
Received October 7, 2020, accepted October 22, 2020, date of publication October 30, 2020, date of current version November 12, 2020.

Digital Object Identifier 10.1109/ACCESS.2020.3035058

MEATSP: A Membrane Evolutionary
Algorithm for Solving TSP
PING GUO 1,2, (Member, IEEE), MENGLIANG HOU1, AND LIAN YE 1
1College of Computer Science, Chongqing University, Chongqing 400044, China
2Chongqing Key Laboratory of Software Theory and Technology, Chongqing 400044, China

Corresponding author: Ping Guo (guoping@cqu.edu.cn)

ABSTRACT In recent years, heuristic intelligent algorithms have achieved rapid development in solving
combinatorial optimization problems. Travelling salesman problem(TSP) is one of the classical NP-hard
problems in combinatorial optimization, and it needs for more accurate and faster algorithms. Combining
heuristic algorithm and cell-like P system, this article proposes a membrane evolutionary algorithm for
solving TSP(MEATSP). MEATSP abstracts the behaviors of biological cells such as fusion, division,
cytolysis and selection into operators, and obtains the optimal solution of the problem through the evolution
of membrane structure and objects within the membrane. Experiments on TSPLIB data sets show that the
proposed algorithm performs well in both optimal solution and average residual, and it has strong stability
when solving TSP with different scales.

INDEX TERMS Membrane evolutionary algorithm, heuristic intelligent, TSP, membrane computing.

I. INTRODUCTION
Among combinatorial optimization problems, travelling
salesman problem (TSP) is well known as a classical NP-hard
problem. It comes from many application areas, such as
transportation route planning, circuit board printing, fiber
optic wiring, DNA sequencing, etc. The TSP aims to find the
shortest route for a travel agent to sell betweenmultiple cities.
Because the time complexity of TSP is O(n!) [1],it can be
solved very hardly when the cities increases. Therefor finding
an algorithm to solve the large-scale TSP quickly and accu-
rately is very necessary, which can avoid the exponentially
increasing computational complexity.

The algorithms for solving TSP are divided into two
classes: exact algorithm and heuristic intelligent algorithm.
Exact algorithm aims to find the optimal solution of TSP,
which can guarantee to terminate with an optimal solution.
It include branching and shearing (BAC) [2], branching and
broadcasting (BAB) [3], branching and weight (BAP) [4] and
dynamic programming algorithm (DP) [5].

The purpose of heuristic intelligent algorithms is to obtain
the approximate optimal solution of TSP quickly. It is an
effective algorithm for large-scale problems. It can be divided
into three categories: route construction, route improvement

The associate editor coordinating the review of this manuscript and

approving it for publication was Siddhartha Bhattacharyya .

and hybrid algorithm [6]. Greedy algorithm is the most typ-
ical route construction algorithm. The algorithm makes the
agent starts from a random city and always chooses the near-
est city which has not been arrived yet as the next destination.
When the agent returns back to the origin, the route he passes
can be a solution for TSP. Though greedy algorithm usually
cannot obtain the optimal solution for TSP, it can construct
an optimal feasible solution in less time. So it is widely used
as a strategy in other algorithms [7].

The route improvement algorithm is to improve the given
route through certain strategies, such as switching some paths
or vertices. Local intelligent like 2-opt [8], 3-opt [9], or λ-opt
are often used as a mutation operator in route improvement.

Hybrid algorithm includes route construction and route
improvement both, Population-based heuristic such as arti-
ficial bee colony algorithm (ABC), ant colony optimization
(ACO) [10], genetic algorithm(GA), simulated anneal-
ing(SA) [11], particle swarm optimization(PSO), neural net-
work, tabu search, shuffled frog-leaping algorithm(SFA).
These algorithms use both initial solution construction and
route improvement to obtain approximate optimal solution.

Some hybrid algorithms based on ACO achieves excellent
results in solving TSP. PACO-3Opt [12] is a hybrid algorithm
of parallel cooperation. It firstly uses ACO to construct the
initial population parallelly and then optimizes each indi-
vidual by 3-Opt. The algorithm enhances the quality and

VOLUME 8, 2020 This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/ 199081

https://orcid.org/0000-0002-5239-8896
https://orcid.org/0000-0002-1514-3413
https://orcid.org/0000-0003-0360-7919


P. Guo et al.: MEATSP

robustness of the solution, and it performs well in solving
large-scale TSP problems in an acceptable time.

Analogously, based on the algorithms PSO, ACO and
3-Opt, the hybrid algorithm PSO-ACO-3Opt [13] was pro-
posed. It use PSO to optimize the parameters of ACO algo-
rithm to generate solution. And finally, the 3-Opt algorithm
improves the solution to avoid falling into local optimization.
The performance and experimental results of it are better than
other algorithms in robustness and accuracy of solution.

An effective local search algorithm named adaptive sim-
ulated annealing algorithm with greedy search(ASA-GS)
[11] is proposed to obtain more accuracy solutions for TSP.
It based on the standard simulated annealing algorithm adopts
the combination of three kinds of mutations with different
probabilities during its search, and uses greedy search to
speed up the convergence rate. The result shows it provides
better compromise between running time and accuracy. finish
Ant colony extended (ACE) [14] is a novel algorithm belong-
ing to the general ACO framework. The ACE has two specific
features: there are two kinds of ants with different task, and
the implementation of a regulation policy to control the ants
during the searching process. It show superior performance
in solving TSP.

Algorithm C-PSO-ACO-kOpt [15] is proposed as a new
hybrid algorithm. It uses ACO to generate the initial solution
required by PSO algorithm, and then, after lifting each indi-
vidual in the initial solution space by k-Opt, the PSO can find
the optimal approximate solution of TSP. The experimen-
tal results show that the algorithm has a good performance
advantage in the accuracy and running time of the solution.

Similar to ACO, Fruit fly optimization algorithm(FOA)
[16] is a swarm-intelligence optimization algorithm to solve
TSP. But there are some defects such as slow convergence
rate, easily falling into local optimum and an insufficient
optimization precision. Improved fruit fly optimization algo-
rithm(IFOA) [17] proposes three methods to improve the
convergence and precision.

An hybrid algorithm discrete symbiotic organisms
search(DSOS) [18] uses three mutation-base local search
operators to reconstruct the given route. This strategy enables
individuals in the population to be improved and extended and
thus obtain the approximate optimal solution. Experimental
results based on TSPLIB show that DSOS can quickly obtain
the approximate optimal solution close to the best known
results.

The hybrid max–min ant system (HMMA) [19] integrated
with a four vertices and three lines inequality is proposed
to search the route for TSP. It firstly let the MMA search
the approximate optimal routes, and then the local paths of
adjacent four vertices in routes are converted into the local
optimal paths with the four vertices and three lines inequality
to get the better approximation. The results show that the
better approximations are computed with the HMMA than
those with the MMA under the same preconditions.

In addition, a new hybrid algorithm [20] combines the DPC
and ACO to obtain the approximate solution of TSP problem

is proposed in 2018. Similar to the divide-and-conquer
method, it firstly divides the problem into a sub-problem by
DPC, and then solves and optimizes each sub-problem and
the overall problem formed by the sub-problem based on the
ACO and k-Opt. The algorithm performs well for problems
of different sizes in TSPLIB.

GA-MARL-NICH-LS [21], a new hybrid algorithm pro-
posed in 2018, is using MARL which based on QLearning
algorithm [22] to initialize the population of GA. This algo-
rithm proposed a new method named SMX in the crossover
operator, and each routes in the population will be optimized
by NICH-LS [23] or 2-Opt before next iteration. This algo-
rithm has good accuracy and CPU running time consumption
in the performance of specific problems.

Pǎun Gheorghe proposed membrane computing in 2000
[24], it’s inspired by living cell membrane. From the latest
research results, Peng et al. proposed new kind of neural-like
P systems called dynamic threshold neural P systems(DTNP)
[25] and a coupled neural P system(CNP) [26]. DTNP can
be represented as a directed graph, where nodes are dynamic
threshold neurons while arcs denote synaptic connections of
these neurons. And CNP systems are a kind of distributed
parallel-computing model with a directed graph structure like
spiking neural P systems.

Based on membrane computing, references [27] proposed
a membrane algorithm combines with a cell-like P-system
structure and two approximate algorithms in 2006. It runs
different evolutionary algorithm in each inner membrane to
obtain solutions of optimization problem. This kind of mem-
brane algorithm can solve travelling salesman problem and
min storage problem [28] better than applying the approxi-
mate algorithms alone.

There are some developments in membrane algorithm
with various variants. Zhang et al combined the hierarchical
structure with the quantum-inspired evolutionary algorithms
(QIEAs) [29], which solves the knapsack problem. And
Cheng et al. proposed a novel membrane algorithm based
on differential evolution for numerical optimization [30] by
combining the hierarchical structure and a local search algo-
rithm. In [31], a novel membrane algorithm based on the
hierarchical structure and particle swarm optimization (PSO)
solved the broadcasting problems. And an adaptive mem-
brane algorithm combining the hierarchical structure and
local search was proposed to solve the travelling salesman
problem in [32].

Although membrane computing has made a lot of theoret-
ical achievements since it was proposed, due to the current
level of scientific research, the use of biological cells to
complete membrane computing has not been realized. In the
development of membrane computing, it is also an important
branch to introduce the idea of membrane computing to
design algorithms to solve practical problems on computers,
such as membrane algorithm and membrane evolutionary
algorithm(MEA) in this article. TSP is a classic NP-Hard
problem. Although there are many excellent algorithms that
can find excellent solutions in a certain time, heuristics cannot

199082 VOLUME 8, 2020



P. Guo et al.: MEATSP

find an optimal solution of TSP in most cases. How to
approach the optimal solution is still a problem worth study-
ing. Moreover, different algorithms have different views on
solving the same problem. The addition of MEAmay provide
new ideas for solving this problem.

In this article, the membrane evolutionary algorithm for
solving TSP(MEATSP) is proposed as a new heuristic intelli-
gence algorithm to solve the TSP. The MEATSP is abstracted
from the biological characteristics at the cell level, and four
operators including fusion operator, division operator, selec-
tion operator and cytolysis operator are designed by sim-
ulating the activities of cells. Each membrane contains a
candidate solution of TSP. The population of the membranes
improved through the four operators in each iteration. And
when it comes to termination, the approximate optimal solu-
tion is in the membrane with highest fitness. Experiments of
MEATSP on TSPLIB show its excellent performance in both
the best solution and average residual.

Therefore, the main innovations of this article are:
(1) A membrane evolution algorithm framework MEAF is
proposed, which is inspired by the structure and function of
living cell membranes. (2) The membrane evolution algo-
rithmMEATSP, which uses MEAF to solve TSP, is proposed.
Four membrane evolution operators are designed: Division,
Fusion, Selection and Cytolysis. (3) MEATSP has excellent
and stable experimental results on both small and large TSPs.

The rest of this article is arranged as follows. Section II will
introduce some heuristic intelligence algorithm and mem-
brane computing. In section III, the membrane evolutionary
algorithm framework(MEAF) is detailed. Section IV pro-
poses the MEATSP based on the MEAF. The results of com-
parison and analysis with other algorithms are arranged in
section V. Finally, section VI puts forward some conclusions
and prospects for the follow-up work.

II. PRELIMINARIES
A. TRAVELLING SALESMAN PROBLEM
In a completely undirected graph G = (V ,E), V =
{v1,v2. . . ,vn} represents the set of the vertices in G, and
dist(vi,vj) represents the distance from vertex vi to vertex vj.
The TSP based on G is to find a path through each vertex of
G once and only once then back to the start vertex. The path
P = vi1 vi2 . . .vin should make sure that any path formed by
swapping vertices in P likes P′ = vj1 vj2 . . .vjn is:

dist(P) ≤ ist(P′) (1)

where,

D(P) =
n−1∑
k=1

dist(vik , vik+1 )+ dist(vin , vi1 ) (2)

D(P′) =
n−1∑
k=1

dist(vjk , vjk+1 )+ dist(vjn , vj1 ) (3)

TSP is a classical NP-hard problem, many intelligent
algorithms have been proposed. Especially in recent years,

researchers have proposed a batch of algorithms with
high efficiency and good solution quality. For example,
K-optimization algorithm(K-opt), a based on density peaks
clustering and ant colony optimization algorithm(DPC-ACO-
KOpt), etc.

B. K-OPT ALGORITHM
K-opt algorithm is a local search algorithm, which is often
used to solve the TSP and its similar problems. On the basis
of a route of the TSP, k-opt algorithm achieves the possi-
bility of improving the current path by removing K edges
for reconnection operation. Because of this property, k-opt
algorithm avoids the results of some algorithms falling into
local optimality.

For a given route of the TSP, in the case of removing its k
edges, the total exists (k−1)!∗k−1 new routes for reconnect-
ing. Among these new generated routes, there may be some
routes better than the previous, which is an improvement of
the solution. However, as the k increases, the time consumed
by the algorithm will increase accordingly. 2-opt [8] and 3-
opt [9] are two types of k-opt algorithms commonly used to
solve the TSP.

The Fig. 1 shows the case of 2-opt algorithm, which deletes
two edges in the route and reconnects them to build a new
one. For the unmodified route is included, the 2-opt algorithm
can generate two routes, and then choose the route with the
smallest length as an improvement. Similarly, 3-opt algorithm
will delete three edges in the route and reconnects the new
route based on it. For the unmodified route is included,
as shown in Fig. 2, there are 8 possibilities. It can be seen
that among the 8 cases generated by the 3-opt algorithm,
3 routes are equivalent to the 2-opt algorithm. It shows that if
a reconstructed solution is the result of 2-opt algorithm, it also
belongs to 3-opt algorithm [33]. Thus, the 3-opt algorithm can
provide better candidate solutions, but it runs much slower.

FIGURE 1. All possible reconnections of 2-Opt(The solid line represents
the edge to be replaced and the dashed line represents the omitted
vertex). Including the original route(b), and a new tour(c).

C. DPC-ACO-KOpt ALGORITHM
The algorithm DPC-ACO-Kopt [20] proposed in 2018 is a
hierarchical algorithm based on heuristic intelligent, which
based on the idea of divide and conquer to quickly solve
TSP, especially when the problem size is particularly large.

VOLUME 8, 2020 199083



P. Guo et al.: MEATSP

FIGURE 2. 8 possible reconnections in total of 3-Opt. Contains
reconnections similar to 2-Opt((c), (d), (e)) and original tour(b), and
4 reconnections swap all the solid edges((f), (g), (h), (i)).

Generally, the ant colony algorithm(ACO) is used to solve
the TSP problem, but the required running time and the
quality of the solution are in the optimal region only when
the vertices are less than 40. Otherwise, the result will show a
downward trend. It’s because the computational complexity
of ACO increases rapidly with the increase of TSP, especially
when the vertices are more than 200. So the DPC-ACO-
KOpt firstly use density peaks clustering(DPC) to cluster
the vertices to reduce the size of the problem to a certain
extent, which improve the performance of ACO in solving
large-scale TSP problem.

DPC [34] is an unsupervised learning algorithm. It centers
on some vertices with extremely high density in TSP, and
non-central vertices are clustered to the center point with the
nearest neighbor with high density. The algorithm requires
no iteration and only linear time to divide all vertices into
two layers. The lower layer is composed of all clusters after
clustering, each cluster is a new small-scale TSP. The upper
layer is a collection of the central points of all the clusters,
which, like the lower layer, can also be regarded as a small
TSP. Since the problem size of each level is reduced by the
DPC, both levels can use the ACO to accurately and quickly
find the target route of the problem. After that, local TSP
routes in each lower cluster will be merged according to the
route of the upper central vertices, so as to construct the initial
global route. The final global is obtained after optimizing the
initial route by k-opt algorithm.

It shows in Fig. 3, globally, each cluster in the upper layer is
regarded as a vertex of a small-scale TSP, and a global route
can be obtained after the calculation of ACO. In this route,
each edge between the clusters will serve as a reference to
connect the vertices inside the two clusters. For each cluster
in the lower layer, a local Hamilton route is obtained by ACO
too. Each cluster need disconnect a vertex in local Hamilton
route to connect another cluster which is decided by the route

FIGURE 3. An example of the procedure of DPC-ACO-Kopt.

in upper layer. So the vertex should be the closest one to the
nearby cluster. Then all the vertices will connect following
the upper route to construct the initial global route.

This algorithm decomposes the problem into subproblems,
which improves the solving speed. However, since the basic
method to solve the TSP problem is ACO, the accuracy
and running time of the algorithm will be affected by the
classification results.When the number of nodes in the cluster
increases, the running time of solving the local loop of the
cluster with ACO will become longer and the accuracy of
the solution will decrease. These effects will also apply to
the global TSP. In addition, on the basis of the initial global
route, the algorithm is finally optimized with k-opt algorithm,
because the new path generated when local solutions are
merged into the initial global route is not necessarily the
optimal solution.

D. MEMBRANE COMPUTING
Membrane computing as biological computing model was
proposed by professor Pǎun in 2000 [27]. The biological com-
puting is abstracted from the activity rules of different levels
of organisms in nature, and membrane computing fills the
gap in the biological computing at the cell level. Prior to this,
the biological computing included ant colony algorithm and

199084 VOLUME 8, 2020



P. Guo et al.: MEATSP

swarm algorithm for population-level, and neural network
and immune algorithm for cellular tissue level, and genetic
algorithm for biomolecular level.

Membrane computing, also known as the P system, is a cel-
lular computing model that performs calculations by defining
the class and the structure of the membrane, and the rules for
how its materials are reflected. P system includes cell-like P
system, tissue-like P system and neural-like P system. The
general definition of a cell-like P system is shown in (4).

5 = (O, µ, ω,R, io) (4)

where O as a set represents all the substances used in the
entire P system, and the substances are encoded to cover
the input and output of the problem, also include the inter-
mediate results. The µ denotes the structure of a P system,
as shown in Fig. 4. The structure includes the membranes,
the regions, and the environment. Set ω is a multiplicity
of the substances in each region. The substances will react
according to the reaction rules in set R, including substance
change, ablation, membrane entry membrane exit. Likewise,
set R includes splitting, merging, and dissolution for each
membrane. After a certain time of reaction until the reaction
is stopped, the multiple sets in the region of the output mem-
brane io will be the bearing result represent the calculated
results.

FIGURE 4. The structure of a membrane computing with an example.

The compute capability of membrane computing is proved
to be equivalent to Turing machine. Because the execution
of the rules in membrane computing is random and parallel,
which enables it to solve complex problems such as NP-hard
problems [35], a P system model that can solve ALL-SAT
problems in polynomial time is designed, also a P system that
can solve TSP in polynomial time.

However, due to the limitations of current biotechnology,
the research of membrane computing is still in the theoretical
stage. However, in the research of membrane computing,
we have established the membrane evolution algorithm based
on the characteristics of membrane combined computing sys-
tem and the application of heuristic search algorithm. In next
section, we proposed the membrane evolutionary algorithm
framework(MEAF).

III. MEMBRANE EVOLUTIONARY ALGORITHM
FRAMEWORK
This section briefly introduces the membrane algorithm
(MA), and then gives a framework of membrane evolution
algorithm (MEAF).

A. MEMBRANE ALGORITHM
The membrane algorithm was first proposed by Nishida
in 2006 [27]. It evolves feasible solutions of optimiza-
tion problems by placing different optimization algo-
rithms (called sub-algorithms) in different membranes
(regions).Sub-algorithms in different membranes are exe-
cuted in parallel, and the best and worst solutions from each
evolution are transmitted to the adjacent inner and outer
membranes respectively. The next evolutionary population
comes from the results selected from the adjacent inner and
outer regions and from other possible solutions left in the
current membrane. At the end of the algorithm, the best
solution of the optimization problem is saved in the innermost
membrane. The membrane structure adopted by Nishida’s
membrane algorithm is shown in Fig. 5.

FIGURE 5. The structure of a membrane algorithm.

Reference [36] reviewed the membrane-inspired evolu-
tionary algorithms (MIEAs). This article classifies MIEAs
from membrane structure, evolution rules and meta-heuristic
algorithm used in P system. According to the membrane
structure can be divided into hierarchical structure and net-
work structure. Further, the hierarchical MIEAS is divided
into nested membrane structure (NMS), one-level membrane
structure (OLMS), hybrid membrane structure (HMS) and
dynamic membrane structure (DMS). And network structure
MIEAS are classified as statically network structures (SNS)
and dynamically network structures (DNS).

Literature [37] discussed in detail the membrane algo-
rithms formed by different meta-heuristic algorithms in
MIEAs, including Genetic Algorithm Based on P System
(GAPS), quantum-inspired EvolutionaryAlgorithmBased on
P Systems (QEPS), Ant Colony Optimization Based on P
Systems (ACOPS), Differential Evolution Based on P Sys-
tems (DEPS).

In general, themembrane algorithm has the following basic
characteristics:

1) There is a certain communication mechanism between
the membranes.

2) Each membrane contains a sub-algorithm (the
sub-algorithms of different membranes may be dif-
ferent), such as GA, ACO, etc. The running of these
sub-algorithms makes the population evolve.

VOLUME 8, 2020 199085



P. Guo et al.: MEATSP

3) Exchange of feasible solutions between membranes
promotes the evolution of feasible solutions within
membranes.

B. MEMBRANE EVOLUTION ALGORITHM FRAMEWORK
The membrane structure of MEAF generated during initial-
ization is shown in Fig. 6. The membrane labeled 0 is the
skin, it includes m + 1 offspring membranes, which m is the
size of population. The membrane labeled i (1 ≤ i ≤ m) is
the ith individual, witch includes a candidate solution. The
membrane labeled best is used to store the historical optimal
solution. As shown in algorithm 1, membrane evolution is
completed by four operators (membrane fusion, membrane
division, membrane cytolysis and membrane selection), and
membrane evolution is the evolution of feasible solutions
within the membrane. Population repair to ensure population
diversity and individual population stability. The condition
for the end of MEAF can be that evolution reaches the
set algebra or that the obtained optimized solution does not
change.

FIGURE 6. The membrane structure of MEAF.

The membrane operated by the four membrane evolution
operators is determined by the fitness of itself or is randomly
selected. As an algorithm framework, MEAF fitness calcula-
tion function should be determined according to the problem
solved. For example, for TSP, the fitness function can be the
inverse of the route’s length.

C. COMPARISON OF MEA WITH GA AND MA
MEA and GA are both abstract algorithms based on the laws
of biological activities. They also solve the optimal solution
by iterating individuals in a population according to the prin-
ciple of ‘‘survival of the fittest’’. In addition, both algorithms
control the evolution direction of the population by fitness
function, making the population evolve towards the optimal
solution in each iteration. Similarly, there are some similari-
ties between MEA and MA. Both of them are extensions of
the membrane algorithm in practical applications, and both
of them are abstract algorithms based on the activity rules of
biological cell membranes.

Different from GA, which abstracts three operators for
population iteration according to the activity of biological
DNA: selection, crossover andmutation.MEA is based on the
activity of biological cell membrane abstract four operators:
division, fusion, cytolysis and selection to carry out the iter-
ation of population. In addition, MEA performs population
repair in each iteration to ensure population size and diversity.

Algorithm 1 MEAF;//Membrane Evolution
Algorithm Framework
Input: The description of question, conditions for the

solutions, end connditions
Output: Results

1 (1) Initialization generate initial membrane structure
and construct initial population ;

2 repeat
3 (2) Evolve population:
4 1)Division: divide the selected membrane into

two membranes; // divide the
membrane according to its
fitness or randomly selected.
Objects can be divided into two
membranes according to the
correlation of objects in the
membrane or randomly selected
objects

5 2) Fusion: merge the two selected membranes
and reconstruct the multiple sets within the
membrane into a new feasible solution;
// select the membrane to merge
according to the correlation
between the membranes, or select
the membrane to merge randomly

6 3) Cytolysis: dissolve the selected membrane
and the objects in the membrane;
// dissolve the membrane
according to its fitness or at
random

7 4) Selection: select the membrane with high
fitness for replication and enter the next
generation, and eliminate the membrane with
low fitness; // At the same time,
update the best in-membrane
object with the most appropriate
in-membrane object

8 (3) Repair population:
9 1) If the multiple sets in multiple branes are the

same, only one copy is kept and other copies are
deleted;

10 2) Several membranes and intramembrane
multiple sets are generated randomly to keep the
population stable;

11 until The ending condition of evolution is satisfied ;
12 (4) return results;

Different from the MA, the MEA takes the candidate solu-
tion as each membrane and then iterates the membrane in the
population with four operators to search for the optimal solu-
tion. however, themembrane of theMA is used to encapsulate
different algorithms and complete the process of evolution

199086 VOLUME 8, 2020



P. Guo et al.: MEATSP

and solution through the communicationmechanism between
the membranes.

MEA has some similarities with GA and MA, but there
are also some differences. These differences are also the
characteristics of MEA as a new algorithm, which simulates
the activity of cell membrane to iterate the population and
achieve the goal of solution.

IV. MEATSP DESIGN
This sectionmainly discussesMEATSP, a newTSP algorithm
proposed, which will solve the TSP based on MEAF.

A. DEFINITION
The membrane structure of MEATSP is shown in Fig. 7.
Object ei in the membrane i represents an edge of the graph
G = (V ,E) and object wi is its fitness. Therefor each mem-
brane contains n edges for graph G with a total of n vertices.
After initialization, the contained edges in each membrane
can be connected first to form a tour containing each vertex,
that is, a solution corresponding to the TSP. The sum of the
weights of all the edges will also be kept in the membrane as
the fitness of each membrane.

FIGURE 7. The membrane structure of MEATSP.

The fitness of each membrane indicates how healthy the
membrane is in the membrane population, and it’s the inverse
of the total weight in the membrane. Fitness will be used
as an indicator of ‘‘survival of the fittest’’ in the membrane
evolutionary process. Divided offspring number DON deter-
mines the quantity of offspring of each membrane, one of
each offspring will contain a path of father membrane. When
DON = 2, there are 2 possible to reconnect for the off-
spring. And there are 8 possible to reconnect the offspring
for DON = 3. The larger DON , the more possibilities for
membrane evolution will be provided. Meanwhile, the run-
ning time required for reconnection will also increase.

B. PROPOSED MEATSP
This subsection describes the MEATSP used to solve the
TSP problem by iteratively executing four operators. After
initialization, each membrane follows the population to be
iterated, and a new population will be obtained by division,
fusion, selection and cytolysis operators respectively. Then,
the membrane with the greatest fitness in the population
will be used to replace the current optimal membrane of the
population before iteration.

Algorithm 2 describes MEATSP in detail. During the ini-
tialization, it creates the initial membrane structure and a

Algorithm 2MEATSP
Input: graph G = (V ,E), population size PS,

the maximum iterationsMIT ,divided offspring
number DON , selection and cytolysis ratio SCR

Output: a tour of G
1 (1) Initialization
2 MP = InitialPopulation (PS);
3 select a membrane with maximal fitness and copy its

objects into Mbest ;

4 repeat
5 (2) Evolve membrane population:
6 MP = Division(MP, DON );
7 MP = Fusion(MP, DON );
8 MP = CytolysisAndSelection(MP, SCR);

9 (3) Repair membrane population:
10 MP = Repair(MP);

11 until the iterations >= MIT ;
12 (4) returnMbest ;

multiplet set within each membrane as initial population.
After initialization, fitness function within each membrane is
automatically calculated and updated, and themembranewith
the maximumfitness is copied toMbest as the current optimal.
When the iterations of the population reaches a maximum
iterationsMIT , it will output theMbest as the optimal solution.

Each iteration can be divided into two stages as the mem-
brane evolution and the population repair. At each stage,
different operators will be process to operate the membrane
population to obtain a new one, and then the multiple set
in the membrane with the maximal fitness will be copied to
the Mbest .

In membrane evolution, four different operators will
be used to operate each membrane in the population.
Detailed introduction of operators will be described in the
next subsection. In this stage, new individuals are gener-
ated through division (see subsection IV-C2) and fusion(see
subsection IV-C3), and random values are added in this
process to avoid the results falling into local optimization.
However, after selection and cytolysis(see subsection IV-C4),
some membranes with the minimal fitness will be dissolved
base on SCR, which cause the population size changed and is
not conducive to the stability of the population iteration.

The above problems were solved in the population
repair(see subsection IV-C5), which performed two stages to
ensure the size and the diversity of the population. Firstly, for
these identical membranes in the population, it will remove
these identical membranes and retain only one of them. Such
operations avoid ‘‘inbreeding’’ in the iteration, which can
easily lead to local optimal results. Then it will reconstruct
the new membrane until the size is consistent with the ini-
tial population. It both increases the stability of membrane
quantity and ensures the diversity of membrane and in the
population.

VOLUME 8, 2020 199087



P. Guo et al.: MEATSP

C. OPERATORS OF MEATSP
Each operator of the proposedMEATSP is described in detail
in this subsection and includes initialization and population
repair.

1) INITIALIZATION
The initialization focuses on the construction of a series of
initial TSP solutions. The initial population should be as close
as possible to the optimal solution and can only be generated
in a short time. At the same time, the initialized membrane
population should contain as many different membranes as
possible. The former is to improve the quality of the solution
as much as possible, while the latter ensures the diversity of
the membrane population, so as to avoid the result falling into
the local optimal solution.

Algorithm 3 InitialPopulation
Input: graph G = (V ,E), population size PS
Output: membrane populationMP

1 for i = 1 to PS do
2 Mi = ConstructMembrane(G);
3 add Mi to MP ;

As shown in algorithm 3, in the initialization phase, new
membranes are generated and added to the membrane pop-
ulation MP, until the population reaches PS, and then the
initialization is completed. At this stage, since the membrane
are independent of each other, they can be constructed in
parallel to shorten the running time.

Algorithm 4 with a greedy strategy to select the edge in
the graph G = (E,V ) to enter the membrane Mi to generate
a tour. The en shows the quantity of edges existing inMi. For
the newly generated empty membrane Mi en = 0, and then
randomly select an edge from E into it as a initial path. Then,
the next edge to be added to the membrane Mi is selected
according to the vertex that only appears once in it, also as
the endpoint of the path. Besides, the edge is required not to
include both endpoints of the path to avoid the appearance of
the circle. Greedy strategy needs to select the edge with the
least weight, and also randomly selects an edge to move into

Algorithm 4 ConstructMembrane
Input: graph G = (V ,E), the quantity of V (n)
Output: a membraneM

1 M = empty membrane;
2 en = the quantity of edges inM ;
3 randomly select an edge from E into M ;
4 while en < n do
5 select 2 edges from E with minimal weight and its

vertexes in M is = 1 ;
6 add those edges into M ;

7 returnM ;

Mi when the weight of each edge is the same. Algorithm 4
increases the difference betweenmembranes and the diversity
of membrane populations while ensuring the rapid generation
of a membrane.

2) DIVISION
The division operator is the first operator in the membrane
evolution phase, each membrane will divide into 2 offspring
membranes base on DON = 2. Then the offspring M ′i and
M ′′i inherit a path of the parent Mi respectively, whtch M ′i ∩
M ′′i = �.

Algorithm 5 describes the realization process of the divi-
sion operator in detail. Taking Mi as an example, if it want
to be preserved in the next iteration, then according rule of
fitness function and the dissolution, two edgeswith the largest
weight should be removed in Mi. Then store these 2 paths in
different offspring membranes. Moreover, adding a random
strategy to remove edges can increased the diversity of the
population.

Algorithm 5 Division
Input: membrane population (MP)
Output: membrane population (MP)

1 for ∀Mi ∈ MP do
2 randomly remove 2 edges with probability p or

remove 2 edges with maximal weight inMi;
3 M ′i = empty membrane;
4 move a path fromMi intoM ′i ;
5 add M ′i intoMP;

6 returnMP;

3) FUSION
The fusion operator is performed on the basis of the comple-
tion of division. It let each offspring membrane reconnect to
a new membrane and obtain the it’s fitness value.

In algorithm 6, for membrane M ′i and membrane M ′′i ,
the vertexes that only appear once in them represented as the
endpoint of path. The new membrane needs to ensure that a

Algorithm 6 Fusion
Input: Graph G = (V ,E), membrane populationMP
Output: membrane populationMP

1 for Mi < MP do
2 E ′ = {v1 to v2 | v1 ∈ Mi and v1<2, v2 ∈ M ′i and

v2<2} ; // find all the edge witch
can reconect the membrane as a loop

3 select 2 edges form E ′ with minimal weight and
each vertex shows only once ;

4 add edges into Mi ;
5 Mi = Mi ∪M ′i ;

6 returnMP;

199088 VOLUME 8, 2020



P. Guo et al.: MEATSP

completed tour in, so algorithm needs to find the suitable edge
to reconnect them. The edges within set E ′ need to contain
the endpoints within both of offspring. Select 2 edges from
E ‘that can contain all the endpoints and to reconnect a new
tour.

In this case, membrane Mi divides into 2 offspring mem-
branes, each offspring containing a path. In the process of
fusion, there are 2 possible combinations of edges (including
the original path) that can reconnect the paths. The more
offspring membrane, the more combinations of alternative
edges will be available in fusion, and the greater possibility
that fitness value of the new membrane will increase.

4) SELECTION AND CYTOLYSIS
In the selection and cytolysis stage, the membrane selection
operator will screen outN membranes with the highest fitness
value for retention. As shown in algorithm 7, after each
membrane in the completes the fusion, themembranewith the
minimum fitness will be dissolved from the membrane pop-
ulation one by one until the number of membranes is equal
to N . Such selection conditions help the whole population
evolve toward the optimal solution.

Algorithm 7 CytolysisAndSelection
Input: membrane populationMP, selection and

cytolysis ratio SCR
Output: membrane populationMP

1 sort the MP base on fitness of each membrane ;
2 while the size of MP > SCR do
3 remove a membrane with the minimal fitness ;

4 returnMP;

5) POPULATION REPAIR
Last stage will reduce the number of membranes in the mem-
brane population, making it smaller than the initial set mem-
brane population size PS, and there may be multiple identical
membranes in the membrane population. Such results make
the quantity of membrane population unable to meet the
requirements in the process of next iteration, and the simpli-
fication of membrane in the population makes the solution
easy to fall into the local optimal. To avoid it, the membrane
population will be repaired before the next iteration.

As shown in algorithm 8, firstly the same membranes are
dissolved and kept with only one of them to left more room for
new ones. Then, a newmembrane is generated by algorithm 4
to increase the diversity of the membrane population.

D. EXAMPLE OF MEATSP
To illustrate the implementation of these operators in
MEATSP, an example of the TSP is used to demonstrate how
MEATSP performs a population iteration. In this example,
a fully connected graph is shown in Fig. 8, and the distance
matrix for it is equation (5). we assume the membrane pop-

Algorithm 8 Repair
Input: graph G = (V ,E), membrane population

MP,population size PS
Output: repaired membrane populationMP

1 forMi ∈ MP do
2 select membrane Mo which is equal to Mi ;
3 removeMo ;

4 while the size of MP < PS do
5 M = ConstructMembrane(G);
6 addM to MP ;

7 returnMP;

FIGURE 8. A full connection graph with 6 vertices.

ulation size (PS) is set as 6, and divided offspring number
DON = 2, and selection and cytolysis ratio SCR = 4.
Fig. 9(a) shows the membrane population of this exam-

ple after initialization algorithm is executed with the above
setting. Each membrane contains multiple sets of objects
representing a solution to the TSP problem and a fitness
function. M5 with the maximal fitness is copied to Mbest .
Furthermore, because of there are fewer vertices in Fig. 8,
the population initialized by the initialization algorithm could
quickly approach the optimal. In order to demonstrate the
practical effect of other operator, for this example, no strict
greedy strategy is implemented in initialization.

dist(vi, vj) =



v1 v2 v3 v4 v5 v6
v1 0 1 4 3 1 2
v2 1 0 4 2 1 3
v3 4 4 0 5 2 1
v4 3 2 5 0 5 4
v5 1 1 2 5 0 4
v6 2 3 1 4 4 0


(5)

1) DIVISION
Division operator is the firstly executed during iteration.
According DON = 2, each membrane will divide into
2 offspring. There are 2 strategies to disconnect 2 edges and
obtain 2 paths in each offspring. As shown in Fig. 9(b), M1
andM5 randomly disconnect 2 edges, others is to disconnect

VOLUME 8, 2020 199089



P. Guo et al.: MEATSP

FIGURE 9. An iteration on example of MEATSP.

2 edges with the maximal weight. And if there are more
than 2 edges with maximal weight, it will randomly discon-
nect 2 edges of these maximal edges. After division, except
for Mbest , each membrane divide into two offspring.

2) FUSION
Division operator divides each membrane into two offspring
according to the DON , and then the fusion operator recon-
nects these offspring according to the fitness function to
create a new membrane population. For this case where
2 offspring have two possibilities of reconnection, the fusion
operator compares the fitness of these 2 possibilities to deter-
mine the way of offspring fusion. Fig. 9(c) shows that after
fusion, theM1 with increased fitness and theM3 with original
tour. If there is a membrane with a fitness greater thanMbest ,
as shown in Fig. 9(c), the tour and fitness function in Mbest
are replaced byM2.

3) SELECTION AND CYTOLOGY
Selection and cytology operators dissolve the membranes of
membrane population by the principle of ‘‘survival of the
fittest’’. It allows the population to leave more room for other

membranes. In the case that SCR = 4, as shown in Fig. 9(d),
It dissolveM6 andM1 with the minimum fitness one by one,
until the population size is equal to SCR.

4) POPULATION REPAIR
On the basis of the previous operator, firstly, the population
repair further dissolves more membranes to leave enough
space for the others. It finds some membranes with the same
fitness and tour in the population, dissolve these membranes
and keep only one copy of them. In Fig. 9(e), M4 and
M5 include the same tour and fitness. It dissolves M5 and
retainsM4 to avoid a large quantity of redundant membranes,
which can easily let the MEATSP falls into the local optimal
solution.

The next stage of population repair is to repair the popu-
lation size to its original. Fig. 9(f) shows that, after the first
stage of population repair only 3 membranes were left in this
case. Then, the population size is restored to the previous by
adding membranes to the population using algorithm 4. After
population repair, the population size and the diversity of the
membranes are guaranteed, and preparations are made for the
next iteration.

199090 VOLUME 8, 2020



P. Guo et al.: MEATSP

V. EXPERIMENT AND RESULTS ANALYSES
This section discusses the experimental results of MEATSP,
testing different scale instances of TSPLIB and comparing
them with other algorithms proposed in recent years to illus-
trate the performance of the MEATSP.

A. EXPERIMENTAL ENVIRONMENT AND PARAMETERS
The MEATSP algorithm proposed in this article is compiled
and implemented by C++ programming language. All exper-
iments were evaluated on an Windows based on 2 cores of an
Intel i7-4800MQ 2.5 GHz CPU and 32 G Byte RAM.

We selected some instances in the data set TSPLIB for the
experiment, and the data set is divided into small-scale TSP
problem and large-scale TSP problem according to the quan-
tity of vertices in the instance. TSPLIB contains multiple TSP
data sets for testing algorithms and experimental analysis,
most of which are derived from practical applications, such
as berlin52 from 52 cities in Berlin, Germany.

For each instance, The MEATSP run 10 times to consider
its performance and the maximum iterations MIT is 200 and
the population size PS is 20. For other parameters, the divi-
sion offspring number DON is set at 2, and the selection and
cytolysis ratio SCR is set at 0.75, the better robustness can be
achieved

For the setting of PS, 5 instances with similar results but
different vertices are selected for the experiment. PS is set
from 10 to 50. After runningMEATSP, the current iteration of
output(OI ) result can be obtained. EMQ means the quantity
of effective membranes, which is the product of OI and PS.
The smaller EMQ means the least membranes are used by
MEATSP under the PS, and the higher the efficiency is.
According to the results in Table 1, determine the PS as 20.

TABLE 1. The quantity of effective membranes on different instances.

The results of MEATSP are shown in Table 2 and Table 3.
After counting the results of 10 runs of each instance, we take
the average and compare it with other algorithms from dif-
ferent dimensions. Column 1 is the name of MEATSP and
the comparison algorithm, column 2 avg(Res.)is the average
residual of the algorithm over all instances, and column 3 is
the comparison of different dimensions of each algorithm.
The 1st line is the name of each instance with OTL witch
means the preset optimal tour length. The 2nd line, Best
represents the best result of these algorithms running on a
case. The 3rd line,Avg. is the average result of these algorithm
running on each instance. The 4th line, SD. represents the
square deviation of these algorithms running on an instance.

And the 5th line, Res., represents the average residual of the
algorithm. The definition of it in the calculation formula is
shown as (6). In each table, the best results are shown with
underline and ‘−’ indicates that the algorithm has no test data
in the current sample experiment.

Res. =
Avg.− OTL

OTL
(6)

B. EXPERIMENTAL RESULTS
In this subsection, MEATSP’s experimental results are
divided into two parts according to the size of TSP and
compared with different algorithms.

1) MEATSP SOLVING THE SMALL-SCALE TSP
Table 2 shows MEATSP’s results compared to other algo-
rithms running on small-scale TSP. To verify MEATSP’s
excellent and stable running results on instances with fewer
vertices, in this section, the instances of TSPLIBwith vertices
between 50 and 200 are selected for experiment. The instance
names sorted by vertices are: eil51, berlin52, st70, eil76,
rat99, kroA100, eil101, lin105, ch150, and kroA200. They
cover different types of instances in small-scale TSP. And
there are 12 algorithms on these instances for comparison,
respectively as follows: DPC-ACO-KOpt(2018) [20], PACO-
3OPT (2016) [12], PSO-ACO-3OPT (2015) [13], ACE(2015)
[17], ASA-GS(2011) [11], SA-ACO-PSO (2011) [38], WFA-
3OPT (2013) [39], ACO-Taguchi(2013) [40], IFOA (2017)
[16], DSOS (2017) [14]. It is important to note that these
algorithms are not implemented here, but directly refer to the
results of these algorithms on these instances.

As can be seen from Table 2, MEATSP has absolutely
excellent experimental results in small-scale TSP compared
with the other 12 algorithms, and its residual is almost 0.
This result shows that MEATSP has an advantage over Avg.,
Res. for all instances. As can be seen from the experimental
results of eil101, MEATSP’s Avg. is slightly larger than the
OTL of eil101. However, such a result is also better than the
suboptimal result of C-PSO-ACO-KOPT 0.17%.

2) MEATSP SOLVING THE LARGE-SCALE TSP
There are 10 examples selected from TSPLIB for MEATSP’s
experiment on large-scale problems. The results are shown
in Table 3. The number of points in these instances is
between 400 and 1000, sorted by number of vertices:
rd400, fl417, pr439, pcb442, d493, rat575, p654, d657,
u724, rat783.They contain different kinds of large-scale
TSP problems. Meanwhile, the algorithm compared with
MEATSP’s experimental results is as follows: DPC-ACO-
KOpt(2018) [20], PACO-3Opt(2016) [12], PSO-ACO-
3Opt(2015) [13], HMMA(2015) [19], PMSOM(2015) [41],
HCACO (2014) [42], HGA (2014) [43], ASA-GS (2011)
[11], and DSOS(2017) [14].It is worth noting that these
algorithms are not implemented in this article, and their
experimental results are quoted from the original paper.

In Table 3, each experimental result of MEATSP has
an absolute advantage over other algorithms in terms of

VOLUME 8, 2020 199091



P. Guo et al.: MEATSP

TABLE 2. Experimental results of MEATSP and other algorithms on small-scale TSP.

best , Avg., and Res.. And the Avg(Res.) obtained by the
MEATSP for large-scale TSP problems is the smallest.
We sorted all the algorithm’s Avg(Res.) discovered that the
Avg(Res.) of MEATSP is less than 1/2 of the result of 1.45%
of the next-closest algorithm, DPC-ACO-Kopt. It is much
smaller than ASA-GS result 1.65% and PACO-3Opt result
2.4%.Therefore, it can be shown that MEATSP has a smaller
residual in solving large-scale TSP problems.

C. RESULTS STATISTICS AND RUNTIME ANALYSIS
Based on the experimental results obtained in the previ-
ous subsection, we further analyze the differences between

MEATSP and other algorithms from different statistical anal-
ysis methods.

1) STATISTICAL ANALYSIS
MEATSP’s improvement over other algorithms can be
described more comprehensively through statistics. Fig. 10
shows MEATSP’s comparison with other algorithms on
small-scale problems more intuitively. The Avg(res.) is the
result of the Res. region average of the algorithm over
all instances. In the figure, MEATSP has a very small
Avg(Res.), which is 0.07% superior to DPC-ACO-KOpt
and 0.17% superior to C-PSO-ACO-KOPT. From another

199092 VOLUME 8, 2020



P. Guo et al.: MEATSP

TABLE 3. Experimental results of MEATSP and other algorithms on large-scale TSP.

FIGURE 10. The avg(Res.) between MEATSP and other algorithms on
small-scale TSP.

dimension, MEATSP’s square deviation on each instance is
also almost 0, which is better than other algorithms. It also
shows MEATSP’s stability in solving small-scale TSP.

The results of MEATSP compared with other algorithms
shown in Fig. 11. For the DPC-ACO-Kopt algorithm which
has the lowest average Res.. in Table 3 except MEATSP.
It shows the Res. of each instance, and then sorts the results
based on the error value of the MEATSP. It can be seen that,
the results of all instances are generally smaller than DCP-
ACO-Kopt’s. In particular, there are two instances of rat types

FIGURE 11. Average residual of MEATSP and other algorithms on
large-scale TSP.

(rat575 and rat738) are much higher for DPC-ACO-Kopt.
In our study, the rat sample has a large number of dense
vertices, while the suboptimal algorithm has clustering oper-
ations, which makes it difficult to achieve excellent results
in this type of data. Therefore, focus on another algorithm,
ASA-GS, that performs well in each instance.

Also in Fig. 11, It can be seen that the MEATSP get
lower Res. on each instance than the ASA-GS algorithm.

VOLUME 8, 2020 199093



P. Guo et al.: MEATSP

Among them, MEATSP get better result than ASA-GS on rat
type data, which make other algorithms get higher results.

In order to further describeMEATSP’s improvement effect
on suboptimal algorithm in different scale TSP, we com-
pare MEATSP with the suboptimal algorithm in Table 2 and
Table 3 could be efficient. However, it can be seen from the
table that different algorithms have their own advantages for
different instances. In order to find the suboptimal algorithm
in these instances, the algorithm is scored according to the
result on each instance, the best gets 1 score, the second best
gets 2 score, and so on. When the algorithm has no result
on the corresponding instance, it gets the same score as the
previous algorithm. The score of each algorithm is shown
in Table 4 and Table 5. The lower the score of the algorithm
is, the better algorithm is.

TABLE 4. Score results of MEATSP and other algorithms on small-scale
TSP(best 6 only).

TABLE 5. Score results of MEATSP and other algorithms on large-scale
TSP(best 6 only).

In Table 4 and Table 5, exceptMEATSP, the algorithmwith
the best score is DPC-ACO-KOpt. IE represent MEATSP’s
improved efficiency of each instace on suboptimal algo-
rithm.The calculation formula is shown in (7). Table 6 shows
MEATSP’s enhancement efficiency for DPC-ACO-KOpt for
on small TSP instances, and Table 7 for large TSP instances.

IE =
Avgsub−opt − AvgMEATSP

Avgsub−opt
(7)

MEATSP comparison and algorithm DPC-ACO-KOpt
have improved or equal results in each instance. For
small-scale TSP instances, the maximum improvement was
0.13%, while for large-scale TSP, the maximum efficiency
improvement was 4.44% of rat575 and 3.36% of rat783.
According to Table 5, with the increase of vertices in the
instance, MEATSP improves the result more efficiently than
the suboptimal algorithm, And it proved that MEATSP can
achieve better results on different types of TSP.

TABLE 6. MEATSP compared with suboptimal algorithm on small-scale
TSP with improved efficiency.

TABLE 7. MEATSP compared with suboptimal algorithm on large-scale
TSP with improved efficiency.

2) RUNTIME ANALYSIS
In order to ensure MEATSP’s fairness compared with other
algorithms, the runtime of the algorithm is also an important
standard to measure the algorithm. Based on the comparison
results of other algorithms in Table 2, the runtime of the algo-
rithm with excellent results is selected, as shown in Table 8.
The runtime of MEATSP is the time it takes to directly output
the result when Mbest is already the optimal value of current
instance.

TABLE 8. Runtime comparison on different instances(unit:second).

As can be seen from Table 8, although MEATSP does
not always outperform other algorithms such as kroA200,
ch150, and eil101 in the elapsed time of each instance. But the
average time it takes to run on all instances is the smallest, it’s
68% of the second-fastest algorithm. For some instances such
as kroA100 and lin105, MEATSP is able to find the optimal
solution in a very short time, thanks to its ability to search
for results in very few iterations. Count in this table indicates
the fastest output per algorithm, while MEATSP has seven
instances that are the fastest of all.

T (n) = O(N × (m× (n2 + n× d + dd3e + r × n2))) (8)

Let n be the size of TSP. Set population size of MEATSP
to m, and d is offspring of each membranes during division.
The r means the ratio of cytolysis in the selection and set
the iterations as N . According to the four operators, com-
putational complexity of MEATSP is calculated in formula
is shown in (8). Except for the initialization phase, other

199094 VOLUME 8, 2020



P. Guo et al.: MEATSP

operators require linear time. N and m are constant, and d in
general is small. Therefor the time complexity of MEATSP is
O(n2).

In summary, MEATSP has the lowest residual on all of
these instances. In addition, by comparing the results with
all other algorithm, we found that MEATSP has better per-
formance on different types of TSP, and some algorithms can
achieve excellent results in some instance types but not all
types. MEATSP is stable because the increase of residual
on different instances is only related to the vertices and is
not influenced by the type, it can be seen that the Res. of
MEATSP for large-scale TSP problems will grow steadily
and slowly as the problem grows. Therefore, the MEATSP
has good stability in solving large-scale TSP problems, and
its results are also excellent.

VI. CONCLUSION
The main work are the following two parts. Firstly, we pro-
posed MEAF, which includes four operators derived from
living cells: division, fusion, cytolysis and selection, and
how these operators solve practical problems. MEAF is com-
pletely different from genetic algorithms, which are inspired
by the activity of DNA, and membrane algorithms, which
focus on how to combine different heuristic algorithms.
MEAF relies on its own evolutionary operators to evolve the
population and the objects in each membrane, so as to obtain
the optimal solution.

Then we designed the MEATSP, which is an application
of MEAF to the TSP problem to further illustrate the effec-
tiveness and stability of MEAF in solving problems. It can be
seen from the experimental results that MEATSP is superior
to other algorithms in both small-scale and large-scale TSP.
Based on the average residual, MEATSP is able to achieve
the smallest residual on each instance. In terms of variance,
MEATSP has the smallest square deviation on each instance.
It is also an excellent performer on the runtime analysis.
Therefore, the MEATSP is excellent and stable.

In addition, MEATSP also has its limitations. A common
problem with heuristic algorithms is that when the algo-
rithm is terminated, it is difficult to prove that its output is
the optimal solution to current problem. A similar situation
exists MEATSP. And when the current optimal value of the
population approaches the optimal value of the problem,
the regeneration rate of the whole population will be lower.
How to make MEATSP more efficient in iteration, including
improved population initialization and population repair is
also worth studying in the future.

On the other hand, the algorithm MEATSP proposed in
this article is only experimented on the test data set TSPLIB.
It is also very meaningful to combineMEATSPwith practical
application problems.

REFERENCES
[1] E. L. Lawler, J. K. Lenstra, A. H. G. Rinnooy Kan, and D. B. Shmoys,

‘‘Erratum: The traveling salesman problem:A guided tour of combinatorial
optimization,’’ J. Oper. Res. Soc., vol. 37, no. 6, p. 655, Jun. 1986.

[2] H. Hernández-Pérez and J.-J. Salazar-González, ‘‘A branch-and-cut algo-
rithm for a traveling salesman problemwith pickup and delivery,’’Discrete
Appl. Math., vol. 145, no. 1, pp. 126–139, Dec. 2004.

[3] Y. Jiang, T. Weise, J. Lassig, R. Chiong, and R. Athauda, ‘‘Comparing a
hybrid branch and bound algorithm with evolutionary computation meth-
ods, local search and their hybrids on the TSP,’’ in Proc. IEEE Symp.
Comput. Intell. Prod. Logistics Syst. (CIPLS), Dec. 2014, pp. 148–155.

[4] C. Barnhart, E. L. Johnson, G. L. Nemhauser, M. W. P. Savelsbergh, and
P. H. Vance, ‘‘Branch-and-price: Column generation for solving huge
integer programs,’’ Oper. Res., vol. 46, no. 3, pp. 316–329, Jun. 1998.

[5] Ö. Ergun and J. B. Orlin, ‘‘A dynamic programming methodology in
very large scale neighborhood search applied to the traveling salesman
problem,’’ Discrete Optim., vol. 3, no. 1, pp. 78–85, Mar. 2006.

[6] K. Helsgaun, ‘‘An effective implementation of the Lin–Kernighan traveling
salesman heuristic,’’ Eur. J. Oper. Res., vol. 126, pp. 106–130, Oct. 2000.

[7] G. Gutin and A. P. Punnen, The Traveling Salesman Problem and Its
Variations, vol. 12. Boston, MA, USA: Springer, 2007.

[8] L. Muyldermans, P. Beullens, D. Cattrysse, and D. Van Oudheusden,
‘‘Exploring variants of 2-Opt and 3-Opt for the general routing problem,’’
Operations Res., vol. 53, no. 6, pp. 982–995, Dec. 2005.

[9] A. Levin and U. Yovel, ‘‘Nonoblivious 2-Opt heuristics for the traveling
salesman problem,’’ Networks, vol. 62, no. 3, pp. 201–219, Oct. 2013.

[10] C.-B. Cheng and C.-P. Mao, ‘‘A modified ant colony system for solving the
travelling salesman problem with time windows,’’Math. Comput. Model.,
vol. 46, nos. 9–10, pp. 1225–1235, Nov. 2007.

[11] X. Geng, Z. Chen, W. Yang, D. Shi, and K. Zhao, ‘‘Solving the traveling
salesman problem based on an adaptive simulated annealing algorithm
with greedy search,’’ Appl. Soft Comput., vol. 11, no. 4, pp. 3680–3689,
Jun. 2011.

[12] Å. Gälca, M. Mahi, Ö. K. Baykan, and H. Kodaz, ‘‘A parallel cooperative
hybrid method based on ant colony optimization and 3-Opt algorithm
for solving traveling salesman problem,’’ Soft Comput., vol. 22, no. 5,
pp. 1669–1685, Mar. 2018.

[13] M. Mahi, Ö. K. Baykan, and H. Kodaz, ‘‘A new hybrid method based on
particle swarm optimization, ant colony optimization and 3-Opt algorithms
for traveling salesman problem,’’Appl. Soft Comput., vol. 30, pp. 484–490,
May 2015.

[14] J. B. Escario, J. F. Jimenez, and J. M. Giron-Sierra, ‘‘Ant colony extended:
Experiments on the travelling salesman problem,’’ Expert Syst. Appl.,
vol. 42, no. 1, pp. 390–410, Jan. 2015.

[15] I. Khan, M. K. Maiti, and M. Maiti, ‘‘Coordinating particle swarm
optimization, ant colony optimization and K-opt algorithm for traveling
salesman problem,’’ in Mathematics and Computing, vol. 655, D. Giri,
R. N. Mohapatra, H. Begehr, and M. S. Obaidat, Eds. Singapore: Springer,
2017, pp. 103–119.

[16] W.-T. Pan, ‘‘A new fruit fly optimization algorithm: Taking the financial
distress model as an example,’’ Knowl.-Based Syst., vol. 26, pp. 69–74,
Feb. 2012.

[17] L. Huang, G. C. Wang, T. Bai, and Z. Wang, ‘‘An improved fruit fly
optimization algorithm for solving traveling salesman problem,’’ Frontiers
Inf. Technol. Electron. Eng., vol. 18, no. 10, pp. 91–99, 2017.

[18] A. E.-S. Ezugwu and A. O. Adewumi, ‘‘Discrete symbiotic organisms
search algorithm for travelling salesman problem,’’ Expert Syst. Appl.,
vol. 87, pp. 70–78, Nov. 2017.

[19] W. Yong, ‘‘Hybrid Max–Min ant system with four vertices and three lines
inequality for traveling salesman problem,’’ Soft Comput., vol. 19, no. 3,
pp. 585–596, Mar. 2015.

[20] E. Liao and C. Liu, ‘‘A hierarchical algorithm based on density peaks
clustering and ant colony optimization for traveling salesman problem,’’
IEEE Access, vol. 6, pp. 38921–38933, 2018.

[21] M. Alipour, S. N. Razavi, M. R. Feizi Derakhshi, and M. A. Balafar,
‘‘A hybrid algorithm using a genetic algorithm and multiagent reinforce-
ment learning heuristic to solve the traveling salesman problem,’’ Neural
Comput Appl., vol. 30, no. 9, pp. 2935–2951, Nov. 2018.

[22] C. J. C. H. Watkins and P. Dayan, ‘‘Q-learning,’’ Mach. Learn., vol. 8,
nos. 3–4, pp. 279–292, 1992.

[23] M. M. Alipour and S. N. Razavi, ‘‘A new local search heuristic based
on nearest insertion into the convex hull for solving Euclidean TSP,’’ Int.
J. Oper. Res., vol. 34, no. 3, p. 409, 2019.

[24] G. Päun, ‘‘Computing with membranes,’’ J. Comput. Syst. Sci., vol. 61,
no. 1, pp. 108–143, 2000.

[25] H. Peng, J. Wang, M. J. Pérez-Jiménez, and A. Riscos-Nñez, ‘‘Dynamic
threshold neural p systems,’’ Knowl.-Based Syst., vol. 163, pp. 875–884,
Jan. 2019, doi: 10.1016/j.knosys.2018.10.016.

VOLUME 8, 2020 199095

http://dx.doi.org/10.1016/j.knosys.2018.10.016


P. Guo et al.: MEATSP

[26] H. Peng and J. Wang, ‘‘Coupled neural p systems,’’ IEEE Trans.
Neural Netw. Learn. Syst., vol. 30, no. 6, pp. 1672–1682, Jun. 2019,
doi: 10.1109/TNNLS.2018.2872999.

[27] T. Nishida, ‘‘Membrane Algorithms,’’ in Proc. Int. Workshop Membrane
Comput., vol. 3850, 2005, pp. 55–66.

[28] A. Leporati and D. Pagani, ‘‘A membrane algorithm for the min storage
problem,’’ inMembrane Computing (Lecture Notes in Computer Science),
vol. 4361, H. J. Hoogeboom, G. Pǎun, G. Rozenberg, and A. Salomaa, Eds.
Berlin, Germany: Springer, 2006, pp. 443–462.

[29] G.-X. Zhang, C.-X. Liu, and H.-N. Rong, ‘‘Analyzing radar emitter signals
with membrane algorithms,’’ Math. Comput. Model., vol. 52, nos. 11–12,
pp. 1997–2010, Dec. 2010.

[30] J. Cheng, G. Zhang, and X. Zeng, ‘‘A novel membrane algorithm based on
differential evolution for numerical optimization,’’ Int. J. Unconventional
Comput., vol. 7, no. 3, pp. 159–183, 2011.

[31] G. Zhang, ‘‘A novel membrane algorithm based on particle swarm opti-
mization for solving broadcasting problems,’’ J. Universal Comput. Sci.,
vol. 18, no. 13, pp. 1821–1841, 2012.

[32] J. He, J. Xiao, and Z. Shao, ‘‘An adaptive membrane algorithm for solving
combinatorial optimization problems,’’ Acta Math. Sci., vol. 34, no. 5,
pp. 1377–1394, Sep. 2014.

[33] G. Sierksma, ‘‘Hamiltonicity and the 3-Opt procedure for the travel-
ing salesman problem,’’ Appl. Math., vol. 22, no. 3, pp. 351–358, 1993,
doi: 10.4064/am-22-3-351-358.

[34] A. Rodriguez and A. Laio, ‘‘Clustering by fast search and find of density
peaks,’’ Science, vol. 344, no. 6191, pp. 1492–1496, Jun. 2014.

[35] G. Päun, ‘‘Computing with membranes: Attacking NP-complete prob-
lems,’’ in Unconventional Models Computer. London, U.K.: Springer,
2001, pp. 94–115.

[36] G. Zhang, M. Gheorghe, L. Pan, and M. J. Pérez-Jiménez, ‘‘Evolutionary
membrane computing: A comprehensive survey and new results,’’ Inf. Sci.,
vol. 279, pp. 528–551, Sep. 2014.

[37] G. Zhang, M. J. Pãrez-Jimãnez, and M. Gheorghe, Real-Life Applications
With Membrane Computing, vol. 25. Cham, Switzerland: Springer, 2017.

[38] S.-M. Chen and C.-Y. Chien, ‘‘A new method for solving the trav-
eling salesman problem based on the genetic simulated annealing
ant colony system with particle swarm optimization techniques,’’ in
Expert Syst. Appl., vol. 38, no. 12, pp. 14439–14450, Nov. 2011,
doi: 10.1016/j.eswa.2011.04.163.

[39] Z. Ali Othman, N. H. Al-Dhwai, A. Srour, and W. Yi, ‘‘Water flow-like
algorithm with simulated annealing for travelling salesman problems,’’
Int. J. Adv. Sci., Eng. Inf. Technol., vol. 7, no. 2, p. 669, Apr. 2017,
doi: 10.18517/ijaseit.7.2.1837.

[40] M. Peker, B. Åen, and P. Y. Kumru, ‘‘An efficient solving of the traveling
salesman problem: The ant colony system having parameters optimized
by the taguchi method,’’ TURKISH J. Electr. Eng. Comput. Sci., vol. 21,
pp. 2015–2036, 2013.

[41] B. Avåar and D. E. Aliabadi, ‘‘Parallelized neural network system for solv-
ing Euclidean traveling salesman problem,’’ Appl. Soft Comput., vol. 34,
pp. 862–873, Sep. 2015, doi: 10.1016/j.asoc.2015.06.011.

[42] J. Jiang, J. Gao, G. Li, C. Wu, and Z. Pei, ‘‘Hierarchical solving method
for large scale TSP problems,’’ in Advances in Neural Networks, vol. 8866,
Z. Zeng, Y. Li, and I. King, Eds. Cham, Switzerland: Springer, 2014,
pp. 252–261.

[43] Y. Wang, ‘‘The hybrid genetic algorithm with two local optimization
strategies for traveling salesman problem,’’ Comput. Ind. Eng., vol. 70,
pp. 124–133, Apr. 2014, doi: 10.1016/j.cie.2014.01.015.

PING GUO (Member, IEEE) was born in
Meishan, Sichuan, China, in 1963. He received
the Ph.D. degree in computer software and
theory from Chongqing University, Chongqing,
China, in 2004. He is currently a Professor
with the Chongqing Key Laboratory of Soft-
ware Theory and Technology, College of Com-
puter Science, Chongqing University. His research
interests include different aspects of artificial
intelligence and biological computing. He has

authored/coauthored more than 150 refereed publications.

MENGLIANG HOU was born in Qionglai,
Sichuan, China, in 1994. He received the bache-
lor’s degree in computer science and technology
from Chongqing University, Chongqing, China,
in 2017. He is currently a Graduate Student with
the College of Computer Science, Chongqing Uni-
versity. His research interests include heuristic
algorithm and biological computing.

LIAN YE was born in Chongqing, China, in 1980.
She received the Ph.D. degree in computer science
from Chongqing University, China, in 2012. She
is currently a Teacher with Chongqing Univer-
sity. Her research interests include the different
aspects of artificial intelligence, artificial immune
systems, and membrane computing.

199096 VOLUME 8, 2020

http://dx.doi.org/10.1109/TNNLS.2018.2872999
http://dx.doi.org/10.4064/am-22-3-351-358
http://dx.doi.org/10.1016/j.eswa.2011.04.163
http://dx.doi.org/10.18517/ijaseit.7.2.1837
http://dx.doi.org/10.1016/j.asoc.2015.06.011
http://dx.doi.org/10.1016/j.cie.2014.01.015

