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ABSTRACT Pluvial floods are rare and dangerous disasters that have a small duration but a destructive
impact in most countries. In recent years, the deep learning model has played a significant role in operational
flood management areas such as flood forecasting and flood warnings. This paper employed a deep learning-
based model to predict the water level flood phenomenon of a river in Taiwan. We combine the advantages
of the CNN model and the GRU model and connect the output of the CNN model to the input of the
GRU model, called Conv-GRU neural network, and our experiments showed that the Conv-GRU neural
network could extract complex features of the river water level. We compared the predictions of several
neural network architectures commonly used today. The experimental results indicated that the Conv-GRU
model outperformed the other state-of-the-art approaches. We used the Conv-GRU model for anomaly/fault
detection in a time series using open data. The efficacy of this approach was demonstrated on 27 river water
level station datasets. Data fromTyphoon Soudelor in 2015were investigated by ourmodel using the anomaly
detection method. The experimental results showed our proposed method could detect abnormal water levels
effectively.

INDEX TERMS Floods, river water level, forecasting, deep learning, anomaly detection.

I. INTRODUCTION
Floods are one of the most common and destructive natural
disasters. They cause massive damage to human life, infras-
tructure, and socioeconomic systems. In 2018, the Reviews of
Disaster Events by Emergency Events Database (EM-DAT)
[1] reported that floods have affected more people than any
other type of natural hazard in the 21st century. Floods occur
almost everywhere in the world, resulting in massive damage
and the loss of countless lives. In 2019, the National Science
and Technology Center for Disaster Reduction (NCDR) [2]
indicated that 361 major disaster events happened worldwide
in that year, of which floods were the largest disaster event
with a total of 170 incidents, accounting for 47% of the total.
These events affected around 3 billion people and caused
5100 deaths.

Floods occur in many types [3]. Over the past years, cli-
mate change caused by global warming has been increasing
the intensity of the occurrence of floods. The temperature
in 2019 was 0.95◦C higher than the historical global average
temperature [2]. As the temperature rises, the atmosphere
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holds more water vapor, which leads to heavy rain and
increases the risk of flooding in rivers [4].

Located in a subtropical region and the path of typhoons
in the western Pacific, Taiwan has been severely affected by
extreme weather in recent years. The natural environment
formed by Taiwan’s geographical location and climatic con-
ditions has caused heavy rain and floods [5]. Its short and
steep rivers with wide river channels are not conducive to
the release the floods [6]. In addition, annual heavy rainfall
and typhoons in Taiwan are not only highly intensive but
also alarming. On average, 4.7 typhoons occur each year
in Taiwan [7] and there is an annual rainfall average of
about 2500 millimeters, of which about 80% is concen-
trated in the rainy and typhoon season [5]. When a typhoon
approaches, typhoon brings heavy rainfall, which can easily
cause the river water level to soar and cause floods.

Typhoon Soudelor occurred in August 2015 and caused
a severe disaster in Taiwan. Its main affected area was the
Greater Taipei area, where the capital is located. The esti-
mated property loss was around 22 billion dollars (TWD).
Further, it was the worst typhoon on record: eight people died,
four went missing, 437 people were injured, 7,000 roadside
trees dumped, and 4.5 million households suffered power
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outages [8]. Since this area has low terrain downstream and
drainage is difficult, an effective flood prediction measure in
this area is particularly urgent and important. As a result, the
Tamsui River was the first river to be used in research on
flood forecasting systems in Taiwan [9]. In 1993, the Taiwan
Water Resource Agency cooperated with the Foundation of
River & Basin Integrated Communications (FRIC) to carry
out improvements to the flood forecasting system [10].

The experiences of flood prevention in recent years indi-
cate that no engineering structure can eliminate the risk
of flood disasters. By combining with appropriate non-
engineering measures (non- structural measures), floods can
be reduced more efficiently [11]. A water flow prediction
with high accuracy is a crucial non-structural measure needed
to decrease casualties and property damage. Previous stages
of water flow prediction were built on mathematical models
and generally required a large amount of input data, which
was sometimes difficult to obtain or insufficient. In addi-
tion, process-based approaches often provided delayed flood
warnings, as long periods were needed to test carefully and
evaluate the parameters. Traditional hydrological methods
could not predict the increase of downstream flows if there
were sudden fluctuations of upstream flows resulted from
dam and reservoir releases. Such conditions can often be seen
in countries with large river basins [12].

As the traditional methods of flood prediction did not
perform well, in 2000, Toth et al. [12] compared the mod-
els of time-series analysis techniques, including the autore-
gressive moving average model (ARMA), artificial neural
networks (ANN), and the K-nearest neighbor (KNN). The
result showed a better accuracy of the ANN model in short-
term rainfall forecasting. Although the ANN model requires
a large amount of data, it is capable of handling both linear
and non-linear systems without making any assumptions.
Over the past two decades, the ANN model has been widely
used in various fields of science and engineering. The better
performance of ANN applied to rainfall prediction can also be
seen in the research of Thirumalaiah et al. [13], Tsai et al. [5],
and Kenabatho et al. [14].

In recent years, ANN, RNN, and CNN have been used
for hydrology time series forecasting [15]–[17] and have
achieved different levels of success. Previous studies have
not presented the comparison among these deep-learning
techniques, as these studies were applied to data from dif-
ferent river stations and evaluated with different metrics.
Most previous studies mainly focused on the comparison
with linear models and with ordinary ANN models. In this
paper, we proposed a framework of management using river
water level data for anomaly prediction. The data collection
was based on the records of 27 water level stations in the
Tamsui River Basin during Typhoon Soudelor. The goal was
to provide a more accurate predictive model based on deep
neural networks for river water levels, in the hope that it could
provide timely warnings of anomalies.

This paper makes several contributions. Firstly, five deep
learning models (Conv-GRU, ANN, CNN, LSTM, and

Seq2seq) were compared, which has not been conducted in
previous studies. Secondly, we proposed a model that com-
bines CNN and GRU that is feasible and more capable of
grasping patterns in a time series. We believed it to be more
efficient than other models on flood forecasting. Thirdly,
we applied the Conv-GRU network into anomaly/failure
detection in the time series. The network became a predictor
in multiple time steps through being trained on the non-
anomalous data of the water levels at each water station. The
result of the prediction error was modeled as a multivariate
Gaussian distribution that could evaluate the possibility of
abnormal behavior. Finally, we used the Mahalanobis Dis-
tance to present clear results on the degree and probability of
anomalies detected by the Conv-GRU model.

II. RELATED WORK
A. DEEP LEARNING
Deep learning is a subfield in machine learning. It is an
algorithm inspired by the structure and function of the brain,
which is called an artificial neural network (ANN) [18]. This
term was first introduced to the machine learning community
by Dechter [19]. In 2000, Aizenberg et al. [20] used this term
in the field of artificial neural networks, also called Deep
Neural Networks (DNN). Concerning the definition of the
term ‘‘deep’’, Hinton [21], as a pioneer in the ANN field,
described a fast, greedy algorithm that can learn representa-
tions of data with multiple levels of abstraction. Therefore,
it has been considered to introduce this phrase as referring to
the development of large artificial neural networks. Feature
learning of hierarchies is the core element in deep learning.
Bengio [22] emphasized that automatically learning features
at multiple levels of abstraction can allow a system to learn
complex functions bymapping the input to the output directly
from the data without depending on human-crafted features.
In 2009, Goodfellow et al. [23] also stated that the concepts
of a hierarchy allow computers to learn complicated concepts
by building them out of one concept. Therefore, with more
data, bigger models, and more computation, better results
can be provided by deep learning [24]. Nowadays, deep
learning has been widely applied in various fields for image
recognition, speech recognition, natural language processing,
recommendation systems, and biomedical information, etc.
Several models of deep learning and their applications in
flood forecasting systems are introduced in the following
section.

B. CONV-GRU
The Convolutional Gated Recurrent Unit (Conv-GRU) was
firstly introduced by Bellas et al. [25] and was considered
as an extension of the GRU-RCN model. In their model,
GRU-extension encodes the locality and temporal smooth-
ness prior to videos directly in the model structure, to take
advantage of ‘‘percepts’’ from different spatial resolutions
[25]. In the beginning, the purpose of developing the Conv-
GRU model was to determine spatio-temporal features from
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videos, and it was used for video captioning and action recog-
nition. Bellas et al. used recurrent convolutional units on pre-
trained CNN convolutional maps to extract temporal patterns
from visual percepts with different spatial sizes [25]. In the
paper, they decided to adopt GRU networks, as GRU showed
similar performance to Long Short Term Memory (LSTM)
but with a lower memory requirement. GRUwas firstly intro-
duced by Cho et al. [26], [27] as a simplifiedmodel of LSTM.
Their GRUmodel has an identical role in the network but has
only two gates and fewer parameters than LSTM. Because
it lacks an output gate, there is no control over the memory
content. GRU has similar performance to LSTM but has a
reduced number of gates and therefore fewer parameters.
GRU is comparable to LSTM [28].

C. ARTIFICIAL NEURAL NETWORKS
An Artificial Neural Network (ANN) is a mathematical
model generated by the biological neural networks that con-
stitute animal brains [29]. Hebbian theory [30], proposed in
1949, is its earliest theoretical basis. Rosenblatt’s Perceptron
[31] established the prototype of ANN by using the structure
of nerve cells to set up amodel from amathematical structure.
The first successful application of ANN, handwritten font
recognition, was performed using back-propagating neural
calculus, proposed by LeCun et al. [32]. With the successful
development of multiple hidden layers in the neural network
model, which greatly improved the prediction and unveiled
the deep learning approach by elaboration was carried out by
Hinton et al. [21]. Over the past few years, ANN has been
widely used to solve a large number of tasks from differ-
ent domains, including computer vision, speech recognition,
machine translation, social network filtering, playing board
and video games, medical diagnoses, and even painting.

The tremendous success of ANN is determined by its
ability to learn from past examples. ANN starts to learn after
receiving a representative set of examples, and it finds and
extracts the structure and features of the data automatically.
Another success factor is its capability to handle the depen-
dencies of complex nonlinear relationships between input and
output data sets, which may occur more in real life [33].

Over the past years, ANNs have been applied in the hydro-
logical field for items such as water flow (stream) modeling,
water quality assessment, and suspended sediment load pre-
diction. The first application of ANNs in hydrology was in
the early 1990s [34], where it was found that ANN has better
performance for hydrological forecasts. Afterward, ANNwas
successfully validated in many hydrological applications and
also used to set up models of a different hydrological dataset,
such as river water level, water quality, rainfall, etc. The
multi-layer perceptron (MLP) model, which is optimized by
backpropagation algorithms, has been improved by short-
term hydrological forecasts. MLP has now become one of
the most commonly-used ANN algorithms. The applica-
tions of ANN in hydrology are discussed in the following
paragraph [14], [35].

In [36], Rani et al. used ANN to predict the water level of
the Sukhi reservoir. The results showed that the ANN model
is a better predictor of real-time water forecasting. In [15], the
ANNmodel was given form to simulate flows at certain parts
of the river reach according to the flow at upstream locations.
Different procedures were applied to predict flooding by the
ANN. In [37], Biswas et al. attempted to predict water levels
with a lead-time of one and two days in the Surma River at
the Sylhet gauging station by artificial neural networks with
feed-forward multilayer perceptron (MLP). The supervised
learning and error backpropagation algorithm was based on
records of rainfall and water levels. According to the summa-
rized results, it was concluded that it is possible to forecast
river water levels continuously in a real-time sense through
the use of neural networks. A good correlation between
observations and the corresponding network output indicated
that the prediction was adequately close to the observation.
In the paper of Bustami et al. [38], ANN models provided
highly accurate predictions of the water level in the Bedup
River in Kota Samarahan due to their reliability in estimating
missing precipitation. TheANNmodel developed byBustami
et al. [38] successfully estimated the missing precipitation
data of a recorder in the Bedup River, Sarawak, with 96.4%
accuracy. In the paper of Arbain et al. [39], ANN had better
accuracy in water level prediction than the SARIMA method
due to its excellent ability to recognize time-series patterns
and nonlinear features. In [40], Tiwari et al. explored the
potential of wavelet and bootstrapping techniques for the
development of an accurate and reliable ANN model applied
to hourly flood forecasting.

D. CONVOLUTIONAL NEURAL NETWORK
Convolutional neural networks (CNN) are neural networks
that use convolution, a mathematical operation, to replace
general matrix multiplication in at least one of the layers [41].
It originated from the concept of the receptive field through
the study of a cat’s brain proposed by Hubel and Wiesel
[42], who discovered the layered processing mechanism of
information in the visual cortical pathway. Fukushima [43]
introduced the concept of neocognitron, which is regarded
as the first implementation of a convolutional neural net-
work. LeCun et al. [32] introduced a model applying back-
propagation into a convolution neural network, and the results
showed better performance than other methods. He con-
cluded that this network has many connections but relatively
few free parameters.

The popularity of CNNs is resulted from their success to
deal with classification problems such as image recognition
and time series classification. CNNs are built by a series of
convolutional layers, in which the output can have a con-
nection only to local regions of the input. This can be done
through moving a filter or weight matrix over the input and
then calculating the point product between the two at each
point. This structure enables the model to identify specific
patterns in the input data. The abilities to learn and extract
features from the raw input data allow CCNs to handle time
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series prediction problems. An observation sequence can be
considered as a one-dimensional image that the CNN model
can read and then extract the most salient elements [44], [45].
It is a technique that allows a machine to automatically detect
or extract features from the raw data that are directly relevant
to the prediction problem. This can replace manual feature
engineering [46].

CNNs have the advantage of the multi-layer percep-
tron (MLP) in time series prediction by supporting multivari-
ate inputs and multivariate outputs. It can also learn arbitrary
but complex functional relationships without requiring the
model to learn directly from lagged observations. So the CNN
model can learn a representation from a large sequence of
inputs that is most relevant to the prediction problem [47].

The filters which act for certain repetitive patterns in the
sequences, and which are used for future value prediction,
generate the idea of applying CNNs to time series prediction.
Because of their hierarchical structure, CNNs can work better
in noise sequences. The noise can be discarded from each
subsequent layer to keep the meaningful patterns [45]. One
of the main reasons to use the convolutional layer instead
of the fully connected layer is that we would end up with a
massive number of parameters requiring a large number of
resources if using the fully connected layer. The same issue
also occurs in LSTM, where a large number of parameters
results in large computational complexity. Unlike LSTM, 1D
CNN can be used in low-resource environments. Also, the
lower parameters in the CNN will result in the avoidance of
overfitting.

Assem et al. [17] proposed a better method for the long-
term prediction of water flow and water level parameters in
Ireland’s Shannon River during 1983-2013. The framework
was composed of three phases: urban scale analysis, data
fusion, and domain knowledge data analytics phase which is
the main focus of the paper that employs a machine learning
model based on Deep Convolutional Neural Networks (Deep
CNNs). The result showed that Deep CNNs could perform
better than other well-known time series prediction models
(such as ANNs, SVMs, WANNs and WSVMs).

E. LONG SHORT-TERM MEMORY
Long Short-Term Memory (LSTM) is a type of recurrent
neural network (RNN) that is capable of learning order depen-
dence in prediction [48]. Generally speaking, it extends the
memory of RNN [49]. It was firstly proposed by Hochre-
iter et al. [50] in 1997. LSTM solves the problem of van-
ishing gradients in RNN and bridges minimal time lags
over 1000 discrete-time steps. In tasks with complex and
artificial long-time lags, it outperforms RNN. LSTMhas been
successfully used in various fields, such as speech recognition
[51], machine translation [52], [26], language modeling [53],
tourism fields [54], [55], stock prediction [56], and rainfall-
runoff simulation [16], [57], [58].

In the paper of Le et al. [59], LSTM was constructed to
carefully predict flood flows for one to three days at Hoa Binh
Station on the Da River based on the data-driven method.

The LSTM model has learned long-term dependencies
between sequential data series and demonstrated reliable
performance in flood forecasting. Liang et al. [60] used
LSTM to predict the daily water level of Dongting Lake. The
model acquired daily water level data from 2011 to 2013
and used seven variables as typical input factors of water
level changes. The results indicated the higher accuracy of
the LSTM model compared to the SVM model. The results
of Rehman et al. [61] proved that both the Recurrent Neural
Network (RNN) and LSTM based on ANNs outperformed
the machine learning and other conventional algorithms in
the prediction of stream water levels. LSTM was firstly
used by Bowes et al. [62] to create hourly forecasts in
coastal cities, and the results indicated that it is appropriate
for running operational forecasts in reality. In the paper of
Zhang et al. [63], LSTM was proposed as a well-performing
method for the prediction of water level saturation, as it is
quicker and more stable.

F. SEQUENCE TO SEQUENCE (Seq2seq)
The Seq2seq model is Google’s mainstream machine trans-
lation architecture. It was originally applied in the field of
machine translation [27], which is suitable for sequence-
to-sequence applications. Multi-step time series forecasting
can be expressed as a sequence-to-sequence supervised pre-
diction problem, a framework amenable to modern neural
network models. The description of Seq2seq byWadhwa [64]
stated Seq2seq as a method of inputting a sequence of words
(or sentence) and generating an output sequence of words.
It does so by using the recurrent neural network (RNN) or
more advanced versions of LSTM or GRU.

In the study done by Liu et al. [65], a better method
based on the integration of a stacked auto-encoder (Seq2seq)
and a back propagation neural network (BPNN) was pro-
posed to compare with benchmark models (the support vec-
tor machine, SVM; the BP neural network model; the RBF
neural network model; and the extreme learning machine
model, ELM). The SAE-BP algorithm combines the strong
feature representation of SAE and superior prediction of
BPNN and has better performance than other models [65].
Lugt et al. [66] provided a new encoder/decoder architecture
(ED-RNN) that could be used for the conditional prediction
of RNNs and compared it with other time series prediction
models. The results showed that the performance of ED-RNN
is comparable to the feed-forward ANN, and that in the short-
term fluctuations of water heights it could even perform better
accurately captures short-term fluctuations.

G. MOTIVATION
Most of the past studies compared the accuracy of differ-
ent input variables with the prediction accuracy, such as
comparisons of the CNN model with the ANN model, the
RNN model with the ANN model, and the ANN model
with the traditional linear prediction model. However, as for
data and model parameters, it is unknown which model has
more efficient prediction. Therefore, we hoped to compare
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the differences in the prediction performance among these
models. Furthermore, we proposed a prediction model that
combined CNN and GRU for comparison with other models.
Finally, we used our prediction model, together with the
judgment of anomaly analysis, to provide a complete water
level data analysis and management process.

III. METHODS
A. PROPOSED WORKFLOW
This paper focused on a comparison of five models, includ-
ing ANN, CNN, LSTM, Seq2seq, and Conv-GRU, in the
prediction of water levels, so as to identify the model with
the smallest prediction error. As shown in figure 1, the
experimental workflow was divided into five main sections:
1) data pre-processing, 2) setting up the optimal parameter
of each model, 3) model training and testing, 4) predictive
results evaluation of each model with three indicators, and
5) anomaly detection.

In the first section, data pre-processing, including resam-
pling and filling empty values, was conducted. Subsequently,
wavelet transform was employed to remove noise from the
original water level data. In the second section, in order to
obtain the same benchmarking, the optimal parameters of
each model were found according to three configurations:
input and output sequence size, number of neurons, and num-
ber of hidden layers. Once the configurations of the optimal
parameters for each model were confirmed, the following
step was to use data gathered from 2012 to 2018 as the
training data and that from 2019 as the test data. In the third
section, the training data were brought into the models for
training and learning. After completing all models, the test
data were added in for backtesting to produce the prediction
results.

In the fourth section, the predictive results of five models
were evaluated by three error indicators: RMSE, MAE and
MAPE, to see which model had the smallest predictive error.
In the fifth section, the consequent prediction errors were
modeled as a multivariate Gaussian distribution, which was
used to evaluate the possibilities of anomalous behavior. For
the test of anomalous detection, the previously proposed
model was applied to predict the trend of rising water levels
caused by Typhoon Soudelor, theworst natural disaster in Tai-
wan of 2015. Whether the proposed model Conv-GRU was
capable of learning multiple patterns and could successfully
detect all the anomalous patterns was then determined.

B. THE CALCULATION FORMULAS OF THE SELECTED
MODELS
In this study, five models (Conv-GRU, ANN, CNN, LSTM
and Seq2Seq) were selected for the comparison of water level
prediction. The below-listed calculation formulas of these
five models, which were used by other researchers, were
applied in this study to compute the predictive results of the
water levels of the Danshui River in the 3rd section of our
workflow – the model training and testing.

FIGURE 1. The experimental workflow of the comparison of five models
combined with anomaly detection.

FIGURE 2. The general architecture of the Conv-GRU model.

1) THE PROPOSED CONV-GRU MODEL
Figure 2 illustrates the general architecture of the Conv-
GRUmodel, which combines CNN with GRU. The proposed
model shown in Figure 2 indicates that extraction of the
input variables for the dataset at the water level station was
performed by the CNN layer in the first model and was
then delivered to the GRU layer in the second model for
information analyzing and time series predicting. Through
the last model, which was a fully connected layer, the water
level could be predicted by the proposed method led by
CNN-GRU.

CNN is easier to train than MLP [67]. For the calculation
formulas of CNN in the proposed Conv-GRU model, studies
done by Swapna [68] and Le et al. [69] were referenced.
In their studies, they stated that several neurons in a CNN
layer consist of weights and bias values. The training process
enables the values to be learned, and several input variables
in these models are delivered to each neuron. Afterward,
a dot product operator is conducted and an optional non-
linear function follows after. Models in both studies used
a convolutional 1D layer, a pooling 1D layer and a fully
connected layer. In detail, CNN acquires one-dimensional
time series data in which the data are arranged according
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to the time series. The input vector of the one-dimension as
x = {x1, x2, . . . , xn} wherein xn ∈ Rd are the variables in
the dataset. A feature map fm of the 1D convolution is built
up by using the convolution operator of the input data with
a filter, w ∈ Rfd , of which f presents the features constituted
in the input data generated at its output, which is a new set
of features that is transferred to the input of the next block
in line. The following equation shows a new feature map fm
given from a set of features f [68], [69]:

hl fmi = tanh(wfmxi:i+f−1 + b) (1)

Each set of features f in the input data by {x1:f , x2:f+1, . . . ,
xn−f+1}. The filter hl in Equation (1) is maximized to deliver
a feature map presented by hl = [hl1, hl2, . . . , hln−f+1].
b ∈ R is a bias term, and hl ∈ Rn−f+1.

Le et al. [69] considered that the output of the convolu-
tional layers is the total of the weighted inputs constructed
by multilinear transformations. However, the linear transfor-
mation is unable to catch the complex structures of the data;
hence, a non-linear activated layer must be used after the
convolutional layers for superior data learning in the training
step. In the study of Le et al. [69], the ReLU activation
function was chosen, which applies max(0, x) to each of the
inputs. In the next step, the output of the convolutional layer
as a down-sampling operator is transferred to the pooling
layer. The max-pooling layer is applied to each feature map
Ehl = max{hl}. This is a selection process to find the most
meaningful features with the highest values. The following is
the formula for the output of the max-pooling layer [69].

x ′i = CNN (xi) (2)

The input vector of the CNN network with the energy con-
sumption as xi, as presented above. In this study, the output
of the CNN network x ′i is connected to the input of the GRU
network instead of the Bi-LSTM network previously used by
Le et al. In Equation (2), a new vector x ′I was obtained by the
proposed model, which firstly delivered the input vector to
CNN.

Formulated Equation (3) below, which is the gate that
controls the information flow from the pass activation. The
new information was added to Equation (5), while the reset
gate in Equation (4) was put into the candidate activation.
In Equation (5), the notation� is an operator of the element-
wise product. Comprehensively, they concluded that GRU
and LSTM are similar in performance and that there is neither
lowliness nor nobleness between them for a given problem.
The same conclusion was made by Chung [28]. For compar-
ison, see [26]. The formulation is denoted by:

zt = sigmoid(Wzxt + Uzht−1 + bz) (3)

rt = sigmoid(Wrxt + Urht−1 + br ) (4)

ht = zt � ht−1 + (1− zt )� tanh(Whxt
+Uh(rt � ht−1)+ bh) (5)

2) ARTIFICIAL NEURAL NETWORKS (ANN)
For the calculation formulas of ANN, Borovykh et al. [45]
illustrated the basic structure of a feed forward neural net-
work, which is composed of L layers with Ml hidden nodes
in each layer l = 1, . . . ,L. They considered that if input
x(1), . . . , x(t) are given in assumption, the forecasted values
in the following step x̂(t+1) will be output by using themulti-
layer neural network. In the first layer, M1 linear combina-
tions of the input variables in the form w1 are constructed as
below:

a1(i) =
∑t

j=1
w1(i, j)x(j)+ b1(i), for i = 1, . . . .,M1

w1
∈ RM1xt in the equation above is defined as the weights

and b1 ∈ RM1 is the biases. Each output a1(i), i = 1, . . . ,M1
is then changed to use a differentiable nonlinear activation
function h (·) to formulate the following equation:

f 1(i) = h(a1(i)), for i = 1, . . . ,M1

TheANNmodel can learn nonlinear relations between data
points through nonlinear function. Moreover, in subsequent
layer each l = 2, . . . ,L− 1, the outputs of the previous layer
f l−1 are linearly combined once again and passed through the
nonlinearity, which is shown below:

f l(i) = h(
∑Ml−1

j=0
wl (i, j) f l−1 (j)+ bl(j)), for i = 1, .,M1.

They next provided the following equation, in which b1

∈ RMl and w1
∈ RM1xMl−1. x̂(t + 1), the forecasted value,

computed by using the formulation below in the final layer
l = L from the neural network:

x̂ (t + 1) = h(
∑ML−1

j=0
wL(j) f L−1 (j)+ bL)

with b1 ∈ R and w1
∈ R1×Ml−1.

3) CONVOLUTION NEURAL NETWORK (CNN)
The idea of developing convolutional neural networks was
based on local connectivity at the beginning in which each
node is connected only to a local region of the input [45].

The input in a convolutional layer is usually regarded as
having three-dimensions: the number of channels, the height,
and the weight. In the study of Borovykh et al. [45], the input
in the first layer was convolved with a set of M1 which is a
three-dimensional filter used over all channels of the input
for making the feature map of the output. Following is the
equation, in which the one-dimensional input is considered
by x = (xt)

N−1
t=0 of size N with no zero padding. Each filter

wlh for h = 1, . . . ,M1 with the input below is convolved, and
the output is the feature map from the first layer:

a1 (i, h) = (wlh ∗ x)(i) =
∑∞

j=−∞
wlh (j) x(i− j)

where w ∈ R1xkxl and a1 ∈ R1xN l−1xMl−1 . Borovykh et al.
noted that the weight matrix has only one channel because
the number of input channels is also one in this case. Similar
to the feed forward neural network, the output is given as
f 1 = h(a1) by the nonlinearity h(·).
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In each subsequent layer l = 2, . . . ,L of their model,
where 1 × Nl−1 × Ml−1 is the size of the output filter map
from the previous convolution with Nl−1 = Nl−2 − k + 1
is the feature map of the input, f l−1 ∈ R1×N l−1xMl−1 . It is
then convolved with a set of Ml filters wlh ∈ R1xkxMi−1 ,
h = 1, . . . ,Ml to create feature map al ∈ R1×N txMt :

al (i, h) =
(
wlh ∗ f

l−1
)
(i)

=

∞∑
j=−∞

Ml−1∑
m=1

wlh (j,m) f
l−1(i− j,m)

Through the non-linearity, the output of this is then trans-
ferred to give f l = h(al). Hence, the receptive field of each
output node is controlled by parameter k of the filter size.
Without zero padding, the output of convolution from each
layer has width Nl = Nl−1 − k + 1 for l = 1, . . . ,L. The
features can be found in a time-invariant manner because of
the same weights shared from all elements of the feature map.
Meanwhile, the number of trainable parameters is reduced.
After L convolutional layers, the output of the network will
be matrix f L and its size can be determined by the number of
filters and the size used in the last layer.

4) LONG-SHORT TERM MEMORY (LSTM)
There are four units in the memory cell of LSTM: an input
gate, an output gate, a forget gate and a self-recurrent neuron.
Figure 3 illustrates how the value in each gate is updated as
well as the process of the full network into which the LSTM
model is unrolled. According to Bao et al. [70], the definitions
of the mathematical symbols in Figure 3 are shown as below:
1. xt is the input vector to the memory cell at time t.
2. Wi, Wf , Wc, Wo, Ui, Uf , Uc, Uo and Vo are weight

matrices.
3. bi, bf , bc and bo are bias vectors.
4. ht is the value of the memory cell at time t.
5. it is the value of the input gate and ∼Ct is the candidate

state of the memory cell at time t, which can be given as:

it = σ (Wixt + Uiht−1 + bi)

∼Ct = tanh(Wcxt + Ucht−1 + bc)

6. ft is the value of the forget gate and Ct is the state of the
memory cell at time t, which can be calculated by:

ft = σ (Wf xt + Uf ht−1 + bf )

Ct = it ∗∼ Ct + ft ∗ Ct−1

7. ot is the value of the output gate and ht is the value of
the memory cell at time t, which can be formulated as:

ot = σ (Woxt + Uoht−1 + VoCt + bo)

ht = ot ∗ tanh(Ct )

Bao et al. defined the input vector as xt and the output as ht
representing the result of the memory cell at time t. The value
of the memory cell at time t is also ht . At time t, the values of
the input gate and forget gate, and that the output gate, are ft

and ot respectively. ∼Ct is value of the candidate state of the
memory cell at time t.

5) SEQUENCE TO SEQUENCE (Seq2seq)
Although RNN is poor to learn long-term dependencies
[71], it provides a framework of the feed forward net-
work in dealing with sequential data [72], [73]. In the
experiment of this study, the equation of the sequence to
sequence model in the study of Sutskever et al. was applied
[74]. p(y1, . . . , yN |x1, . . . , xN ) in the equation below presents
the conditional probability, where the input sequence is
(x1, . . . , xN ) and the output sequence with the same length is
(y1, . . . , yN ). LSTM was applied to evaluate this conditional
probability through acquirement of the fixed-dimensional
representation v in the input sequence (x1, . . . , xN ) provided
by the last hidden state of LSTM. LSTM was then used to
calculate the probability of (y1, . . . , yN ). Below is a standard
LSTM-LM equation [74], in which its initial hidden state is
set to the representation v of (x1, . . . , xN ):

p(y1, . . . ., yN |x1, . . . ., xN ) =
∏N

t=1
p(yt |v, y1, . . . ., yt−1)

Given input X = {x1, x2, . . . ,n }, ct is the intermediate state
of the encoder at step t, where ct ∈ Rm andm is the number of
neurons in the encoder. The decoder decodes ct into the target
sequence Y = {y1, y2, . . . , yn}.

C. EVALUATION CRITERIA
After applying these calculation formulas for model training
and testing, the results of the water level prediction from our
selected five models were obtained. Next, three measures
were adopted to evaluate the performance of each model:
the Mean Absolute Error (MAE), Mean Absolute Percent-
age Error (MAPE) and Root Mean Square Error (RMSE).
This was the fourth section of the proposed workflow - the
evaluation of the predicted results for each model with three
indicators. The following are the introduction of these three
error indicators.

1) ROOT-MEAN-SQUARE ERROR
The root-mean-square error (RMSE) is a measure commonly
used for evaluating the differences between the values of a
sample or population that have been predicted by a model or
an estimator and the observed values [75].

RMSE =

√
1
n
6n

1 (y− ŷ)
2

2) MEAN ABSOLUTE PERCENTAGE ERROR
The mean absolute percentage error (MAPE) is also known
as the mean absolute percentage deviation (MAPD). It is a
measure that applies statistics to evaluate the accuracy of a
forecasting method. A loss function is also used byMAPE for
solving regression problems in machine learning [76]. It uses
the percentage to show the accuracy level and is formulated
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FIGURE 3. The repeating module in LSTM [70].

as:

MAPE =
100%
n

6n
1 |
y− ŷ
y
|

3) MEAN ABSOLUTE ERROR
The mean absolute error (MAE) is a measure to evaluate
the difference between continuous variables. Examples of Y
versus X include comparisons of predicted versus observed,
subsequent time versus initial time, and one technique of
measurement versus an alternative technique of measure-
ment. It is thus an arithmetic average of the absolute errors
|ei| = |yi − xi|, where yi is the prediction and xi the true
value. From each point to the identity line, MAE can also be
deemed as the average vertical and horizontal distance if a
scatter plot of n points is considered, where point i has the
coordinates (xi, yi) . . . The mean absolute error is formulated
as below [77], [78]:

MAE =
6n
i=1|yi − xi|

n
=
6n
i=1|ei|

n

D. DEEP LEARNING-BASED ANOMALY DETECTION
In this section, the LSTM-based Anomaly Detection of Mal-
hotra et al. [79] was applied in the following experiment.
In their approach, X = {x(1), x(2), . . . , x(n)} is considered as a
time series, in which an m-dimensional vector {x(t)1 , x

(t)
2 , x

(t)
m }

is each point x(t) ∈ Rm, and their elements correspond to
the input variables. They believed that through learning, the
predictive model can predict the next l values for d of the
input variables s.t. 1 ≤ d ≤ m. Malhotra et al. [79] proposed
four parts in the normal sequence(s), which were normal
validation-1 (vN1), normal validation-2 (vN2), normal train
(sN ) and normal test (tN ). The anomalous sequence(s) has
two sets: anomalous validation (vA) and anomalous test (tA).
At the beginning, they developed a predictive model using
deep learning-based neural networks and then calculated the
distribution of the prediction errors using anomaly detection.

E. ANOMALY DETECTION BY APPLYING THE
DISTRIBUTION OF THE PREDICTION ERROR
In the study of Malhotra et al. [79], every selected d dimen-
sion of x(t) ∈ X for l < t ≤ n − l was predicted l times
with a predictive length of l. An error vector e(t) for point
x(t) as e(t) = e(t)11, . . . , e

(t)
1l , . . . , e

(t)
d1, . . . , e

(t)
dl was calculated,

in which e(t)ij was different between x(t)i and its value predicted
at time t − j.

They mentioned that in the test sequences and validation,
the error vectors for each point could be computed by using
the predictive model trained on sN . The error vectors are
formed into a model to match a multivariate Gaussian dis-
tribution N = N (µ,6). Moreover, the value of N at e(t)

provides the possibility p(t) of detecting an error vector e(t)

(similar to the normalized innovations squared (NIS) using
the Kalman filter-based dynamic prediction model for novel
detection [80]). Malhotra et al. [79] considered that through
the application of the error vectors for the points from vN1,
the parameters µ and6, which use the Maximum Likelihood
Estimation, can be estimated. If p(t) < τ , an observation
x(t) is detected as being anomalous, and the rest of the
observations are detected as being normal. By maximizing
Fβ -score, sets vN2 and vA can be adopted to learn τ (where
the anomalous points are classed as positive and the normal
points are classed as negative) [79].

IV. EXPERIMENT RESULT & ANALYSIS
A. DATASET PRE-PROCESSING
Firstly, the water level data were downloaded from the 10th
River Management Office website (https://www.wra10.gov.
tw/13264/13282/13352/13356/), which is in charge of three
major streams: the Danshui River, the Keelung River, the Xin-
dian River and the Daha River. There are a total of 118 water
systems in Taiwan. The reason that we decided to collect
information of the Danshui River is that it covers the entire
Taipei area. Taipei is the political and economic center of
Taiwan and has more than 30% of its total population. Also,
water level prediction for the Danshui River was the first to be
conducted in Taiwan, therefore it has complete and abundant
data.

From the website, 27 out of 31 water level stations were
selected because they were relatively closer to the Great
Taipei area (Table 1). Data from these 27 water level sta-
tions for 2012 to 2018 were used as training data and that
from 2019 was used as testing data. Data were recorded
every 10 minutes from each water level station, and the fields
for the alerting of abnormal water levels are shown in Table 2.

However, the data from the 10th River Management Office
were incomplete, as some were not recorded every 10 min-
utes, and were listed using the codes −1001 and −1005.
In order to make the data for each year remain the same, these
codes were deleted and replaced with the prior water level
value before the vacant data.
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TABLE 1. The data from 27 water level stations in the Danshui River Basin.

Next, a wavelet transform was employed to remove unnec-
essary noise. This method is called wavelet coefficients
thresholding. After the signal is wavelet transformed, the
noise becomes a smaller signal (low scale), so the scale
turns smaller. The noise is removed by removing the signal.
The general method is to set a threshold, discard the signals

below this threshold, and keep the signals above the threshold.
We applied DWT by using Symlet 5 to the data, and the
decomposition order was set at level 6.

In reference to the experimental environment of
Cho et al. [81], we built a river water level forecasting and
anomaly detection system using Keras, a framework of deep
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learning, and all experiments were carried out on a 64-bit
Ubuntu 18.04 system using an INTEL i7-4790 CPU with
a GEFORCE RTX 2080 GPU and 16 GB RAM. We used
Python version 3.5.

B. CONFIGURATIONS OF OPTIMAL PARAMETERS
After data pre-processing, we began searching for the config-
urations of the optimal parameters for each model in order to
have a comparison for the same benchmark in the following
sections. These configurations included the configurations of
the input sequence and out sequence size, configuration of
the number of neurons, and that of the hidden layer. Once the
optimal parameter configurations were confirmed for each
model, the model training and testing could be carried out.

1) CONFIGURATION OF THE INPUT SEQUENCE AND
OUTPUT SEQUENCE SIZE
First of all, we had to determine the length of the input
sequence and output sequence. The input sequence referred
to the length of each sample’s time sequence, while the output
sequence was the length of the time sequence to be predicted.

As shown in Table 2 below, we used LSTM to find the best
parameter configuration for the best input sequence and out-
put sequence, in which number 120 represents the length of
120∗10 minutes and 6 represents the output sequence of 6∗10
minutes. We tested various input information sequence size
settings (120, 180, 240, and 300) to optimize our deep learn-
ing models. Theoretically, LSTM can be trained to bridge
time lags in excess of 1000 discrete time steps [50]. However,
in our case, the water level data was non-stationary and non-
linear [82]. In long-range time steps, increased uncertainty
leads to larger errors. Moreover, various predictive output
step size settings were tested, including 6 units, 12 units,
and 18 units (1 unit equal to 10-minutes), to optimize the
deep learning models. In general, the predictions were prone
to offsets; however, extending the prediction time led to
better predictions of future trends and effective decisions.
In Table 2, the best parameters for each model are shown
in bold. To conclude, the LSTM model performed with the
lowest error under 180 × 32 ∗ 3 × 6 parameters, in which
the input sequence length is 180, 32 ∗ 3 refers to three hidden
layers with 32 neurons in each, and the number 6 is the output
sequence length. Hence, we chose 180 for the input sequence
length and 6 for the output sequence length.

2) CONFIGURATION OF NUMBER OF NEURONS
We initially set the number of hidden layers in each model
as 3. The three sets of numbers in the first column on the
left of Table 3 respectively represent the best input sequence
parameter, the number of hidden layers ∗ the number of
neurons in each layer, and the best output sequence parameter.
Various numbers of neuron settings, including 8, 16, 24 and
32, were tested to optimize our deep learning models. The
optimal number of neurons in hidden layers for different
tasks is still an unsettled question in neural network research.
An insufficient number of hidden units results in high errors

TABLE 2. Comparison of the input sequence & output sequence
parameters.

TABLE 3. Comparison of different neuron parameters.

due to under-fitting, while having too many hidden units
also leads to high errors due to over-fitting [83]. However,
from Table 3, it could be seen that LSTM had the best effect
with 32 neurons in each hidden layer and that the best effect
on CNN was 24 neurons in each hidden layer. The best result
for Seq2seq was 32 neurons in each hidden layer, and that
for ANN was eight neurons in each hidden layer. Lastly,
in our proposed model, Conv-GRU had the best effect when
configuring 16 neurons in each hidden layer.

3) CONFIGURATION OF NUMBER OF HIDDEN LAYERS
Currently, there is no rule of thumb for selecting the best
number of hidden layers [71]. Althoughwe knew that increas-
ing the depth of the network would allow the network to
learn more complex features, having too many layers could
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TABLE 4. Comparison of different hidden layer parameters.

cause the gradient to disappear. Even after various numbers
of hidden layer settings were tested (2, 3, 4 and 5), while opti-
mizing our deep learning models, no clear pattern emerged to
suggest the best number of hidden layers. The increment of
hidden layers could also lead to additional computation time
and the danger of over-fitting, which would cause the poor
performance of out-of-sample forecasts. In Table 4 below,
it can be seen that the LSTM model performed the best when
the number of hidden layers was 3, the CNN and Conv-GRU
models performed the best when the number of hidden layers
was 4, and Seq2seq and ANN performed the best with five
hidden layers. The number of hidden layers in each neural
network could be increased or reduced. Inputting different
parameter values trained the model and generated the pre-
dicted values.

4) CONFIRMING THE CONFIGURATIONS OF THE OPTIMAL
PARAMETER IN EACH MODEL
As shown in sections 4.2.1∼4.2.3 above, the optimal parame-
ter configuration was found for each model. The best param-
eters were determined for each model by using the infor-
mation from the past 180 ∗ 10 minutes (30 hours) as input
and predicting the 6 ∗ 10 minutes (one hour) as output.
In addition, in Figure 4 and 5 below, it can be seen that
ANN performed the best when there were five hidden layers
and eight hidden neurons in each layer. In the CNN model,
the best performance occurred when there were four hidden
layers, with 24 hidden neurons in each layer. The LSTM
performed the best with three hidden layers and 32 neurons
in each layer. In the Seq2seq model, there were five hidden
layers with 32 hidden neurons in each layer. Finally, the CNN
+ GRU model performed best when there were four hidden

FIGURE 4. Complete architectures for ANN with five hidden layers and
eight hidden neurons in each layer (gray), CNN with four hidden layers
and 24 hidden neurons in each layer (green) and LSTM with three hidden
layers and 32 hidden neurons in each layer (blue).

layers with 16 hidden neurons in each layer. In this study, the
Mean Absolute Error (MAE) loss function and the efficient
Adam version of the stochastic gradient descent were used.
Figure 4-5 show the complete architectures of the final five
models.

C. COMPARISON RESULTS
After the optimal parameter configurations were confirmed,
each model was placed at the same benchmark for compari-
son. The training data from 2012∼2018 were then brought
into these five models, and the data from 2019 were used
for model testing. Figure 6 ∼ 11 show the results of the
time series predictions of water level found by LSTM (in
red), Seq2seq (in black), CNN (in pink), ANN (in orange)
and Conv-GRU (in blue). The green line presents the actual
water levels at six water level stations: Taipei Bridge (No.
22), Zhongshan Bridge (No. 19), Zhongzheng Bridge (No.
25), Quchi (No. 26), Nanhu Bridge (No. 15) and Chang’an
Bridge (No. 11). In this paper, we demonstrate six results out
of 27 stations were shown, and that the Conv-GRU model
(the blue line) was the closest to the actual water level data
(presented in green). Therefore, the outperformance of Conv-
GRU over the other neural network (NN) methods in the
prediction of water level characteristics could be acquired
here. The method could also detect local features very well.
As shown in Figure 6∼11, the proposed model was proficient
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FIGURE 5. Complete architectures for Seq2seq with five hidden layers
and 32 hidden neurons in each layer (yellow), and Conv-GRU with four
hidden layers and 16 hidden neurons in each layer (red).

FIGURE 6. The water level predicted by
LSTM/Seq2seq/CNN/ANN/Conv-GRU at Taipei Bridge station.

at simulating irregular water level trends compared to the
other fourmodels. The results show that the predicted value of
the Conv-GRUmodel and the real value has the smallest error.
Moreover, similar performance in the prediction of complex
time series could be confirmed, particularly the performance
of the peak prediction that occurs often in river water levels.

D. ERROR EVALUATION
The results of the time series predictions performed by these
five models in Section 4.3 were evaluated by three indicators,

FIGURE 7. The water level predicted by
LSTM/Seq2seq/CNN/ANN/Conv-GRU at Zhongshan Bridge station.

FIGURE 8. The water level predicted by
LSTM/Seq2seq/CNN/ANN/Conv-GRU at Zhongzheng Bridge station.

FIGURE 9. The water level predicted by
LSTM/Seq2seq/CNN/ANN/Conv-GRU at Quchi station.

as described in this section. The three indicators were RMSE,
MAPE and MAE, which were used to calculate the average
error values of the five models between their predicted water
level values and their actual water level values, as shown in
Table 5. It was evident that Conv-GRU had the least error
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FIGURE 10. The water level predicted by
LSTM/Seq2seq/CNN/ANN/Conv-GRU at Nanhu Bridge station.

FIGURE 11. The water level predicted by
LSTM/Seq2seq/CNN/ANN/Conv-GRU at Chang’an Bridge station.

across all intervals. Therefore, we could confirm that the
proposed Conv-GRU model was superior to the other four
models. In Table 5, the evaluation results show that the pro-
posed Conv-GRU model performed better in terms of RMSE
(0.774), MAPE (30.684), and MAE (0.567) in the river level
prediction. The LSTM model (RMSE-1.032, MAPE-31.035,
MAE-0.620) and the CNN model (RMSE-1.144, MAPE-
37.154,MAE-0.745) both showed a slightly higher prediction
error than the Conv-GRU model. In this experiment, we con-
firmed that the proposed Conv-GRU model has a consider-
able ability to learn long-term water level characteristics in
terms of predicting river water level.

E. ANOMALY DETECTION
In this experiment, we used 27 water level stations for
anomaly detection verification, combined with the previous
Conv-GRU prediction method, and calculated the error value,
and finally used Gaussian statistical distribution to capture
the time point of the water level anomaly. The data sets had
different kinds of patterns and natural anomalies. The river
water level dataset contained noise and had the longest depen-
dency, and it delivered different patterns at different time

TABLE 5. The results of the time series prediction for each model
evaluated by three error indicators.

scales. Although there were no labels, we could distinguish
between normal and abnormal patterns by using the time of
day as the context. For the anomaly detection, we focused
on our proposed model (Conv-GRU) for prediction due to it
outperforming the other four models, as described in Section
4.5. We firstly combined the best predictive model, Conv-
GRU (proposed earlier), to learn the data from 2012 to 2018,
and fitted anM-dimensional Gaussian distribution to the error
vectors. We assumed the parameters of an M dimensional
Gaussian distribution could be estimated as follows:

p(x|Data) = N (x| ˆ̂µ, 6̂)

We next used the water level data in 2019 to conduct an
anomaly detection test. Finally, we plotted the Mahalanobis
distance for each error vector and corresponding water level
station data. The Mahalanobis distance is defined as:

a(x) = (x − µ̂)T 6̂−1(x − µ̂)

We could measure the rarity of the event with a(x), which
is represented by the blue line in the lower figures of
Figure 12∼17.

The top figures of Figure 12∼17 are the comparison
of the predicted value by Conv-GRU (green) and the
actual values (red) from six water level stations: Taipei
Bridge, Zhongshan Bridge, Zhongzheng Bridge, Quchi,
Nanhu Bridge and Chang’an Bridge. The bottom figures are
the Mahalanobis distance, which was a statistical representa-
tion of the anomaly score (blue).

We could see that when the peak of the blue curve in the
top figure was higher, the level of abnormal events in the
lower figure would be higher. It could be proved that, through
careful maintenance of the training on the non-anomalous
water level data, the Conv-GRU model was capable of learn-
ing multiple patterns and detected all the anomalous patterns.
In addition, the score of the anomaly also presented the degree
of probability of the anomaly. In the next section, we describe
the processing of the data for Typhoon Soudelor in 2005
in our proposed Conv-GRU model to test its performance
in anomalous detection and verify whether it could predict
abnormal water levels in advance.

1) EFFICACY OF CONV-GRU IN THE ANOMALY DETECTION
OF TYPHOON SOUDELOR
Typhoon Soudelor, which occurred in August 2015, is the
worst natural disaster to occur in Taiwan. Figure 18 is the
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FIGURE 12. Upper: The prediction by Conv-GRU (red) and the actual water
level value (green) at Taipei Bridge; lower: the Mahalanobis distance.

FIGURE 13. Upper: The prediction by Conv-GRU (red) and the actual water
level value (green) at Zhongshan Bridge; lower: the Mahalanobis distance.

FIGURE 14. Upper: The prediction by Conv-GRU (red) and the actual
water level value of (green) at Zhongzheng Bridge; lower: the
Mahalanobis distance.

rainfall distribution map during Typhoon Soudelor. The pre-
liminary results showed that in the northern region, especially
Wulai District, the return periods of 3, 6, 12, and 24 hours
delayed rainfall all have signals of more than 100 years
of frequency. Therefore, we believed that the water level
data during Typhoon Soudelor was suitable for testing the

FIGURE 15. Upper: The prediction by Conv-GRU (red) and the actual water
level value (green) at Quchi Bridge; Lower: the Mahalanobis distance.

FIGURE 16. Upper: The prediction by Conv-GRU (red) and the actual water
level value (green) at Nanhu Bridge; lower: the Mahalanobis distance.

FIGURE 17. Upper: The prediction by Conv-GRU (red) and the actual water
level value (green) at Chang’an Bridge; lower: the Mahalanobis distance.

performance of our proposed model on anomalous detection
in order to more accurately provide alerts in advance before
future disasters occur.

In this experiment, we collected water level data
from 27 water level stations from January 1st, 2012 to
January 1st, 2015 for training data, and used the data from
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FIGURE 18. Frequency analysis results: upper left - 3 hour delay; upper
right - 6 hour delay; lower left - 12 hour delay; bottom right - 24-hour
delay.

January 2nd, 2015 to August 8th, 2015 as testing data.We then
imported these data into our proposed model Conv-GRU for
anomaly detection. Figure 19∼27 show the results of the
water level prediction by Conv-GRU for nine water level
stations during Typhoon Soudelor in 2015, including Sanxia,
Xiulang Bridge, Kamigasan Bridge, Quchi, Zhongzheng
Bridge, Wanfu Bridge, Zhongshan Bridge, Taipei Bridge and
Chenglin Bridge.

In Figure 19∼27, the top figures are the comparisons of
the predicted value by Conv-GRU (red) and the real values
(green), and the lower figures are the Mahalanobis distance,
which statistically represent an anomaly score (blue line).
It could be seen that the blue line in the lower figures could
effectively predict the trend of rising water levels caused by
the typhoon at time corresponding to the top figures. The
efficient predictions of our proposed model could help to
create warnings of the existence of abnormalities before a
flood strikes. Based on this result, we believed that Conv-
GRU also had better performance in anomalous detection.

F. DISCUSSION
Deep learning methods, such as CNN and LSTM, are widely
used in many fields. We used deep learning models for mul-
tiple time step forecasting. In past studies, different com-
parisons indicated that each NN has the ability to capture
the time-dependent characteristics of river water levels, but
the optimal parameter configuration for each model was still
unspecified. Therefore, the first step of our experiment was to
find out the optimal parameter configuration of each model
through comparisons among different parameters, which was
followed by a comparison of the predictive performance of
each model.

In this study, the results provided by CNN and LSTM had
a smaller prediction error than ANN. In terms of the LSTM

FIGURE 19. Upper: The prediction by Conv-GRU (red) and the actual water
level value (green) at Sanxia in 2015; lower: the Mahalanobis distance.

FIGURE 20. Upper: The prediction by Conv-GRU (red) and the actual value
of water level at Xiulang Bridge (green) in 2015; lower: the Mahalanobis
distance.

FIGURE 21. Upper: The prediction by Conv-GRU (red) and the actual value
of water level (green) at Kamigasan Bridge in 2015; Lower: the
Mahalanobis distance.

model, it could forget useless information through the forget
gate and learn useful information from historical data over
time through memory units. Based on this result, the LSTM
model could make use of long-term dependencies to produce
accurate water level predictions. As for the CNN model, due
to its abilities to extract the patterns of local trends and catch
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FIGURE 22. Upper: The prediction by Conv-GRU (red) and the actual value
of water level (green) at Quchi in 2015; lower: the Mahalanobis distance.

FIGURE 23. Upper: The prediction by Conv-GRU (red) and the actual
water level value (green) at Zhongzheng Bridge in 2015; lower: the
Mahalanobis distance.

FIGURE 24. Upper: The prediction by Conv-GRU (red) and the actual
water level value (green) at Wanfu Bridge in 2015; lower: the
Mahalanobis distance.

the same patterns occurring in different regions, it performed
well in the water level prediction of our experiment. For
further improvements in the accuracy and stability of water
level prediction, we proposed a new deep neural network
framework that integrated CNNmodules with GRUmodules.
GRU is relatively new, and its performance is comparable
to LSTM but has higher computational efficiency (due to
having a more complex structure, as noted previously) [28].

FIGURE 25. Upper: The prediction by Conv-GRU (red) and the actual
water level value (green) at Zhongshan Bridge in 2015; lower: the
Mahalanobis distance.

FIGURE 26. Upper: The prediction by Conv-GRU (red) and the actual
water level value (green) at Taipei Bridge in 2015; lower: the Mahalanobis
distance.

FIGURE 27. Upper: The prediction by Conv-GRU (red) and the actual
water level value (green) at Chenglin Bridge in 2015; lower: the
Mahalanobis’ distance.

In the experiment, our proposed Conv-GRU model had out-
performed the other four models. Individual single CNN and
GRUmodels are not very good in predicting performance, but
if the advantages of the twomodels are combined, we propose
an integrated model, the prediction performance is better than
individual single network models. Because of the integration
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of the hidden features from CNN and GRU, the proposed
model could be more effective and stable in water level pre-
diction. This result demonstrated that the integrative model
had better stability than the stand-alone model and also gave
a new research direction for timing prediction based on the
fusion of GRU and CNN. In the future, more studies could
focus on the improvement of accuracy in short-term river
level predictions by integrating the hidden features of GRU
and CNN more efficiently.

Furthermore, we used the probability distributions of the
prediction errors from these deep learning models to indi-
cate normal or abnormal behavior. One advantage of using
neural networks is that the water level can be fed directly
into the network without the elaborate pre-treatment required
by other technologies. At the same time, networks do not
need prior information about anomalous signals, because they
are trained only on normal data. Based on our experiments,
we believed Conv-GRU to be an effective time anomaly
detector. It was possible to tune the Conv-GRU for different
feature sets and detect various types of anomalous signals.
The memory of the Conv-GRU allowed us to make predic-
tions while using context and input data. For anomaly detec-
tion, a one-time step prediction was adequate. The multi-time
step prediction demonstrated the ability of Conv-GRU to be
a time series modeler. The prediction of multiple time steps
could provide an early indication of anomalous behavior.
It could also serve as an important first step in the detection of
an anomaly for IoT sensor data maintenance. Finally, it could
be seen that anomalous could be detected by our proposed
model during Typhoon Soudelor inAugust 2015 (the example
used for data collection). After conducting experiments based
on the data from several river water level stations, it could be
seen that our model could effectively predict changes in river
water levels.

V. CONCLUSION
In this study, we proposed a method for river water level pre-
diction and anomaly detection by combining the Conv-GRU
model and the multivariate Gaussian distribution method.
In this powerful model for time series prediction, CNN was
used for the feature acquisition of time series data and the
GRU model was used to learn the long-term dependent fea-
tures in a time series. The combined CNN and GRU model
was applied to predict water levels based on the data sets
of the water level stations. Finally, the resulting prediction
error was modeled as a multivariate Gaussian distribution and
was used to assess the probability of anomalous water level
behavior.

The first step of our experiment was to compare different
models (including ANN, CNN, LSTM, Seq2seq and Conv-
GRU) based on deep learning to predict water levels. In order
to have the same benchmark comparison, we compared each
model and found the best configuration of network parame-
ters. The experimental results showed that compared to the
competitive methods of deep learning, such as ANN, CNN,
LSTM and Seq2seq, Conv-GRU performed well on several

performance metrics, such as RMSE, MAE and MAPE, for
water level prediction.

It was verified that Conv-GRU networks could learn
higher-level temporal patterns with unknown pattern dura-
tions. In addition, it may be possible to use Conv-GRU net-
works to simulate normal time series behavior and detect
anomalies. Our proposed Conv-GRU combined Gaussian
statistical anomaly detection method, which produced good
results using real-world datasets that involved short-term tem-
poral and long-term temporal dependence modeling, espe-
cially when it was not known in advance whether the normal
behavior involved the long-term dependence or not. In the
future, the performance of the river water level prediction
model could be improved by applying evolutionary algo-
rithms so as to optimize the Conv-GRU model. Furthermore,
more data sets on river level predictions could be collected
to validate our proposed model. We could also use relevant
information from upstream and downstream of a river to
analyze their relationships and water level changes caused
by time. In addition, we may try to apply Conv-GRU to test
time series data gathered from different IoT sensors (such
as electricity and PM2.5, etc.). In the future, the application
of our forecast and anomaly analysis system in river level
stations could be extended to other areas of Taiwan, especially
the central and southern regions, where large disasters often
occur during the typhoon season (July-September), to estab-
lish disaster prevention strategies and reduce casualties.
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