, nodes are terms (e.g., hyperlinks,
author names or words). Edges between nodes indicate that
the linked nodes co-occur in a given window, e.g., a sen-
tence, a page or a document. The co-occurrence information
(e.g., cocitation, coword, and colink) between terms can be
used to explore and understand the structures of the under-
lying documents [52]. For example, the PageRank algorithm
ranksWeb pages by the colinks between them. Author cocita-
tions can be used to analyze potential patterns among papers
[53]. In addition, lexical (or word) co-occurrence networks
show meaningful characteristics of languages [54]–[56].

Approaches to analyse co-occurrence networks are mainly
based on statistical characteristics. The foundation to utilizing
a co-occurrence network is that terms do not occur in a ran-
dom way. Co-occurred terms share some syntactic or seman-
tic relations. For example, a coauthor relation indicates that
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they belong to the same field. Co-occurring words in a sen-
tence show a syntactic dependency [55]. For a co-occurrence
network, two issues are very important. The first is the
size of the window where terms co-occurred. In a lexical
co-occurrence network, the window can be set as a sentence,
a paragraph or a document. A smaller granularity means
a stronger coherence between terms, but it increases the
sparsity of a network. Another issue regarding co-occurrence
networks is the object that a term refers to. In the PageRank
algorithm, a hyperlink is unambiguously referred to as a
unique Web page. Therefore, co-occurrence networks based
on colinks truly reflect the underlying structure ofWeb pages.
However, because of homonyms, in an author cocitation net-
work, noise will be introduced with the ambiguity problem.
The problem is worse in a lexical co-occurrence network.
Depending on context, the same word can refer to different
objects.

2) SYNTACTIC NETWORK
The constraint in a co-occurrence network is very loose and
only depends on the co-occurrence information. Because
word co-occurrences in a language seem evidently arbitrary
[57], it is difficult to reveal the underlying structure of a
language with a co-occurrence network [58]. Depending on
the context of a sentence, many words are polysemic and
ambiguous. They cannot reflect the true structure of a lan-
guage. To capture the syntactic dependency in a sentence,
syntactic information is introduced to strengthen the relation-
ship among words. It is also known as a syntactic network.
To identify a link between two nodes, it is required that the
linked words are syntactically dependent.

Syntactic dependency networks have been widely dis-
cussed to analyze the characteristics of a language [59]–[62].
In a traditional syntactic network, nodes are denoted aswords.
They are linked by edges indicating the syntactic dependency
between them. Syntactic networks are constructed by orga-
nizing the words with syntactical dependencies in a corpus.
Every sentence is first parsed into a syntactic tree. Then,
the words with syntactic dependencies are linked by labelled
edges [59], [61], [63]. In syntactic networks, many types of
edges have been defined. The Boolean relation is the most
widely used edge type I Cancho et al. [59], [61]. Some
researchers use grammatical relations, where every edge has a
label indicating the type of grammatical dependence between
words [60]. Researchers used a thesaurus dictionary to link
words that express similar concepts (e.g., the conceptual
network Motter et al. [64]).

Based on syntactic networks, studies have shown that syn-
tactic networks have a small-world effect and scale-free dis-
tribution of degrees [55], [59]. These conclusions are helpful
for understanding the characteristics of a language. The main
problem of syntactic networks is that because the current
techniques used to parse a sentence are difficult and error-
prone, it is difficult to construct a network precisely and
automatically.

3) SEMANTIC NETWORK
Semantic networks organize knowledge in graph represen-
tations. In this network, nodes represent semantic units,
e.g., names of people, locations or organizations. Edges
between them represent semantic relations, e.g., location,
part-whole, and physical. Semantic networks have received
extensive research attention. They can be roughly divided
into three paradigms: logic-based semantic networks (e.g.,
ontology), scalable knowledge databases (e.g., Freebase [65])
and semantic networks constructed by open information
extraction.

Logic-based semantic networks refer to networks that
have a coherent knowledge representation, e.g., Cyc [66]
and WordNet [67]. Because the qualities of the network
(e.g., consistency, completeness, independence or decidabil-
ity) are important for a logic-based semantic network, they
are often constructed by domain experts and focused on a
closed domain. For example, Masterman [68] proposed a
semantic net, which encodes language semantic features for
the purpose of machine understanding. Ceccato and Maretti
[69] presented a correlational net, which defined 56 different
relations, e.g., kinship relations, case relations, and different
kinds of attributes. Sowa [70] designed a conceptual graph.
A conceptual graph represents logic as a graph representation.
A conceptual graph supports logic operators directly. Other
semantic networks (e.g., a dependency graph [71], WordNet
[67], and Cyc [66]) have also been proposed. Logic-based
networks have strong constraints on network quality. They
are very beneficial for natural language processing.

In the second paradigm, instead of focusing on a closed
domain, networks are extended into open fields. These net-
works try tomerge diverse knowledge in a unified framework.
Therefore, instead of a rigid structure, these networks try to
define a graphical representation with high extensibility and
scalability. In this paradigm, systems such as Yago [72] and
Freebase [65] are presented to support tasks, such as informa-
tion retrieval or semisupervised information extraction.Many
of these networks are built from semi-structured databases
(e.g., Wikipedia) with direct or indirect human intervention
(e.g., collaborative methods or searching logs) or with the
support of ontologies (e.g., WordNet, OpenCyc [73]). NLP
techniques have also been explored for constructing these
networks, e.g., Xlike [74] and ECKGs [75]. This type of
network is often adopted to represent ‘‘static’’ knowledge
(e.g., encyclopedic knowledge), where knowledge is not
changed rapidly.

The third paradigm (open semantic networks) integrates
knowledge in a dynamic domain. These networks process
unstructured data (e.g., plaint texts) from heterogeneous
resources. In these networks, nodes are named entities. Edges
are relations between them. The number of relation types
can be predefined or dynamically created from the input.
They can generate a huge network containing more than
thousands or millions of nodes and edges. For example,
Zhang et al. [76] extracted knowledge from cross-lingual
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data. Angeli et al. [77] focused on canonically structured sen-
tences with a few patterns. To construct a network, distant (or
weak) supervision [78], [79] and bootstrapping [80]–[83] are
commonly used. They often adopt a knowledge database to
guide the construction process. Researchers have proposed
many systems, e.g., T EXTR UNNER [84], K NOWI TA LL
[85], [86], WOE [87], and StatSnowBall [88].

III. DOCUMENTAL EVENT
A documental event refers to a cluster of documents describ-
ing the same event. In this field, the term ‘‘topic’’ is also
widely used by researchers to represent a documental event
[89]. The main difference between them is that documental
events have a specific time stamp or a location to indicate
the occurrence of the event. In this section, the definitions
and techniques in documental event recognition are first pre-
sented. Then, three scenarios, (segmentation, event detection
and tracking and event organization), are discussed in detail.

A. DEFINITIONS AND NOTATIONS
In the task of event detection and tracking, three terms are
often mentioned: ‘‘story’’, ‘‘event’’ and ‘‘topic’’. In many
studies, they have been used indiscriminately. However,
in this field, there are subtle differences among them. A
‘‘story’’ represents a stream of text in a news article that
transmits specific information, e.g., a newswire. An event is
defined as ‘‘a particular thing that happens at a specific time
and place’’ [90], e.g., a plane crash or a meeting. A topic is
a series of related events or activities. In the TDT evaluation
corpus, every story belongs to a topic, and a story may con-
tains one or more event(s). They are all defined as clusters of
documents representing different granularities of documental
contents.

Traditionally, documental events are defined as a flat-
tened structure, where documents in different documental
events are mutually exclusive. However, in real applica-
tions, a hierarchical representation is effective in expressing
the relations among events. Therefore, event organization is
introduced to model the relations among documental events.
Organized events are often represented in a tree structure.
The parent-child relation between nodes denotes the different
granularities of events in a corpus. This strategy is also helpful
in supporting tasks, such as new event detection or event
tracking.

An IR system also outputs clustered documents, but it is
different from documental event detection. The latter has
an obvious difference: chronology. In documental events,
documents are chronological. They tend to occur in a range
of times. Therefore, a time gap between similar documents
may represent different events [5].

Compared to traditional IR systems, documental event
recognition has many unique characteristics. In online event
detection, a specific phenomenon is that new vocabular-
ies intermittently occur in arriving documents. The event
representation should update the new terms accordingly.
An ‘‘incremental IDF’’ method was proposed to handle this

problem. It adapts to new terms dynamically [91], [92]. In a
multilanguage environment, a ‘‘language-specific compari-
son’’ method was proposed to compensate for the hetero-
genicity among languages [92]. To recognize a documental
event, the chronological order is an important characteristic.
A time span between two events suggests that they are dif-
ferent. For example, two earthquakes may have a time span
of approximately thousands of years. As time elapsed, the
heterogeneity between the events increases. Therefore, a time
window or a decaying function can be adopted to capture this
phenomenon [91].

B. TECHNIQUES
The techniques used to extract documental events are mainly
rooted in IR [93]. Most IR systems can be adapted to imple-
ment documental event recognition. For example, at the
TDT evaluation conference, the CMUDIR team presented a
system that was initially designed for the TREC-style task.
It also achieved high performance in the event detection
task [94].

Many documental event detection and recognition systems
are based on VSM directly [4]–[6], [92], [94]–[98]. These
systems represent a document as a term vector. The values
of a vector are set by term weighting. A matrix is used
to represent a corpus, where each column of the matrix
denotes a document vector. Based on this model, documents
are mapped into a measure space. The similarity between
two documents can be evaluated by a predefined distance
function, e.g.,Manhattan distance, cosine, Hellinger distance
[96], Kullback-Leibler divergence, Clarity-based distance or
Jensen-Shannon distance [99], [100].

Based on VSM, various techniques are developed to
improve system performance, e.g., techniques to improve
clustering or evaluation, techniques to link the dependence
among events and techniques to fuse results [17], [23], [101].
Among them, the term weighting and space transformation
are two important issues.

Term weighting quantifies the significance of terms [102],
[103].Many techniques have been proposed, such as term fre-
quency (TF) [104], inverse document frequency (IDF) [105],
TF-IDF [103] and term relevance weight [106]. Term weight-
ing decides the distribution of documents in a measure space.
Different term weighting methods lead to different cutting
planes in a measure space. Term weighting is also used to
select or filter terms that are noisy. Various feature selection
methods have been proposed, such as chi-squared statis-
tics [107], pairwise mutual information [57], log-likelihood
ratios [108] and Jaccard similarity measures [109].

In real applications, the dimension of VSM may grow
exponentially, which leads to the ‘‘curse of dimensionality’’
problem.A large dimension is expensive inmemory and com-
putation. Furthermore, capturing the semantic information of
terms is also important. To resolve these problems, space
transformation has been proposed, such as latent semantic
indexing (LSA) [110], probabilistic latent semantics indexing
(PLSA) [111] and latent Dirichlet allocation (LDA) [112].
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Based on the document matrix, latent semantic index-
ing (LSI) implements a singular-value decomposition.
It maps documents into a latent semantic space represented by
a singular value matrix [113]. Probabilistic latent semantics
indexing (PLSI) utilizes the phenomenon that terms with
different occurrences across documents may indicate latent
topics. The latent topics can be modelled by hidden vari-
ables [114], [115]. To control the number of parameters
and the overfitting problem in PLSI, latent Dirichlet alloca-
tion (LDA) proposes several assumptions to restrict the dis-
tribution of random variables [112]. These techniques (LSA,
PLSA, LDA, etc.) map documents into to a reduced semantic
space. They have advantages in exploring the latent semantics
of documents and identifying the hidden semantic structure in
documents [110], [116].

C. SEGMENTATION
In real applications, many documents contain several relevant
events. For example, an airplane crash event usually includes
subevents such as smoke escaping from the engine, airplane
malfunctions, scared and shaken passengers, etc. They are
expressed in a text stream. Because there is no clear boundary
between them, it is necessary to segment it into coherent
partitions.

Various approaches have been proposed to imple-
ment segmentation tasks. They fall into two categories:
structure-based approaches and the content-based approaches
[6]. There are systems combining two approaches in a unified
framework (e.g., [117]).

A structure-based approach defines the segmentation task
as a classification problem. It gives a predication based
on features extracted from a possible boundary. For exam-
ple, Beeferman et al. [117] proposed an exponential model
to extract features correlated with the presence of bound-
aries. In addition to classifying each boundary indepen-
dently, a sequence model (e.g., CRF, HMM or LSTM)
was introduced to capture the dependency among segmen-
tation boundaries [118]. The model tries to find the most
likely tagging sequence for a text stream. McCallum et al.
[119] used maximum entropy Markov models (MEMMs).
These models have reported better performance compared to
other models, such as ME-stateless, TokenHMM, and Fea-
tureHMM. Barrow et al. [120] proposed a segment pooling
model. It jointly segments a document and labels the content
of segmentations.

Content-based approaches utilize the meanings of words
to find coherent blocks in a document or a text stream.
A coherent block refers to a segment with highly related
semantic meanings. A change in semantic similarities among
contexts may indicate an inhomogeneous block. In this field,
two approaches have been proposed to compute the simi-
larities among words: syntagmatic relation and paradigmatic
relation [121]. The syntagmatic similarity is based on the
co-occurrences of words in a corpus. It represents how words
are arranged in sequential texts. The paradigmatic similarity
is based on the associative data in a thesaurus. It represents

how words are associated. In recent work, Glavaš et al. [122]
proposed an unsupervised algorithm that uses word embed-
dings to measure the semantic relationships among segments.

To evaluate a segmentation method, two approaches have
been presented: indirect evaluation and direct evaluation [6].
Indirect evaluation emphasizes support for other tasks. In this
approach, a system is first conducted to segment documents.
Then, an event detection task is implemented on the seg-
mented output for an evaluation. In the direct evaluation
approach, a metric (e.g., precision and recall) is adopted
to evaluate the performance of a system. This approach is
easy to implement and can evaluate systems across different
platforms. However, there are still some shortcomings in this
approach because a hard benchmark cannot access the degree
of error. To resolve this problem, Beeferman et al. [123]
proposed a probabilistically motivated error metric.

D. EVENT DETECTION AND TRACKING
Event detection and tracking monitors documents or text
streams, attempts to find new events or tracks existing events.
In the TDT evaluation conference, four related tasks were
defined: new event detection, story link detection, topic detec-
tion and topic tracking. The new event detection taskmonitors
unseen events. Two scenarios are considered. First, partici-
pants are given a corpus and are required to divide it into
different event-specific clusters. It is also named retrospective
event detection. In the second scenario, known as online
event detection, documents are arranged in chronological
order. Participants are required to predict which event every
document belongs to or which event contains a new event.
The story link detection task estimates whether two given
stories are discussing the same event. The topic detection
task incrementally clusters stories that discuss the same event.
In the topic tracking task, a system is first trained on a number
of stories. Then, when a story arrives, the system ranks which
story it belongs to [6].

In the pilot studies of the new event detection task, three
systems were proposed: the CMU system, the dragon sys-
tem and the UMass system. The CMU system adopted
a single-pass incremental clustering algorithm (INCR) [5].
In this algorithm, every event is denoted by a centroid vector.
It is induced from all document vectors in an event. The CMU
system makes a flat partition of input documents. When a
new document arrives, it is assigned to the nearest event. The
dragon system also uses a single-pass clustering algorithm
[93]. The first document is set as an initial event. Arrived
documents are exclusively added into the closest event. If the
similarity among existing events is larger than a predefined
threshold, a new event is created by using the new document
as a centroid vector. In this system, the threshold for creating
a new event is dynamically calculated, which is helpful for
capturing the temporal features of events [124]. The Umass
system presented two models: a vector space model and a
relevance model [92]. A characteristic of the system is that
after documents are added, the centroid of an event can be
updated, which enables it to adapt to the new documents.
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In the event tracking task, a set of target events is given in
advance. They are used to train a tracking system. It estimates
the arrived documents and determines which events they
belong to. Event tracking systems can be divided into two cat-
egories: unsupervised tracking and supervised tracking [94],
[97]. The difference between them is that unsupervised track-
ing systems predict arrived documents independently without
human intervention [5], [93]. On the other hand, in supervised
tracking systems, after a document is processed, humans give
a confidence score to the document. The information is used
as feedback to adjust the tracking system Connell et al. [92],
Zhang and Callan [94].

Supported by neural networks, event detection and track-
ing has been accelerated from many aspects. Hu et al.
[125] presented an online news event detection model that
adopts word embedding to represent documents. It reduces
the influence caused by the out-of-vocabulary problem.
Based on a deep neural network, Chen et al. [126] pro-
posed an encoder-memory-decoder framework for subevent
detection. It learns document and subevent representations.
Subevents are detected by selecting the most proper subevent
representation.

To evaluate an event detection and tracking system, a con-
fusionmatrix is commonly used. Two other techniques are the
detection cost function and the decision error tradeoff (DET)
curve. They are discussed in Fiscus and Doddington [127],
Martin et al. [128].

E. EVENT ORGANIZATION
The output of event detection and tracking is a flattened par-
tition of a corpus, where a document is not allowed to belong
to multiple events. A flattening structure is not effective in
supporting the multiple granularity of event detection and
recognition. On the other hand, event organization gives a
hierarchical view of documents. The task is similar to the
subject-based information organization task proposed in the
IR field [129], [130]. The main difference is that the later
outputs a hierarchical representation but ignores the chrono-
logical property.

In the event organization task, the computational complex-
ity is the main problem in organizing events into a hierar-
chical representation [92], [97]. To reduce the computational
complexity, many models make use of the time locality phe-
nomenon. Nallapati et al. [4] has shown that the temporal
characteristic is very useful in event organization. From this
aspect, Cutting et al. [131] provided a document hierarchical
structure model (known as the scatter/gather model). This
approach was also employed by the CMU event detection
system [91]. There are also studies that generate hierarchi-
cal event-based social media, e.g., Twitter [132], [133]. The
neural network-based methods for organizing events can also
benefit from integrating deep semantic features and exter-
nal knowledge. For example, Peng et al. [134] proposed a
pairwise popularity graph convolutional network to integrate
information from an external knowledge base for fine-grained
social event categorization.

In the following, three typical approaches are discussed:
the UMass approach [92], the TNO approach [97] and the
ICT approach [135].

The UMass approach has two steps [92]. In the first step,
all documents are sorted by timestamps. Each story is chrono-
logically compared to a number of documents ahead of it.
The bounded k-NN algorithm is implemented to calculate
the similarity among them. If the similarity is below a pre-
defined threshold, then a new event is created. Otherwise,
it is assigned to the closest event. The algorithm outputs a
list of events. Each contains one or more documents. In the
second step, a bounded agglomerative clustering method is
implemented to cluster the event list. Because the event list
is sorted chronologically, it takes a certain number of events
from the front of the list and combines the closest event pair
with similarity. The process is iteratively run until only a
specified number of events remain. However, even though the
motivation of the UMass approach is reasonable, it suffers
from poor performance. The reason is that, in this approach,
documents are not allowed to belong to multiple events.

The TNO approach provides a scalable architecture for
hierarchical event detection [97]. It has four steps: sampling,
clustering, optimizing and merging. In the sampling step,
random samples are collected from the corpus. In the clus-
tering13 step, documents are clustered by similarities among
them. Then, the hierarchical structure is built with a basic
hierarchic agglomerative clustering method. The optimizing
step is necessary because the output of the clustering step is
usually an unbalanced binary tree. Therefore, in the merging
step, if a document has not been in the sample, it is used as
a query to match the sampled documents. Then, the retrieved
documents are added into the event that contains the top ten
matched documents. TNO allows a document belonging to
more than one event. The results showed better performance
than the UMass approach.

The ICT approach was provided by Yu et al. [135]. It is
similar to the UMass approach. In this approach, a whole
corpus is first partitioned. A traditional clustering method
is implemented layer by layer. Then, ICT uses a bucket
container (a time window) to capture the time locality char-
acteristic. In each bucket, a agglomerative hierarchical clus-
tering method is implemented to produce microclusters and
uses different thresholds to generate different granularities.
Thresholds were used to control the depth of hierarchical
events, where lower clusters are combined into one or more
high layer clusters.

To evaluate a hierarchical event detection model, two prob-
lems are considered: detection cost and travel cost. The detec-
tion cost consists of a penalty for false alarms and detection
misses. The travel cost refers to the expense of travelling
through a hierarchical structure to find an optimal node. allan
et al. [137] compared several approaches to evaluate a hierar-
chical event clustering system. They also proposed a minimal

13A symmetrical version of the cross-entropy reduction scoring function
[136].
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cost method, which was adopted by the TDT program to
evaluate hierarchical event detection tasks.

IV. FRAME EVENT
The methodologies for recognizing frame events are mainly
based on information extraction, where semantic units or
linguistic units are identified from documents. Recognizing
frame events is implemented with a cascading framework
(or a multistage pipeline). The recognition task is usually
divided into related subtasks, e.g., named entity recognition,
coreference resolution and relation recognition. The cascad-
ing framework may suffer from a serious cascading failure
problem, where errors are propagated into the following task.
Another two frameworks are the joint approach and end-
to-end approach. The joint approach combines two or more
tasks in a single model. It can share features between tasks.
For example, Fu et al. [138] extracted joint entities and
relations using graph convolutional networks. The end-to-end
approach implements a task from scratch without depend-
ing on other tasks. For example, the task of entity relation
extraction is assumed to depend on the output of named entity
extraction. In an end-to-end model, the relation is extracted
from raw sentences [139].

In the following, definitions of frame events are first given.
Then, the techniques used to support frame events are dis-
cussed. Finally, four subtasks for supporting frame event
recognition are discussed individually and are named entity
recognition, coreference resolution, relation recognition and
event recognition.

A. DEFINITIONS AND NOTATIONS
In the Message Understanding Conference (MUC),14 an
event (also known as a ‘‘scenario template’’) is represented
as a template. Each event has predefined parameters that
refer to its semantic roles, e.g., actor, object, and time.
Various event types were defined in the MUCs, e.g., fleet
operations (MUC-1, MUC-2), terrorist activities (MUC-3,
MUC-4), airplane crashes (MUC-7), and rocket/missile
launches (MUC-7). The differences among the structures of
events are great. At the MUC-2, an event has at most 10 slots.
In the MUC-4, the structure becomes more complex. Some
events contain more than 47 slots. In the MUC-5, nested
structures are allowed for some events. They increase the
challenge of recognizing structures.

ACE defines an ‘‘event’’ as ‘‘a specific occurrence involv-
ing participants’’. Compared to the MUC, ACE emphasizes
language understanding. In the ACE definition, ‘‘triggers’’
(or anchors) are used to identify an occurrence of events.
A trigger can be a verb, noun, pronoun, adjective, etc. In addi-
tion to participant roles (the MUC template slots), events in
ACE have four properties15 and two attributes.16 Participants

14http://www-nlpir.nist.gov/related_projects/muc/
15Polarity, tense, genericity and modality.
16Two attributes are event-specific attributes (e.g., CRIME-ARG,

SENTENCE-ARG and POSITION-ARG) and general event attributes (e.g.,
PLACE-ARG and TIME-ARG).

and attributes are generally known as event arguments. Detec-
tion of an event is triggered by the occurrence of an event
trigger (words that can arouse the associated event). If an
event has been detected, entities in the same event sentence
are considered arguments of the event. Because event argu-
ments can be asymmetric, the order of arguments should be
considered.

As discussed in Section II-B, in the BioNLP, an event is
defined as a n-tuple in a sentence. Event detection is set
as a shared task [46]. The event type of BioNLP follows
the GENIA corpus17 [140]. Arguments of a BioNLP event
are denoted as type t-entities, which represent occurrences
of entities in a sentence. An argument is referred to as a
two-dimensional array with its entity type and its span in the
sentence. In the BioNLP annotation, every event or t-entity is
labelled with a prefix ‘‘E’’ label and ‘‘T’’ label, respectively.

The markup language for temporal and event expressions
(TimeML)18 is a specification language for events and tempo-
ral expressions in natural language, where an event is consid-
ered ‘‘a cover term for situations that happen or occur’’ [141].
An event denotes a state or a circumstance. In TimeML, every
event has a unique ID called ‘‘an event ID number’’ (eid).
It belongs to one of the seven classes, e.g., REPORTING,
PERCEPTION, and ASPECTUAL.

B. TECHNIQUES
The frame event recognition task is processed at the sentence
level. Because only a limited number of features are available
for making a prediction, it causes a sparse feature repre-
sentation. Techniques used in this field are mainly focused
on capturing the extra structural information and semantic
information of sentences. To make better use of sentence
structural information, various techniques are proposed.

N-gram techniques combine adjacent words to capture the
dependency between them [142]. Because adjacent words
may have no dependency relationship, the n-gram features are
fragmental and noisy, especially when n is large. To improve
the quality of n-gram features, the features are often com-
bined with other information (e.g., latent topic variables) for
robust performance [143]–[145].

Parsing trees or dependency trees is a fine-grained method
to model sentence structure. It is rooted in linguistic the-
ory and provides a formalized method to study languages.
For example, in relation extraction, tree kernel methods
are widely used to capture the sentence structural informa-
tion [146], [147]. The problem in parsing tree-based systems
is that their performance is often hurt by inaccurate chunking
or parsing [148]. Tree-based systems usually suffer from poor
performance caused by heterogeneous, noisy and fragmented
data. Therefore, instead of a ‘‘deeper’’ analysis of a whole
sentence, local dependencies are more helpful [148]. Another
problem in tree kernel methods is that because the function

17http://www.geniaproject.org/
18http://www.timeml.org/site/index.html
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to calculate the distance between parsing trees is manually
designed, it may overfit the evaluation corpus.

Sequence models (or Markov models, e.g., HMM, CRF,
and LSTM) are widely used to capture the dependencies
among terms. In sequence models, the task of information
extraction is modelled as a tagging problem. It outputs a
maximized label sequence. The label indicates the semantic
role of a word. For example, a label ‘‘B-PER’’ indicates that
a word is the beginning of a person’s name. The sequence
model is effective in capturing the structural information of a
sentence. However, some tasks (e.g., coreference resolution)
require processing two or more linguistic units, which may
be scattered across a document. In this condition, it is hard
to model them with a sequence model. Another problem with
the sequence model is that the output is heavily dependent on
the local features of a sentence [149]. Furthermore, finding a
label sequence is not helpful for recognizing nested linguistic
units (e.g., nested named entity).

Combined features are effective in capturing structural
information [150]–[152]. Combined features map the term
space into a higher dimensional space, which can make
the separating hyperplane more effective. Combining fea-
tures also changes the distribution of features. Combining
features results in skewed term distributions and improves
the predictive power of the features. Most of the studies
on combined features use a greedy method, which applies
new and additional features to improve the performance.
Chen et al. [153] proposed a systematized analysis on the
influence of combined features, where constraint conditions
were employed to generate combined features. This anal-
ysis shows considerable improvement in relation recogni-
tion. Based on Chen et al. [153], Chen et al. [154] and
Chen et al. [155] proposed a formalized method, named fea-
ture calculus, to combine ‘‘atomic features’’. Another reg-
ularized method to combine features is the kernel method.
Kernel substitution is used to increase the dimensionality of
a measure space [156].

In neural network-based methods, position embedding is
the most popular method for capturing the structural infor-
mation of a neural network. For example, Santos et al. [157]
encoded position information into sentence representations.
Implementing a neural network on a dependency parsing tree
is another strategy for capturing the sentential information
of a sentence. For example, Xu et al. [158] implemented an
RNN on the shortest dependency path between two named
entities. For other methods, Zhang et al. [159] implemented
an attention mechanism on graph convolutional networks to
select the relevant partial structures from a dependency tree.
Kalchbrenner et al. [160] used a K-max pooling method to
encode different parts of a sentence divided by two named
entities. Chen et al. [161] presented a multichannel deep neu-
ral network to learn the structural information of a sentence.
Soares et al. [162] inserted entity markers to point out entity
boundaries in a relation instance. Then, a transformer network
was adopted to learn the semantic dependency in the relation
instances.

In addition to structural information, capturing the seman-
tic information in sentences is also important for information
extraction. One way to obtain semantic information is to use
external knowledge. In open information extraction, external
knowledge is widely used to guide a semisupervised method,
e.g., regular expression [163], [164] or ontology [165]. Var-
ious resources have been explored, such as domain knowl-
edge [27], [166], bilingual information [30] and heuristic
information [167]. The main problemwhen applying external
resources is that many of them are heterogeneous, which can
hurt performance.

C. NAMED ENTITY RECOGNITION
An entity is considered an object (or a set of objects).
An entity mention denotes an occurrence of an entity in a
sentence. Recognizing entities is a challenging task because
sentences also suffer from serious feature sparsity problems.
This task is often formalized as a sequence labelling process.
The labels can be ‘‘B’’, ‘‘I’’, ‘‘S’’, ‘‘L’’ and ‘‘O’’, representing
the Beginning, Single, Inside, Last and Outside of an entity
name, respectively. There are two ways to support this task.

The first approach makes an assumption of independent
and identical distributions among labels. It labels every word
independently without considering the dependency between
adjacent labels. Therefore, a classifier can be employed
to implement the labelling process, such as maximum
entropy [168], [169] and support vectormachines [170]. After
labels for every word are given, three inference algorithms
can be used to induce a maxized label sequence: greedy
matching, beamsearch and dynamic programming [149].

The second approach assumes that the labels in a sequence
are dependent. Then, instead of labelling each word inde-
pendently, the approach attempts to find a maximized label
sequence [156]. In this respect, a generative model (e.g., CRF
[9]) or a discriminationmethod (e.g., HMM [8]) can be imple-
mented to label sequences. In this field, neural networks have
also received great attention. Early models usually adopted
a sequence model to output the flattened NEs (e.g., LSTM,
Bi-LSTM or Bi-LSTM-CNN).

Another important issue for named entity recognition is
the nestification problem, where two named entities may
overlap mutually. For example, ‘‘University of Washington’’
is an organizational NE, where ‘‘Washington’’ is a nested
NE indicating the location of the university. To handle the
nestification problem, the sequence model can be redesigned
into three variants: layering, cascading and joint model [171].
Parsing trees are also widely used to represent nested NEs
in a tree structure [172]. For example, Finkel and Manning
[173] used the internal and structural information of parsing
trees to flatten nested NEs. Zhang et al. [174] adopted a
transition-based parser. Jie et al. [175] tried to capture the
global dependency of parsing trees. Chen et al. [176] and
Chen et al. [177] proposed a boundary assembling method
that detects entity boundaries first. Then, boundaries are
assembled into candidates for further prediction.
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To recognize named entities, various features have been
proposed [167], [169], [170]. Lexical features are the most
popular. Combined features, such as n-gram features or
phrase chunkers, are also widely adopted. To capture the
structure of a sentence, POS tags and dependency trees
have shown robust performance Chen et al. [178]. Because
the task is processed at the sentence level, recognizing the
named entity also suffers from the feature sparsity prob-
lem. External knowledge is important for capturing semantic
information. Various external knowledge has been presented,
e.g., gazetteer, thesaurus,WordNet [167], [170], [179]–[181],
bilingual information [182], heuristic information (e.g., fam-
ily or transliterated names) [167], [183] and titles [184]. Even
outputs of another named entity recognzing system are help-
ful [169]. In the early stage, hand-crafted rules were used for
entity recognition [185]–[187]. However, for some languages
without morphological features (e.g., Chinese), rule-based
methods are ineffective.

Many models recognize all types of entities in a unified
framework. However, for the same languages (e.g., Chinese),
different types of named entities may have different word for-
mations. For example, location names usually have a nested
structure. Therefore, there are studies that have addressed
different types of named entities with different strategies
[167], [181], [188]. Instead of a unified framework, [176] pro-
posed a cascading approach, named the boundary assembling
method, where boundaries of named entities are first detected
and then combined as candidate entities for further prediction.
It is an effective way to take advantage of existing features.

D. RELATION RECOGNITION
The works related to recognizing entity relations can be
roughly divided into the following categories: traditional rela-
tion extraction, distant relation extraction, multi-entity rela-
tion extraction, cross sentence extraction and joint relation
extraction.

Traditional relation extraction usually adopts supervised
methods to identify the predefined relations between two
named entities [189]. Techniques used for TRR often
come from the field of machine learning, e.g., kernel
methods [146], [190], belief networks [191], linear pro-
gramming [192], maximum entropy [150], SVMs [193]
or deep neural networks [194]. TRR systems can be
divided into feature-based systems and kernel-based systems.
Feature-based systems follow the notion of feature engineer-
ing, which tries to explore various syntactic and semantic
features [150], [155], [193]. Kernel-based methods are usu-
ally formalized as a shallow parse classification problem
[146]. Various tree kernels have been proposed for captur-
ing semantic information and local dependency information,
such as semantic tree kernels [195] and feature-enriched
tree kernels [196]. The main disadvantage of a tradi-
tional relation extraction system is that a manually anno-
tated corpus is required, which has a high labor cost.
Furthermore, the migration among different applications is
difficult.

In distant relation extraction, a knowledge base is
employed to guide the process. It dynamically generates
relation types from an open domain. From this perspective,
Vashishth et al. [197] adopted a graph convolutional network
to encode syntactic information. Qin et al. [198] proposed
a deep reinforcement learning strategy to reduce the influ-
ence of false positive problems. To reduce noise caused by
distant supervision, Yuan et al. [199] paid more attention to
entity pairs with higher qualities. To address the incorrect
samples generated by distant supervision, Zeng et al. [200]
proposed a piecewise convolutional neural network that was
implemented on different parts of a sentence divided by two
named entities. Zhou et al. [201] proposed a hierarchical
selective attention network that takes sentence-level attention
andword-level attention to construct sentence representations
for relation extraction.

Instead of setting two named entities as arguments of a
relation, in multientity relation extraction (or known as an
n-ary relation), a relation instance can be linked to several
named entities. Techniques to extract multientity relations
are often based on traditional relation extraction. For exam-
ple, McDonald et al. [202] proposed a graph from pairs of
entities. Then, maximal cliques in the graph are evaluated
as potential complex relation instances. Mandya et al. [203]
combined LSTM and a CNN to support multientity relation
extraction. Peng et al. [204] presented a graph-based LSTM
model incorporating various intrasentential and intersentien-
tial dependencies for multientity relation extraction. Akimoto
et al. [205] decomposed the n-ary relation extraction task into
lower-arity candidates, which are aggregated as multientity
relation instances.

Cross sentence extraction focuses on extracting entity rela-
tions at the document level [204], [206]. It is similar to
the coreference resolution task, which tries to find referen-
tial relations among named entities in a document [207].
In this task, Wang et al. [208] proposed a cross-sentence
context-aware approach to sense feature information across
sentences. Yao et al. [209] integrated information across doc-
uments, which gives a global inference for relation extraction.
Peng et al. [204] encoded the cross sentence relation with a
graph-based LSTM model. Gupta et al. [210] proposed an
intersentiential dependency-based neural network.

In a traditional relation extraction task, information about
named entities (e.g., entity types) is supposed to be known in
advance. In real applications, relation extraction may suffer
from the error propagation problem caused by false named
entities. Joint relation extraction implements the relation
extraction task from scratch. To support this task, struc-
tured labels (jointed from relation and entity labels) can
be designed to supervise the training process. For exam-
ple, Miwa and Sasaki [211] proposed an entity and relation
table, which jointly represents entities and relations. Zhang
et al. [212] built a globally optimized neural model to inte-
grate syntactic information. Another strategy for implement-
ing joint relation extraction is to conduct a multiobjective
learning model. For example, Zheng et al. [213] output
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relation labels and entity labels with a piecewise convolu-
tional neural network and a bidirectional LSTM network,
respectively. Fu et al. [138] extracted joint entities and rela-
tions using graph convolutional networks. Structured-type
labels increase the number of classification categories. The
multiobjective learning strategy has the advantage of sharing
parameters with joint entities and relation extraction.

E. COREFERENCE RESOLUTION
When an entity is mentioned in a sentence, it is referred to as
an entity mention (or a mention in short). An entity may have
several mentions in a document (or documents). Coreference
resolution is the task of grouping different entity mentions
according to whether they refer to the same entity [214].
This task was first presented at the MUC-6. Then, it was
evaluated as a separate coreference subtask. The coreference
resolution can be seen as a coreference relation extraction
task. The difference between them is that the coreference
relation among entity mentions is transitive. It may linkmany
entity mentions within a document.

The coreference resolution task is often processed as a
binary relation recognition problem [215]. All pairs of entity
mentions in a document should be evaluated. A high probabil-
ity between two entity mentions indicates that they are refer-
ences of the same entity. Then, pairwisementions are grouped
into the same set if they satisfy a predefined threshold. This
approach is known as the pairwise decision model. It makes
the assumption that all pairwise coreference decisions have
an independent identical distribution.

Various techniques have been proposed for coreference
resolution, such as decision trees [216], conditional models
[215], hidden Markov models [217], bootstrapping [218],
unsupervised models [219], [220], inductive logic program-
ming [221], logic probability [222], [223], semantic models
[224], nonparametric Bayesian models [225] and neural net-
work models [226].

The main problem of coreference resolution is caused by
transitivity constraints. Letmi,mk andmj be three entity men-
tions. Suppose mi, mk are coreferent and mj, mk are corefer-
ent. Because the coreference relation is transitive, according
to the pairwise decision model, mi, mj and mk should be
grouped in the same set. However, it is common that mi and
mj have a low probability in a given context, which leads to
conflicts in a grouped entity mention set. An early approach
for solving this problem was the ‘‘ostrich strategy’’, also
known as the transitive closure of pairwise decisions. This
approach assumes that mi and mj have a coreferent relation,
regardless of the true value between them [217]. Nicolae
[227] proposed a graph cutting approach to unit entity pairs
into a coherent cluster.

Other problems for coreference resolution are the large
search space and unbalanced data. Unlike relation recogni-
tion, which only considers the entity pairs in a sentence,
coreference resolution should partition all mentions into
mutually exclusive sets. All entity pairs in a document
should be considered, where most of the entity pairs are not

coreferent. This leads to a large search space and unbalanced
data. One strategy is to adopt a greedy left-to-right linkage
decision. Nonetheless, these approaches are greedy agglom-
erative clustering algorithms that rely on pairwise models.
Coreference resolution also suffers from the feature sparsity
problem. To utilize more features, Culotta [222] proposed a
first-order probabilistic model, which enables classification
decisions over a set of noun phrases. McCallum and Well-
ner [228] uses a generative approach to incorporate various
features.

F. EVENT RECOGNITION
In this section, event recognition refers to tasks defined by
the ACE evaluation conference,19 where eight event types are
defined, e.g., life, movement, and conflict. As discussed in
Section IV-A, in the ACE annotation, event recognition is a
very complex task. It is usually implemented as a pipeline
process that is divided into four steps: anchor identifica-
tion, argument identification, attribute assignment and event
coreference. Tasks such as named entity recognition, relation
recognition and coreference resolution are seen as funda-
mental tasks for supporting event recognition. To eliminate
the influence of dependent tasks, when evaluating an event
recognition model, dependent tasks are often given as golden
annotations.

Currently, two approaches are widely adopted for rec-
ognizing events: pattern matching and machine learning.
Yangarber [229] proposed a pattern matching-based system,
named ‘‘ExDisco’’. In this system, ‘‘good’’ event examples
are first discovered from a large unannotated corpus. They are
used as seeds to initialize the system, and then more events
(or examples) are found iteratively. In Chieu and Ng [230],
a maximum entropy approach is adopted to extract events
from semistructured and free text. Ahn [231] combined two
approaches (TiMBL and MegaM) proposed by [232] and
[233], and the combined approach showed improved perfor-
mance. Riloff and Shoen [234] presented an AutoSlog-TS
system that uses conceptual patterns for event recognition.
The patterns are acquired automatically using only a preclas-
sified training corpus. In Chen and Ji [235], event recognition
is modelled as a sequence labeling process, where a maxi-
mum entropy Markov model is adopted. Llorens et al. [236]
analyzed the contribution of semantic roles to TimeML
event recognition and classification, which showed improved
performance, especially for nominal events. Zhang et al.
[237] proposed an emergency event recognition model based
on deep learning. Ramakrishnan et al. [238] presented an
EMBERS system that focuses on forecasting ‘‘civil unrest’’
events in the open domain. Piskorski et al. [11] presented
an event recognition system that was used to monitor
online news. In addition to extracting the parameters of
events from sentences, they are extracted from clustered
documents.

19http://www.itl.nist.gov/iad/mig/tests/ace/
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V. GRAPHIC EVENT
A graphic event is a subgraph of a semantic network, which is
usually built by distant (or weak) supervision [78], [79] and
bootstrapping [80]–[83] methods. The graphic representation
enables topological analyses and can give rise to novel solu-
tions formanyNLP tasks. Supported by a variety of visualiza-
tion methods, it is also helpful in providing human-oriented
information exploring interfaces.

A. DEFINITIONS AND NOTATIONS
Unlike documental events and frame events, no agreed defini-
tion has been proposed by any committee for graphic events.
Various graphic event definitions have been used in this field.
Some of them are discussed as follows.

An event is represented as a subgraph of a network. This
is a popular definition for graphic events. In this definition,
nodes of the network can be semantic units (e.g., named
entities [12], [239]), real world entities [13] or social actors
[240]. The edge represents the semantic relationship or cor-
relation strength between nodes. Graphic event recognition is
implemented by techniques such as dense subgraphs based
on tightly coupled entities Angel et al. [13], community
detection [13], [240], and graph partitioning [241].

An event is represented as a cluster of keywords [242],
[243]. The definition is similar to that of the feature pivot
event [133], [241], [244], where an event is a group of key
words. It assumes that, for massive streams of documents,
a sharp change in word frequency indicates a burst of a
new event. Because a keyword-based event is composed of
words expressing the meaning of an event, it is helpful in
understanding the content of an event. For example, based on
KeyGraph [245], many experiments have been conducted to
support keyword-based event extraction [240], [242], [244],
[246]. Texts in social media often have a short range of infor-
mative key words. With the increasing popularity of social
media (e.g., Twitter, Weixun), keyword events have attracted
increasing attention [247].

An event mention20 is represented as a node of a network.
The edge between events (nodes) may represent a chrono-
logical ordering Kuzey et al. [248] or an inclusion relation-
ship representing different granularities of events [249]. The
event is often extracted with document clustering or classi-
fication methods Kuzey et al. [248], Liu et al. [249]. The
relations between events are measured by semantic metrics,
e.g., cosine distance. This type of network is effective in
expressing the relation between events. It gives a hierarchical
(or chronological) representation of events, which is valuable
in supporting event evolution and event tracking.

Other graphic event definitions have been proposed in this
field. For example, Chen et al. [14] defined a graphic event
as a semantic network extracted from a documental event.
Glavaš and Šnajder [250] defined a graphic event as a tem-
poral structure. In the EVIN system [251], a graphic event is
defined by their participators, e.g., persons and organizations.

20An event mention is a phrase denoting the occurrence of an event.

In the NewsReader system [252], [253], a graphic event is a
large knowledge graph built from a large number of articles
and consists of dynamically extracted information about the
who, what, where, and when of events.

B. TECHNIQUES
The techniques used to construct a graphic event relate to
many tasks in information extraction. According to the out-
puts, the tasks can be divided into three categories: node
extraction, edge extraction and subgraph generation.

According to the type of nodes, many techniques are
available. If a node is defined as a named entity (e.g., [12],
[62], [239]) or an event mention (e.g., [250]), the process
to recognize them is usually defined as a sequence labelling
task. If a node is defined as a documental event, document
clustering and classification are adopted [248], [249]. Com-
pared to traditional document clustering tasks, extracting
event mentions is often implemented in an open domain,
where multisource, heterogeneous and noisy data (e.g., news,
Twitter, BBS, microblog, etc.) are processed, which brings a
big challenge to the traditional methods.

The techniques used to extract edges depend on the rela-
tion type between nodes. The technique used to extract
the co-occurrence relation between nodes is the simplest.
It can be obtained from documents directly (e.g., Das
Sarma et al. [12]). The edge usually has a value, which indi-
cates the correlation strength between nodes [13], [254],
[255]. For the semantic relations between nodes, unsuper-
vised or semisupervisedmethods arewidely used [256], [257]
and include heuristic rules [258], bootstrapping algorithms
[80]–[82], distant supervision [78], [79], [259], and matrix
factorization [260]. Because graphic events are usually con-
structed on an open domain, the performance of edge recogni-
tion is heavily dependent on the quality of node recognition.
Furthermore, it may lead to the ‘‘semantic drift’’ problem
caused by error accumulation [261]. The chronological order
relation is mainly used in text streams, where the time stamp
is usually available [248], [250]. For the subevents (an inclu-
sion relationship) between nodes, the edges are commonly
measured by a similarity function.

Community detection is an effective method for mining
graphic events in a semantic network [13], [240], [242].
Based on a semantic network, community detection tries to
identify groups of cohesive subgraphs. For example, based
on an entity network built from social media, Angel et al.
[13] proposed a ‘‘streaming edge weight’’ method to mine
tightly coupled subgraphs. Because graphic events are often
built on the open domain, they usually contain thousands
of nodes and edges. Therefore, techniques such as social
networks and complex networks can be adopted to mine
the topological structures of a graphic event. For example,
Chen et al. [14] and Meladianos et al. [243] generate sub-
graphs with techniques such as the k-core subgraph and the
shortest path [262]. The chronological ordering relation is
also helpful when tracking events. It consists of a sequence of
events, which supports the detection of event evolution [263].
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The similarity calculation between nodes can also be used to
generate semantic cohesive subevents. For example, Liu et al.
[249] used grouped key words to track growing events from
massive breaking news.

C. SUBGRAPH MINING
Finding subgraphs is a key issue in mining knowledge from
a graphic event. Because graphic events are variant in their
structures, the task of subgraph mining is different for each
event. In the following, several typical models are discussed
in brief.

Accelerated by the development of social media
(e.g., blog posts and twitters), textual streams are valuable
in identifying emerging events. Angel et al. [13] presented
a framework for finding groups of cohesive subgraphs in a
weighted entity graph. In this graph, nodes represent real
world entities. The weighted edges suggest pairwise asso-
ciation strength between nodes. In online scenarios, textual
streams are arriving constantly. The cohesiveness of a sub-
graph can be changed by updating the graph. When the
weight is updated, to maintain the cohesiveness of a dense
subgraph, researchers proposed a D YND ENS algorithm.
In this algorithm, when a single edge weight is updated, the
maximum possible change in the graph is evaluated. In real-
time event applications, this method is effective for updating
dense subgraphs incrementally.

Based on a social network graph constructed from the
WorldWideWeb, Faloutsos et al. [239] presented a paradigm
to mine cohesive subgraphs for capturing the relation-
ship between nodes. The method is implemented on an
edge-weighted undirected graph with nodes denoting named
entities. Recognized subgraphs are named ‘‘connection sub-
graphs’’. It satisfies predefined constraints (e.g., a limitation
on the number of nodes). To process a large graph with high
computational complexity, Faloutsos et al. [239] proposed an
approximate (but high-quality) connection subgraph mining
method.

Edges of a graphic event may represent the relationships
between nodes. The semantic types of edges are often static
and predefined. This limitation disables the capacity for
discovering emerging events with new semantic relations.
Because nodes and the edges between them are recognized
automatically, it also suffers from poor performance caused
by heterogeneous data. In regard to these problems, Das
Sarma et al. [12] presented an entity dynamic relation graph.
In this graph, the edge represents the dynamic connections
between entities. Recognizing the dynamic relation is based
on the co-occurrence between named entities. This graph
uses a time window to construct the temporal profile. When
an emerging event is broken out, the temporal profile rep-
resents the ratio of the co-occurrence. Based on this graph,
the authors proposed temporal constraint cluster methods to
identify dynamic events. They are represented as subgraphs
of a large relation graph with temporal constraints.

Zhao and Mitra [240] defined events as subgraphs iden-
tified from a hierarchical graphic representation. Event

detection is divided into three steps. First, social text stream
data (emails in this article) are clustered into topics with
unsupervised methods. The email content is represented as
a TF-IDF vector. Then, a similarity function is defined to
cluster them. The output of the cluster is seen as the top level
structure of the graphic representation. Second, the times-
tamps of the emails are used to partition the clustered topics
into finer granularities (subtopics) to capture the chronologi-
cal information. A subtopic is a set of emails with information
regarding email addresses (senders and recipients). By setting
the addresses as nodes and the communication relations as
edges, the whole structure is represented as a hierarchical
multigraph. Therefore, in the third step, an event is identified
as a connected subgraph with topic and temporal constraints.

D. KEYWORDS MINING
Every social text stream has a timestamp. It can be used to
detect a burst of data flow in a social network, which may
indicate an emerging event. Because of the popularity of
social media, such as weblogs, Twitter, and message boards,
keyword-based methods for recognizing events have received
extensive research attention. Representing an event as a set of
keywords can reveal the content of an event directly, which
is helpful to understand the event. Because these words are
the key to expressing the meanings of a social media text,
recognizing events from keywords is also useful in reducing
the influence of noise and fragmental data in social text
media.

Weng and Lee [241] presented an event detection
paradigm, which is rooted in signal processing theory. In this
model, occurrences of a word with its timeline are trans-
formed into a signal by wavelet analysis. It has the abil-
ity to represent the frequency change in a word over time
[264]. In this work, trivial words are filtered by a cross
correlation algorithm, which denotes the similarities among
signals. This algorithm is implemented on all pairs of signals
(words). It generates a similarity matrix. The matrix can be
transformed into a graphic representation. Then, the task of
detecting events is modelled as a graph partitioning problem.
Following this motivation, Dong et al. [265] presented a
multiscale event detection method based on the properties of
the wavelet analyses. It automatically captures the temporal
and spatial information of events.

Parikh and Karlapalem [266] proposed an algorithm for
extracting events from KeyGraph. In this work, the TF-IDF
term weighting approach is used to collect a set of keywords
from documents. Keywords are the nodes of KeyGraph. The
edges between nodes are defined as the co-occurrence rela-
tion in documents. To obtain a robust graph quality, edges
are removed if the co-occurring nodes have a conditional
probability below a predefined threshold. Based on Key-
Graph, community detection is implemented to detect events.
In this process, a betweenness centrality score is computed
from each edge. It indicates the number of the shortest paths
passing through the KeyGraph. A high score indicates that
it is an inter-community edge. Removing it can reduce the
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TABLE 1. Summary of Event Detection and Recognition.

relations between nodes located in different communities.
A node duplication strategy is proposed to ensure that a
keyword can be seen in different communities. After events
are detected, document clustering can be implemented by
using a similarity function defined between an event (a set
of keywords) and a document.

Meladianos et al. [243] used a graph of words to sup-
port event detection. Instead of a sliding window to count
the co-occurrence, this graph weights edges by dividing the
length of the document (Twitter). The graph-of-words is
decomposed into a k-score subgraph, which represents the
cohesion of words. Each node in the graph is given a value,
named the ‘‘core number’’, indicating the largest of k that
belongs to the k-core. Then, event detection based on the
graph-of-words is implemented as follows. Successive tweets
within an interval are collected to build the graph-of-words.
‘‘Random’’ tweets will lead to a graph-of-words with low
core numbers. An event is detected if the highest cores in the
graph-of-words satisfy specified requirements.21

E. GRAPH INFERRING
Most graphic events are semantic networks, where nodes are
concepts and edges represent the semantic relations between
them. Another type of graphic event is known as a narra-
tive event graph. Compared with a narrative event graph,
a semantic network can be seen as a ‘‘static’’ graph. It repre-
sents the connections among knowledge. In a narrative event

21The sum of the core numbers of d terms belonging to the highest cores
exceed a predefined threshold.

graph, the node is usually denoted as an activity, and the
edge represents the temporal and causal relations between
activities. Therefore, it can be used to represent the devel-
opment of a narrative event. Because the narrative event
graph contains internal logical connections among narra-
tive events, it can be adopted to support event evolutionary
analysis.

A narrative event chain is a typical narrative graph pro-
posed by Chambers and Jurafsky [273]. It is defined as a
partially ordered set of events central to a protagonist. In this
representation, the definition of events follows Schank and
Abelson [274], known as scripts or Fillmorean frames. Events
are instantiated from texts with the Stanford parser to col-
lect verbs with subject, object, or prepositional-type depen-
dencies. The narrative relation between events is detected
by unsupervised distributional methods. The quality of the
constructed narrative event chain is improved by classifying
partially ordered events and pruning self-contained chains.
In this narrative graphic event, Chambers and Jurafsky [273]
presented two tasks to support inference: a narrative cloze
task and an order coherence task. The narrative cloze task
predicates an event, which is randomly removed from a narra-
tive event chain. This task can evaluate a system’s knowledge
of narrative relations and coherence. It uses pointwise mutual
information to generate a ranked list of guesses. The order
coherence task infers the partial temporal ordering of the
events. Unlike temporal relation recognition, which tries to
identify the relation between two events, the order coherence
task emphasizes the coherence of a whole ordered narrative
chain.
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Du et al. [275] proposed a recurrent marked temporal point
process model to support event forecasting. This model uses
a recurrent neural network to learn a representation of the
nonlinear dependency of an event chain, which is used for
predicting the next event. Trivedi et al. [276] proposed a deep
learning architecture to model knowledge evolution and rea-
son over dynamic knowledge graphs. For another approach,
Kazeni et al. [277] conducted a survey about representation
learning for dynamic graphs.

VI. CONCLUSION
In this article, we provide a comprehensive survey about
textual event detection and recognition. The methodologies
for building events for information exploration are divided
into three types: documental events, frame events and graphic
events. They are summarized in TABLE1.

Documental events are processed at the document level,
where the document has the smallest granularity. A document
is denoted as a vector. Then, the similarity between docu-
ments is computed as the distance between vectors. Recog-
nizing documental events is based on the similarity among
documents. Many effective tasks, e.g., new event detection
and event tracking, have been defined to support documental
event-based information retrieval. It provides a convenient
approach to retrieve relevant documents. The main problem
for documental event detection is that it does not support
content-based retrieval, where no syntactic or semantic units
contained in documents are identified. Users are required to
skim through the contents of documents returned by systems.

A frame event is defined as a frame or a template with
slots to be filled by event arguments. It is processed at the
sentence level. The recognition of frame events is rooted in
information extraction, which aims to extract linguistic units
with concrete concepts or functions (e.g., named entities,
relations, or quantifiers). It can be seen as a trade-off between
information retrieval and text understanding. The output of
frame event recognition can be seen as ‘‘knowledge’’ to
populate a knowledge base directly. It is helpful in providing
content-based information exploration. The main problem in
frame event systems is that the performance of frame event
recognition is still unsatisfactory.

Many systems automatically organize extracted linguistic
units into graph-based representations. A graphic event is
a subgraph of the representation. Event detection is imple-
mented by mining cohesive subgraphs from the graph. Orga-
nizing linguistic units into a graphic event enables topological
techniques such as social network analysis, complex network
analysis, and statistical relation learning. They are very useful
for revealing the underlying structure of documents.
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