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ABSTRACT Unsupervised matrix completion algorithms mostly model the data generation process by
using linear latent variable models. Recently proposed algorithms introduce non-linearity via multi-layer
perceptrons (MLP), and self-supervision by setting separate linear regression frameworks for each feature
to estimate the missing values. In this article, we introduce an MLP based algorithm called feature-specific
neural matrix completion (FSNMC), which combines self-supervised and non-linear methods. The model
parameters are estimated by a rotational scheme which separates the parameter and missing value updates
sequentially with additional heuristic steps to prevent over-fitting and speed up convergence. The proposed
algorithm specifically targets small to medium sized datasets. Experimental results on real-world and
synthetic datasets varying in size with a range of missing value percentages demonstrate the superior
accuracy for FSNMC, especially at low sparsities when compared to popular methods in the literature. The
proposed method has particular potential in estimating missing data collected via real experimentation in
fundamental life sciences.

INDEX TERMS Matrix completion, non-linear regression, neural networks, self-supervised learning.

I. INTRODUCTION
Missing value presence is a common problemwhich degrades
the quality of the dataset and disturbs the data analysis.
The data could be incomplete due to either the collection
or the generation process. Since the missing values in the
dataset make data processing and analysis more difficult,
matrix completion becomes an important preprocessing step.
Inference methods based on machine learning techniques
have shown significant promise for the matrix completion
task, which include wide-ranging applications from recom-
mender systems [1] to operations research [2], from image
processing [3] to product development [4] and high failure
rate experiments [5].

A common approach is to assume that the data matrix
is low rank that turns the problem into rank minimization.
However, this problem is ill posed due to the non-convexity
and discontinuity of the rank function [6]. Many approxi-
mate solutions have been proposed accordingly [7]. Nuclear
norm minimization is one class of techniques that perform
L1 norm minimization of the singular values to minimize
the rank [6]. Many extensions have been introduced to this
base model, i.e., performing singular value thresholding [8],
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penalization by Lq norm instead of L1 [9], and high rank
estimation with subspace clustering by assuming multiple
underlying low-rank sub-spaces [10]. In nuclear norm min-
imization, all the singular values are simultaneously mini-
mized with a convex relaxation to the rank function. In the
recent algorithms, the nuclear norm is modified by pruning
out the largest singular values [11], and considering the partial
sum of singular values [12]. However, all these methods still
require singular value decomposition (SVD), which is com-
putationally expensive, especially for large datasets. Recent
studies try to overcome this drawback by using orthogonal
matching pursuit [13] and multiple factor norms to make the
optimization smooth and convex [14].

Unsupervised linear latent models are another family of
models, widely used to estimate the missing entries of an
incomplete matrix. Finding the latent factors and associ-
ated coefficients help imitating the data generation pro-
cess for the missing entries to be inferred from the known
entries of the observations. The subspace is restricted to be
low-dimensional to capture the low-rank structure of the data.
Principle component analysis (PCA) [15] and matrix factor-
ization [16] are among the simple but effective linear latent
variable models widely used for missing variable estimation.
In the case of incomplete datasets, these methods estimate the
model parameters iteratively, either with gradient descent or
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FIGURE 1. Graphical abstract of the proposed algorithm. Blue squares
represent observed variables whereas light blue squares represent
missing values. D neural networks are implemented to predict missing
values by self-supervision.

alternating least squares methods. Observed and unobserved
variables are interpreted probabilistically, where introducing
priors for the latent variables is crucial to make the model less
prone to over-fitting especially for the sparse datasets. Some
other inference methods to optimize the model parameters
include Variational inference [15] and stochastic gradient
descent [17].

Another class of techniques use non-linear mapping
between the latent and observed variables by induc-
ing an unsupervised objective. In this context, Ker-
nel PCA [18], [19], auto-encoder [20], [21] and deep
auto-encoder [22] based methods have been proposed to
increase the model capacity in order to capture more com-
plex underlying structures. Application areas with promising
results include DNA micro-arrays [18], traffic flow [19],
metabolite data [20], recommender systems [21], and oil
production [23]. The over-fitting is usually alleviated by
shrinking the parameters with L2 norm constraints. The prob-
abilistic interpretations of the standard auto-encoders, called
Variational auto-encoders, use spherical Gaussian priors for
the latent variables, which provides natural regularization for
parameter shrinking [24].

Introducing self-supervision to the linear latent models
has first been introduced in [25]. The model estimates
latent factors by building a PCA model given the com-
pleted dataset from the previous iteration. Model parameters
are then trimmed according to the known and unknown
variables for each observation to form model for regres-
sion from the observed to the missing variables. Model
over-fitting is avoided by using early stopping in [4] with
promising results for several small scale datasets. Non-linear
self-supervised methods are natural extensions of linear
self-supervisedmethods. However, building separate complex

regression models for each feature significantly increases
the number of parameters to be estimated which may cause
over-fitting if one can not regularize the model properly [26].
On the other hand, in particular cases, where the number of
observations is several orders of magnitude larger than the
number of features (such as scientific experimental datasets
with relatively smaller fractions of missing values), they
can provide higher accuracy [27]. Building independent
models associated with each feature also allows parallel
optimization of the models which can ultimately decrease
the computational burden and/or processing times. In this
article, we propose a non-linear self-supervised matrix com-
pletion algorithm based on multi-layer perceptions (MLP)
specifically tailored for scientific experimental datasets.
We assign an independent regression model for each fea-
ture and infer the parameters by using a rotational iterative
method. At each iteration, the model parameters are first
inferred by using the completedmatrix from the previous iter-
ation. Then, the missing variables are estimated given these
newly inferred model parameters, where the cycle continues
until convergence. We introduce additional heuristic steps
to ensure a robust learning process with fast convergence
and good generalization. Our results consistently show better
accuracy especially for small to medium fractions of miss-
ing values for scientific experimental datasets with varying
sizes. Note that, the proposed algorithm is a non-linear
self-supervised method, which improves upon the linear
self-supervised methods such as [4], [25] having already
demonstrated superior performance on matrix completion
tasks recently over numerous unsupervised learningmethods.
Specifically, we aim to exploit the representation power of
neural networks to further improve the matrix completion
performance of self-supervised learning methods. We only
consider MLPs as the candidate neural network architecture,
because scientific experiment datasets are in tabular format,
i.e., there is no spatial or sequential relationship between the
features, such as scale and position in-variance and temporal
dependency.

This article is organized as follows. An introduction to
the previously proposed baseline models used for matrix
completion is provided as background in Section II-A.
Then, we explain the proposed approach and demonstrate
its differences with the baseline methods in Section II-B.
In Section III-A and Section III-B, the experimental setup
including the datasets and competitive algorithms is intro-
duced in detail. The optimization of the models and evalu-
ation procedure are explained in Section III-C. The paper is
then concluded with a discussion of the experimental results
and possible directions for future work.

II. METHODOLOGY
A. BASE MODELS
1) LATENT VARIABLE MODELS
Latent variable models have been widely used for matrix
completion in recent years. Matrix factorization is a simple
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but effective latent variable method used mostly in collabo-
rative filtering applications to complete large sparse matri-
ces [17]. In this method, a low dimensional latent factor is
assigned for each feature and the instances are represented
with factor coefficients. The factors are assumed to be lying
in a lower dimensional latent space of dimension K , so that
the observed matrix (of dimensions N × D, where N is the
number of observations and D is the number of features) is
approximatedwith themultiplication of the latent factors with
associated coefficients as follows:

xi = Wzi +m+ ei, (1)

where row vector xi ∈ RD represents the ith instance,
i = 1 : N , of the incomplete matrix X ∈ RN×D, and
W ∈ RD×K denotes the factor loading matrix in which the
latent factors of each feature are stacked together in order.
zi ∈ RK is the latent variable of instance i, i.e., the factor
coefficient, so that the multiplication with the factor loading
matrix gives the approximation of the variables belonging to
the ith instance with the addition of column wise mean vector
m ∈ RD. ei ∈ RD is the approximation error induced by the
model emerging from the projection of the data onto the lower
dimensional space, which is usually modeled as a zero mean
Gaussian random variable.

The main goal of the optimization is to infer Z, W and
m given the observed variables of the incomplete matrix X .
Note that Z ∈ RN×K matrix keeps all the latent variables in
order, i.e., Z = {zi}i=1:N . The objective of the model can be
formulated as

minW ,Z
∑

(i,j)∈�

(xij − wj,:zi − mj)2 + λ(‖wj,:‖2 + ‖zi‖2), (2)

in which the right hand-side of the equation corresponds to
the regularization term to prevent the model from over-fitting
with strength λ, that is usually optimized via cross-validation
as a hyper-parameter. � is the set of tuples that keeps the
index pairs of the observed variables, and wj,: ∈ R1xK is the
jth component of the factor loading matrix. Although Eq.2
uses mean squared error metric and L2 norm regularization
for the reconstructions of known values in the matrix, many
other metrics and regularization terms have also been pro-
posed for different tasks [17], [28]. The researchers mostly
prefer to use stochastic gradient or alternating least squares
methods to optimize the parameters especially for big and
sparse datasets [17].

Building latent variable models in the presence of missing
values have also been studied over PCA algorithm [15],
where the model building and exploiting steps are separated
to enable the application of SVD to the incomplete matrix.
The model building step is performed to infer the latent vari-
ables and factor loading matrix with SVD by using previous
predictions of missing values. The resulting PCA model is
given as

xi,t = W tzi,t +mt + ei,t , (3)

where t corresponds to the iteration number. Note that we add
iteration index to the parameters to explicitly show the alter-
nating update scheme. In the model building step, the param-
eters and the latent variables are optimized by using previous
predictions of the missing values. In the model exploiting
step, the predictions are calculated for the unobserved vari-
ables, whose indices are kept in the set �̄, by using previously
optimized parameter values zi,W and m at iteration t . Then,
for each missing value xij,(t+1), the prediction is performed as
follows:

xij,(t+1) = wj,:,tzi,t + mj,t (i, j) ∈ �̄. (4)

To initialize the algorithm, the missing variables are filled
with feature-wise means of the observed variables to enable
initial SVD operation. Then, consecutive model building and
exploiting steps are iterated until the convergence of either
the predictions or the model parameters.

2) REGRESSION MODELS
Another recent approach to matrix completion is to com-
bine a regression framework with a latent variable model to
increase the accuracy of the predictions [25]. The missing
variables of each observation are estimated within the regres-
sion model by using the predicted factor loading matrix and
the known variables belonging to that observation. Once the
column-wise mean vector is subtracted, i.e., yi,t = xi,t −mt ,
where mt is calculated by using the known values of the
matrix, PCA decomposition is applied to the model;

yi,t = W tzi,t + ei,t . (5)

For the regression framework, as a preprocessing step,
W t is reordered and splitted separately for each observation
that includes missing values, such as W t = [W∗t W#

t ],
in whichW∗t corresponds to the factor loadings of the known
variables, and W#

t corresponds to the factor loadings of the
unknown variables of the observation. The regression from
the known variables y∗i,t to the unknown variables y#i,t is
performed as

y#i,t = W#
t (W

∗T
t W∗t )

−1W∗Tt y∗i,t . (6)

This process is repeated for all observations that include
missing values, i.e., if all the observations contain at least
one missing value, then N regressions are performed. This
regression framework is further improved in Trimmed Score
Regression (TSR) algorithm [25] by introducing trimmed
scores as

y#i,t = S#∗t W
∗
t

(
W∗Tt S∗∗t W

∗
t

)−1
W∗Tt y∗i,t , (7)

where (S#∗t = Y#T
t Y∗t /(N − 1)) and (S∗∗t = Y∗Tt Y∗t /(N − 1))

are the estimated covariance matrices, and Y t = {yi,t }i=1:N
is the mean centered observation matrix. The algorithm can
suffer from over-fitting thus early stopping is necessary to
obtain better accuracy [4]. We call this variant as the TSRE
algorithm.

198170 VOLUME 8, 2020



M. Aktukmak et al.: Self-Supervised FSNMC

3) BAYESIAN METHODS
Continuous latent variable models [29] are the generalization
of both PCA and matrix factorization models, in which the
latent variables are treated as random variables. For real
valued datasets, it is convenient to use Gaussian distributions
for the representation of both latent and observed variables,
which results in Linear Gaussian framework. This framework
is regarded as the probabilistic version of PCA. The main
advantage of this approach is to allow EM to be used for
parameter estimation, that has many benefits for big datasets
such as computational efficiency and avoiding the sample
covariance matrix computation. Since the graphical model is
directed from the latent variables to the observed variables,
the sample generation and the missing value inference is
easily performed [29]. The continuous latent variable model
in the case of numerical observations is defined as

p(xi|zi,2) = N (xi|Wzi +m,6x), (8)

where 6x is the noise covariance matrix of the observed
variables, and 2 = {W ,m} is the set of model parameters.
Note that 6x = 0K corresponds to the classical PCA, and
6x = σ

2IK to the Probabilistic Principal Component Analy-
sis (PPCA) model [29]. The prior distribution over the latent
variables is defined as Gaussian, i.e., p(zi) = N (zi|0K , IK ).
In this setting, the posterior distribution of the latent variables
is also Gaussian,

p(zi|xi,2) = N (zi|µi,6i). (9)

EM algorithm can efficiently be used to estimate the param-
eters of the posterior distribution {µi, 6i}i=1:N as well as the
model parameters2 = {W ,m} by using the known variables
of the matrix.

Variational Bayesian Principal Component Analysis
(VBPCA) is a fully bayesian treatment of the linear latent
variable model defined above, specifically proposed for miss-
ing value estimation [15]. Bayesian treatment is especially
beneficial for application domains containing high fraction
of missing values such as Recommender systems [30], [31].
Unlike PPCA models [29], VBPCA algorithm treats all the
model parameters as random variables in addition to the
factors. By using proper prior distributions, the model itself
penalizes more complex distributions to naturally avoid over-
fitting. Similarly, the Gaussian priors for the parameters can
conveniently be used for the real valued datasets,

p(m) = N (m|0, vmIK ), (10)

p(W ) =
K∏
j=1

N (wj,:|0, vm,jIK ). (11)

The model assumes factorization over all the factor loadings
packed in the matrix W . The parameter set for this model
becomes2 = {Z,W ,m}, and hyper-parameter set is given as
ζ = (vy, vm, vm,j). In this setting, the posterior of parameters
is not tractable. Hence, instead of inferring the exact posterior
p(2|X, ζ ), it is approximated through a simple distribution
q(2), which is a form of Variational inference based on mean

field approximation [29]. The cost function of the model that
is to be minimized is given as

C(q(2), ζ ) =
∫
q(2)log

q(2)
p(X,2|ζ )

d2

=

∫
q(2)log

q(2)
p(2|X, ζ )

d2−logp(X |2), (12)

where the first term on the right hand side of the equation is
KL divergence between the exact and approximate posterior
while the second term is the marginal likelihood. Since the
KL divergence is always positive, it forms a lower bound for
the model likelihood. VBPCA algorithm introduces factor-
ized form for the approximate posterior as follows:

q(2) =
D∏
j=1

q(mj)
D∏
j=1

q(wj,:
N∏
i=1

q(zi). (13)

Each factor in the parameter set is assumed to be Gaussian,
in which the parameters of these distributions are inferred
from the observed variables by using EM algorithm given
the observed values collected in the set �. EM steps are
performed to compute the means and co-variances/variances
of the distribution parameters as well as the point estimates
of the hyper-parameters.

4) DEEP LEARNING MODELS
Deep Auto-encoders are popular deep neural network models
that seek lower dimensional representations of the obser-
vations, which can be interpreted as deep neural network
versions of PCAmodels [32]. Traditional auto-encoders does
not have probabilistic interpretation since the latent vari-
ables are assumed to be deterministic thus estimated point
wise. Let neural network f that performs the mapping from
the observed space to the latent space be defined over the
parameter set 2e, called encoding parameters. Similarly, let
neural network g that performs mapping from the latent space
to the observed space be defined over 2d , called decoding
parameters. The mappings are given as

xi = f (zi,2d ), (14)

zi = g(xi,2e), (15)

such that the reconstruction of an observation with missing
values under the trained model parameters is performed by
passing through the encoder and the decoder respectively, i.e.,

r(xi|2d ,2e) = f (g(xi,2e),2d ), (16)

where r(xi|2d ,2e) corresponds to the reconstructed vec-
tor through encoding and decoding of xi. AutoREC is an
auto-encoder based algorithm specifically proposed to deal
with missing values [21]. The parameters of the model 2 =
{2d ,2e} are optimized by using the observed variables of the
input matrix hence the objective is defined with the addition
of L2 norm regularization on the parameters as follows

min2
∑

(i,j)∈�

(xij − r(xij|2))2 + λh(2), (17)
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where r(xij|2) is the reconstructed jth feature of instance i
under model current model parameters.

Variational auto-encoders are probabilistic extensions of
traditional auto-encoder, which assumes a similar graphi-
cal model with the linear latent variable models except the
mappings are non-linear through MLPs. The main objective
is still to maximize the likelihood of data given the model
parameters, i.e., p(X |2). The distributions of the observed
variables are modeled as Gaussian,

p(xi|zi,2d ) = N (xi|f (zi,2d ),9), (18)

where9 = σ 2ID is noise covariance matrix. Mean of the dis-
tribution of each observation is linked with the corresponding
latent variables through a non-linear mapping by the decoder
implemented by using MLP. The prior distributions of the
latent variables are same as the continuous latent linear mod-
els, i.e., p(zi) = N (zi|0, IK ). The cost function that should
be minimized to maximize the data likelihood is the same
as VBPCA algorithm given by Eq.12. The main difference
is on the definition of the approximate posterior over the
latent variables. More specifically, VBPCA uses factorized
Gaussian distributions, whereas VAE uses MLP, called the
encoder network defined as

q(zi|xi) = N (zi|µ(xi,2µ),6(xi,26)). (19)

Here there are two encoding networks because the posterior
of zi is Gaussian, thus requiring estimation of both mean
and diagonal covariance matrix. 2µ is the parameter set
for encoding mean vector, and 26 is the parameter set for
encoding diagonal covariance. The overall parameters of the
networks, 2µ, 26 and 2d , are optimized using stochastic
gradient descent [24].

B. PROPOSED MODEL
In this section, we define our proposed model Feature Spe-
cific Neural Matrix Completion (FSNMC) and its training
scheme, then we state the differences and potential advan-
tages over the aforementioned models. FSNMC is an MLP
based approach developed specifically for the matrix com-
pletion task. We introduce D MLPs, where D is the number
of features, with independent parameters to increase model
capacity to obtain better imputation performance. Each of the
MLPs is associated with a single feature, in which the param-
eters are optimized within a regression framework. It uses
a rotational scheme similar to the PCA models described
in Section II-A1, where the parameters are optimized given
the values of the observed variables as the first step, and
then exploited to estimate the associated missing variables as
the second step.

We first initialize D independent MLPs associated with
each feature denoted as fj with parameter set 2j, where
j = 1 : D. The associated variable of each network is removed
from the input vector, i.e., is excluded from the regressors,
so that the number of input nodes for each network becomes
D − 1. The removed variable then becomes a single output

node to form a regular regression model. The corresponding
model is given as

xij = fj(xij̃,2j), (20)

where j = 1, . . . ,D corresponds to the network index. The
model assumes variable xij is linked with the other variables
xij̃ of the ith observation through the global parameter set2j.
The optimization goal is to estimate all the global parameter
sets, i.e., {2j}j=1:D, that minimize the reconstruction errors of
the given observed variables of the matrix X .

The training algorithm has a rotational scheme, where
the model parameters are optimized at each iteration given
the completed matrix and the estimated parameters from the
previous iteration. Hence, we denote 2j,t as the parameters
of the jth network at iteration t . The objective is to find the
optimal 2t = {2j,t }j=1,...,D that minimizes the cost function
given below for each iteration t:

min2j,t

∑
(i,j)∈�

(xij,t − fj(xij̃,t ,2j,t ))2 + λh(2j,t ). (21)

For instance, for a two layer MLP network structure,
the parameter set that is to be optimized will be 2j,t =

{W1j,t ∈ RD×M ,W2j,t ∈ RM ,m1j,t ∈ RM ,m2j,t ∈ R}.
A graphical representation for this structure is given
in Figure 2. The cost function is similar to AutoREC. How-
ever, unlike AutoREC, we optimize the network parameters
iteratively after updating the missing values. The cost func-
tion additionally includes a regularization term to control the
over-fitting with a strength parameter λ. A convenient choice
is to use L2 norm on the weight parameters to shrink them
towards small numbers as follows

h(2j,t ) = ‖W1j,t‖
2
+ ‖W2j,t‖

2. (22)

FIGURE 2. Graphical model of FSNMC for a two layer MLP configuration.

After optimizing the parameters of the networks at iter-
ation t , the model parameters are then exploited to infer
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Algorithm 1 FSNMC Algorithm
1: procedure FSNMC(X, �)
2: Initialize parameters 20 = {2j,0}j=1,...,D randomly;
3: Normalize X ;
4: xij,(0) = 0 (i, j) ∈ �̄; F Initialize missing variables
5: t = 1;
6: while conv(X t − X t−1) do F Check for convergence
7: for j = 1 : D do F Parameter inferring loop
8: 20

j,t = 2
F
j,t−1; F Transfer parameters

9: 2F
j,t = min2j,t

∑
(i,j)∈�(xij,t − fj(xij̃,t ,2j,t ))2 + λh(2j,t ) F Train jth network

10: for j = 1 : D do FModel exploiting loop
11: r(xij,t |2F

j,t ) = fj(xij̃,2
F
j,t ); F Reconstruct missing variables

12: xij,(t+1) := xij,t + ρ(r(xij,t |2j,t )− xij,t ) (i, j) ∈ �̄; F Update missing variables

13: t = t + 1;
14: return X t

the missing values. Given the parameter set 2j,t , the recon-
struction of a missing variable xij,t is obtained with a single
forward pass through each network,

r(xij,t |2j,t ) = fj(xij̃,2j,t ). (23)

Instead of updating eachmissing variable with the reconstruc-
tion, we introduce a damping parameter to smooth out the
learning, which is empirically observed to provide better con-
vergence stability. Consequently, the final update equation for
iteration t is given as

xij,(t+1) = xij,t + ρ(r(xij,t |2j,t )− xij,t ) (i, j) ∈ �̄, (24)

where ρ is the damping parameter.
We perform the optimization of the cost function, and

exploitation of the trained model to update missing values
at each iteration. However, re-training each network with the
updated missing variables with random parameter initializa-
tion at each iteration would result in a substantial increase
in training time. Instead we store the network parameters
between iterations where each network’s final weights are
carried through. For example, at iteration t = 0, the model
parameters are initialized with small random numbers as is
customary in neural network training. After the first iteration,
the optimized model parameters lead to a minima point over
the surface of the cost function. Since the difference between
two consecutive iterations is the slowly changing missing
values, beginning from a random point on the cost function
surface for the next optimization would be time consuming.
Assuming that the point found in the previous optimization
is close to the minima of the cost function of the previous
iteration, the number of epochs needed to reach the opti-
mal minima shall reduce dramatically with the application
of this method. The weights of the jth network are carried
through as 20

j,t+1 = 2F
j,t , where 2

0
j,t+1 corresponds to the

initial parameters of network j at iteration t + 1 and 2F
j,t

corresponds to the final optimized parameter at iteration t .
Algorithm 1 provides the detailed pseudo-algorithm of the
proposed rotational approach.

If we assume the neural network used for each feature
is equivalent in structure, and each of them has l hidden
layers (l > 2) and K hidden nodes per layer, the time
complexity of a single forward pass of N examples will be
O(N ∗ (D ∗ K + l ∗ K 2

+ l)), where D is the dimension
of the input. Similarly, a back-propagation invokes the same
computational complexity due to its inverse traversal of the
same computational graph. If we assume that the algorithm
requires F epochs to converge in its inner loops, then we have
O(F ∗ N ∗ (D ∗ K + l ∗ K 2

+ l)) for parameter inferring
loop of each feature. Furthermore, we perform this step for
the network of each feature resulting in O(F ∗ N ∗ D ∗ (D ∗
K + l ∗K 2

+ l)). Note that the model exploiting loop requires
a single forward pass which does not affect asymptotic com-
plexity. Also, the parameter storage procedure decreases the
number of epochs required for the inner loop convergence
for the latter outer iterations. That results in an amortized
computational complexity ofO(N∗D∗(D∗K+l∗K 2

+l)) for a
single outer iteration. The main burden can be recognized as a
quadratic dependency on the number of features-D. However,
first, we target scientific experimental datasets, which are
generally classified as tall datasets, having a significantly less
number of features than the number of instances, i.e.,N � D.
Second, the parameter inferring and model exploiting loops
are performed sequentially, thus allowing the former loop
to be parallelized. To this end, with efficient parallelization,
we can conclude that the time complexity of the model
is asymptotically equivalent to the standard neural network
training complexity.
The proposed algorithm differs from the methods intro-

duced in Section II-A with the following aspects:
• Linear latent variable models assume common latent
space for all features. However, FSNMC defines a sepa-
rate latent space, i.e, a separate set of latent variables for
each feature, which increases both the model capacity
and the flexibility.

• PCA, Matrix Factorization and Auto-encoder methods
minimize a common reconstruction error defined over
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all of the observed variables of the incomplete matrix.
However, FSNMC defines an independent optimization
goal for each feature.

• TSRE algorithm assumes a linear relationship between
the observed and unobserved variables of each instance
and the regression framework is based on this lin-
ear relationship over the factor loading matrix. How-
ever, FSNMC uses MLPs to extract the non-linear
relationships between the associated features and the
regressors.

• Although our proposed algorithm is a predictive model
unlike the generative models such as VBPCA and VAE,
for matrix completion tasks the accuracy is generally
more important than expressing the domain knowledge.
FSNMC specifically focuses on the former by modeling
a non-linear strong regression framework.

III. COMPARATIVE STUDY
A. EXPERIMENTAL SETUP
We perform experiments to compare the performance of
the proposed model with four baseline algorithms, TSRE,
VBPCA, AutoREC, and VAE. We select four small-sized,
i.e., the number of observations is smaller than 1000, and
two medium-sized, i.e., the number of observations is larger
than 3000, real world datasets to observe the performances
with respect to varying matrix sizes. The datasets are labeled
as concrete, nutrient, wine, olive oil, protein and abalone.
The concrete dataset (N = 103, D = 10) describes
three mechanical features of the concrete according to the
concentration of seven ingredients for different samples of
concrete, resulting in a total number of 10 features. The
dataset is complete with no inherent missing values, and is
available on the University of California Irvine’s Machine
Learning Repository (UCI-MLR) [33]. The nutrient dataset
(N = 104, D = 20) describes the nutritional values of
different vegetables. For some vegetables, the content in some
nutrients is denoted as ‘‘traces’’. In this case, the content of
the nutrient is assumed to be negligible and zero. The dataset
is maintained by Health Canada, and already contains 1.9%
missing values [34]. The wine dataset (N = 173,D = 13)
describes chemical attributes of wine samples. The dataset
is complete, and is available on the UCI-MLR [35]. Olive
oil dataset (N = 572,D = 8) describes the concen-
tration of the fatty acids in the wine produced in differ-
ent regions. The dataset is also complete and compiled
by Forina et al. [36]. The protein dataset (N = 45730,
D = 9) includes a significantly higher number of sam-
ples that describe the physicochemical properties of the pro-
tein tertiary structure [37]. The final dataset is the Abalone
(N = 4177,D = 8), which consists of the attributes of
abalones, measured for each individual animal [38]. The
dataset has gender information as a categorical variable which
is removed from the dataset to obtain a homogeneous real
valued matrix.

B. IMPLEMENTATION DETAILS
TSRE algorithm is an iterative method, where SVD is
performed at each iteration to estimate the factor loading
matrix W t , followed by the regression of the missing vari-
ables given the observed variables through W t . After the
regression is performed to update the missing values for each
instance by using Eq. 7, the model parameter mt is evaluated
by column-wise mean operation on the matrix updated with
the new predictions. The model parameter set to be estimated
is given as 2t = {W t ,mt } and the hyper-parameter set to
be optimized is given as ζ = {γ,K }, in which γ defines the
fraction of observed variables to be used for early stopping,
and K corresponds to the number of latent variables.

VBPCA algorithm performs Variational Bayesian Expec-
tationMaximization (VB-EM) [29] to update both the param-
eter and hyper-parameter sets given the observed variables
of the instances. The parameter set to be estimated is given
as 2 = {W ,Z,m} and the hyper-parameter set is given as
ζ = {vy, vm, vm,j,K }. Note that VBPCA optimizes both the
parameter and hyper-parameter sets except the dimension of
the latent space, K . This hyper-parameter is optimized with
cross-validation.

For the MLP based approaches including AutoREC,
VAE and FSNMC, the network structure is defined over
the hyper-parameter l, which corresponds to the number
of hidden layers, and K , which is the number of latent
nodes in each single hidden layer. These values are opti-
mized with cross-validation. The search space is defined
over a grid from a predefined set l = {1, 2} and
K = {2, 3, 4, 5}. The trainable parameters of these mod-
els are optimized by using the stochastic gradient descent
method. AutoREC has encoder and decoder MLP parame-
ters, 2 = {2d ,2e}. Cross-validation is performed to opti-
mize the network structure and the regularization strength λ,
so that the complete hyper-parameter set can be denoted
as ζ = (K , l, λ). VAE, on the other hand, does not have
a regularization parameter thus the hyper-parameter set is
defined as ζ = (K , l), and the parameter set is given as
2 = {2µ,26,2d }.
Unlike VAE and AutoREC, FSNMC is an iterative algo-

rithm such that parameter optimization is performed at each
iteration t given the updated missing values from the pre-
vious step. Another major difference is the number of net-
works associated with the number of features. In this case,
the parameter set of the algorithm to be estimated by using
the stochastic gradient descentmethod at iteration t is given as
2t = {2j,t }j=1,...,D. On the other hand, the hyper-parameter
set of the model is ζ = (K , l, λ, γ, ρ). Two of these
parameters, γ , which is the fraction of the observed vari-
ables to be used for early stopping, and damping param-
eter ρ, are fixed empirically as %5 and 0.1 respectively.
FSNMC algorithm is implemented by using TensorFlow, and
the complete script is accessible on GitHub repository at
https://github.com/maktukmak/NNMC.
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FIGURE 3. Averaged MSE values obtained over all the datasets.

C. CROSS-VALIDATION AND EVALUATION PROCEDURE
The hyper-parameter optimization starts with separating
some of the observed variables in the training set and keeping
them in a separate validation set. The fraction of splitting is
fixed at %5 such that %95 of the observed variables is used to
infer the parameter set2while the rest is used for optimizing
the hyper-parameter set ζ . Since the experiments are repeated
with varying fractions of missing values, the hyper-parameter
optimization is repeated for each algorithm, each dataset, and
each fraction of missing value combination. Each optimiza-
tion exploit grid searchwith combination of the elements of ζ ,
i.e., |ζ |! experiments are performed for each scenario. Mean
squared error on the validation set is used as performance
metric, which is given as

MSEval =
1

|�̄val |

∑
i,j∈�̄val

(xij − r(xij|2, ζ ))2. (25)

We repeat each experiment ten times to obtain a statistical
average error, and then we select the hyper-parameter combi-
nation corresponding to the lowest error.

Given the optimized hyper-parameter set of each test sce-
nario, we run the algorithms ten times by merging the val-
idation and training sets. The experimental setup has slight
differences for small and medium datasets. We use Miss-
ing Completely at Random (MCAR) mechanism to remove
%5,%20,%40 and %70 of the variables for small datasets
and keep them in the test set. However, for medium datasets,
we setup an additional experiment with %90 fraction of
missing values to observe the performances at a relatively
more sparse setting. Removing %90 of the variables in small
datasets results in artificially low performance for each algo-
rithm likely due to having very few variables to infer the
model parameters and are not reported here. The reported
performance metric is the mean squared error evaluated on
the test set, which is given as

MSEtest =
1

|�̄|

∑
i,j∈�̄

(xij − r(xij|2, ζ ))2. (26)

To perform the experiments, we exploit high-performance
computing cluster of the University of South Florida to
employ parallelization among several processors.

TABLE 1. MSE comparison on small datasets.

D. RESULTS AND DISCUSSION
The performance comparison for small scale datasets is given
in Table 1. This table is compiled with the results for FSNMC,
TSRE and VBPCA algorithms. AutoREC and VAE algo-
rithms are excluded due to their significantly lower accu-
racy, most likely due to the small size of the dataset. Bold
values correspond to the minimum errors associated with
each specific test case. FSNMC clearly outperforms the other
algorithms in majority of the test scenarios, especially for low
fractions of missing values. In order to demonstrate a holistic
view of the performance, Figure 3.a shows the average MSE
values over all datasets for each of the varying fractions of
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TABLE 2. MSE comparison on medium datasets.

missing values. Except the fraction of %70, we can conclude
that FSNMC is the superior choice to infer missing values.

The MSE performances for medium scale datasets is
compiled in Table 2. In this case, we include AutoREC
and VAE algorithms since they provide competitive perfor-
mance. However, especially for low fractions of missing
values, FSNMC continuous to consistently outperform all
other approaches regardless of the dataset, whereas TSRE
and especially VBPCA provide better accuracy at higher
fractions. Synthetic dataset results are compatible with the
general observations made for real-world datasets. Figure 3.b
shows the average MSE values over all the datasets for each
of the varying fractions of missing values where the pro-
posed FSNMC method and VBPCA outperform the compet-
ing algorithms at low and high fractions of missing values
respectively.

IV. CONCLUSION AND FUTURE WORK
This article presents an MLP based self-supervised matrix
completion algorithm to deal with missing values, specif-
ically in the scientific experimental datasets characterized
as non-sparse and small to medium sized. The performance
of the proposed FSNMC algorithm is compared with the
state-of-the-art methods. The experiments with a wide range
of combinations on dataset sizes and fractions of missing
values demonstrate the superior performance of the proposed
algorithm on both small and medium sized datasets.

The first limitation of the proposed model is the compu-
tational complexity that scales quadratically with respect to
the number of features. This can be problematic if the imple-
mentation is not efficiently optimized for parallel processing
during the optimization of the networks associated with each
feature. Hence, wemainly suggest the proposed algorithm for
tall datasets as most of the scientific experiment datasets are.
The second limitation comes from the number of additional
hyper-parameters due to the structure of the algorithm itself
as discussed in Section III-B. This might increase the tuning
time of the algorithm significantly if one uses grid search to
find the optimal hyper-parameter set. Fortunately, there exists
some continuous optimization methods based on Gaussian
processes to reduce the grid search time drastically, which can

be adapted to the proposed algorithm. Third limitation is the
decreasing performance of the model when the dataset spar-
sity exceeds approximately 70%. In this setting, we would
suggest using linear statistical models such as the VBPCA.
Because, in a non-linear neural networkmodel, a significantly
low ratio between the number of observed variables and
the number of trainable parameters might easily result in
over-fitting.

Future work will include ensemble methods to combine
the predictions of FSNMC with the other promising matrix
completion algorithms, such as VBPCA, for generally supe-
rior performance regardless of the dataset size and sparsity.
Furthermore, the heterogeneous datasets including both cat-
egorical and numerical features will be considered. Specif-
ically, instead of regression for each feature, classification
frameworks can be utilized to impute the mixed-data type
observations.
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