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ABSTRACT Wind speed and streamflow series always are nonlinear and unstable because the effects of
chaotic weather systems. These inherent features make them difficult to forecast, especially in a chang-
ing environment. To improve forecasting accuracy, an innovation uncertainty forecasting architecture is
developed by coupling data decomposition method, feature selection, multiple artificial intelligence (AI)
techniques and composite strategy to do unstable time series forecasting. In the designed architecture,
the AVMD (adaptive variational mode decomposition) is first applied to excavate implicit information from
the original time series. Then, the random forest is utilized to select the suitable inputs for each mode.
After that, the GPR (Gaussian Process Regression), a very famous probabilistic AI technique, is driven
by various neural networks (ELM (Extreme Learning Machine), BP (Back Propagation Neural Networks),
GRNN(Generalized Regression Neural Networks) and RBF (Radial Basis Function Neural Networks)) to
produce both deterministic and probabilistic forecasting results in a nonlinear manner to play strengths of
each other. The effectiveness and applicability of the proposed approach is verified by unstable wind speed
data and streamflow data, and also compared with eleven related models. Results indicate that the proposed
model not only improves the forecasting accuracy for deterministic predictions, but also provides more prob-
abilistic information for decision making. The proposed method achieves significantly better performance
than the traditional forecasting models both on wind speed forecasting and streamflow forecasting with at
least 50% average performance promotion over all the eleven competitors. Comprehensive comparisons
demonstrate the superior performance of the proposed method than the involved models as a powerful tool
for unstable series forecasting.

INDEX TERMS Unstable time series prediction, hybrid model, GPR, artificial intelligence, combination
forecasting.

I. INTRODUCTION
Due to the deteriorating environment and the rapidly grow-
ing demand for energy, environmentally friendly energies,
such as wind and water resources, have drawn worldwide
attentions [1]. Predicting future changes of wind speed and
streamflow series is an effective way to ensure rational
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utilization on wind and water resources [2]. However, their
inherent randomness and non-stationaritymake a huge barrier
to accurate forecasting.

Up to now, many approaches have been used to enhance
the forecasting accuracy and reliability of energy series.
The first one is using feature selection methods (FSMs).
For examples, principle component analysis (PCA) [3], ran-
dom forest (RF) [4], and cluster analysis (CA) [5]. These
FSMs are used to handle multivariate data to reduce their
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dimensions. The second way is applied the data decomposing
techniques (DDTs) to divide the original single series into
much subseries so as to extract more implicit information or
reduce noise. Till now, there are many DDTs, such as empiri-
cal wavelet transform (EWT) [6], variational mode decom-
position (VMD) [7], singular spectrum analysis (SSA)[8],
empirical mode decomposition (EMD) [9], and many vari-
ants of the EMD (e.g. EEMD [10] and CEEMDAN [11]).
These DDT have their respective pros and cons. EMD and its
variant EEMD can extract waveforms of different frequencies
from any signal step by step. EEMD can solve the mode
mix problem of EMD by adding white noise [12]. The core
idea of EWT is to construct a proper orthogonal wavelet
filter bank to adaptively partition the Fourier spectrum of
the signal, so as to extract the AM-FM component with
tightly supported Fourier spectrum. Compared with EMD,
EWT has the advantages of stronger theory, less computation,
and less decomposed modes. VMD is an emerging DDT, its
essential idea is the variational problem [13]. Different with
the recursive filter subseries used by EMD, VMD turn the
decomposing problem into a non-recursive and variational
mode decomposition problem. In the VMD, the frequency
center and bandwidth of each component are determined
by searching the optimal solution of the variational model
iteratively, so it can adaptively realize the division frequency
domain of the signal and the effective separation of each
component, highlight the local characteristics of the data.
Recently, Sun et al. [14] proposed an adaptive variational
mode decomposition (AVMD) by adding a decomposition
quality factor (QF) as the termination condition to automatic
determine the key parameter ( the number of modes K ) and
then improve the performance of decomposition.

The above-mentioned FSMs and DDTs methods are used
for data processing. The third way to improve the prediction
accuracy is to improve the performance of the basic fore-
casting model. There are three typical forecasting models:
physical models (PMs), data-driven models (DDMs), and
hybrid models. With the rapid development of computer and
information technology, and artificial intelligence (AI) the-
ory, the DDMs are going famous than PMs in the aspects
of easily modelling and less data requirement. AI techniques
have many successful applications in energy series fore-
casting, showing their strong nonlinearity learning ability.
Most famous AI models used in energy series forecasting
are ELM (extreme learning machine)[15], BP (back-
propagation neural network)[16], RBF (radial basis func-
tion) neural network [17], GRNN (generalized regression
neural network) [18], SVM (support vector machine) [3],
and ANFIS (adaptive neuro-fuzzy inference system)[19].
Nowadays, more studies have been done to explore the
forecasting ability of deep learning techniques, includ-
ing DBN(deep belief network)[20], CNN(Convolutional
Neural Network) [21], LSTM (long short-term memory
network) [22], and CNN-LSTM [23]. Although the above
mentioned AI models can perform admirable effectiveness
on short-term wind speed or streamflow prediction, while

neural networks based on gradient-based training, such as BP,
often suffers from the disadvantages of lower training speed,
local convergence and stopping criteria [15] as well as the
increasing computation cost of SVM with the growing of
data scale significantly [8]. For deep learning technique,
such as LSTM, hyperparameters determination needs more
experience and more computation cost. Due to the fact that
the influence factors of energy series are various, the energy
series often own several inherent features such as intermit-
tent and stochastic merits. So, it is difficult to use a single
AI model to achieve accurate and reliable prediction, espe-
cially in a changing condition, and a specific single model
usually cannot obtain accurate results at various sites.

Generally, the forecasting effectiveness of single DDM is
significantly affected by the corresponding inherent structure
and parameters. For this purpose, hybrid model incorporat-
ing the advantages of multiple models or techniques have
been rapidly developed. Liu et al. [18] combined a data
pretreatment strategy, a modified multi-objective optimiza-
tion algorithm, and several forecasting models together to
construct a new model for short-term wind speed forecast-
ing. Meanwhile, to improve effectiveness of single DDM,
various swarm intelligence algorithms have been rapidly
developed and applied. Yaseen et al. [19] proposed three
bio-inspired adaptive neuro-fuzzy inference system (ANFIS)
models for highly non-linear streamflow forecasting. Later,
Lin et al. [20] developed a hybrid wind speed forecasting
model by combining a deep belief network with genetic
algorithm. Additionally, coupling DDTs, machine learn-
ing models, and/or optimization algorithms is also popular
in improving the forecasting effectiveness. For examples,
Liu et al. [24] developed a multi-step wind speed forecast-
ing model based on decomposition, ensemble method and
error correction algorithm. Zhang et al. [25] presented a
hybrid model by combining VMD, the neural network, and
Lorenz disturbance. Later, they adopted the Lorenz distur-
bance models to improve the EMD-BP model. Their method
can eliminate the randomness of the wind speed sequences
and significantly improve the forecasting accuracy [16]. The
same year, they further developed a novel wind speed pre-
diction model through decomposing wind speed into three
parts, then analyzing each part and making predictions with
different models according to their characteristics [26]. Based
on these, another novel wind speed prediction method was
proposed [17]. In their study, different models are built based
on the characteristics of each part generated by the VMD,
PCA-RBF, ARMA (Auto Regressive and Moving Average)
model under the MCMC (Markov chain Monte Carlo) frame-
work and probability distribution are built separately for
the nonlinear part, linear and noise parts. Huang et al. [27]
explored the combination of CNN and VMD for electricity
price forecasting.

However, most of the previous researches have focused
on deterministic forecasting with point result, which usu-
ally cannot meet the requirements of practical utilization.
Whereas uncertainty analysis can provide supplementary
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information to assistant relevant departments to do more
safe and scientific decision making. Therefore, uncertainty
analysis is particularly important for the topic of unsteady
energy series forecasting. The most commonly used meth-
ods for probabilistic forecasting to construct the prediction
intervals (PIs) are traditionally Bayesian, mean-variance, and
Bootstrap [28]. These approaches have their own characteris-
tics. Generally, the Bayesianmethod with high computational
cost provides imprecise PIs. By contrast, the mean-variance
has a negligible computationalmass due to its calculation pro-
cess is embedded in the model training process, but its PIs has
a low empirical coverage probability. The Bootstrap is easy
implementation and has a large computational requirement.
Additionally, lower and upper bound estimation (LUBE)
approach without a prior knowledge of point prediction result
also is applied to construct PIs. But overtraining and high
computational burden are primary reasons that are restrain-
ing its real applications. Recently, several statistical methods
without any prior assumption have been suggested for prob-
abilistic forecasting. The statistical methods mainly depend
on the quantile analysis results of point prediction including
kernel density estimation [29], quantile regression (QR) [22],
and ensemble simulations [30] methods. Recently, based on
VMD and QR, a probabilistic interval forecasting model was
put forward and the eventual results quantified the potential
risks of the wind power series [31]. To our knowledge, gaus-
sian process regression (GPR) has gained more attentions in
energy series forecasting, due to its seamless integration of
hyperparameter estimation, model training, and uncertainty
estimation. Zhang et al. [32] built a new probabilistic wind
speed forecasting method based on autoregressive (AR) and
GPR. From the above researches, it can be concluded that the
current probabilistic prediction rarely involves in the analy-
sis of how to generate good point predictions and multiple
characteristics of data simultaneously. To provide both point
and interval predictions for future energy series, a GPR based
hybrid forecasting model is proposed in this study.

Based on the above literature review, this study focuses
on merging the superiority of the dimension reduction, data
decomposition, and multiple AI models to develop a compos-
ite uncertainty forecasting model for unstable energy series.
This composite uncertainty forecasting model contains three
major modules: a data pre-decomposing module, an input
selection module, and a forecasting module. More specifi-
cally, AVMD is applied to decompose original energy series
into several sub-series to fully dug the detail characteristic
of original series. Then, RF is adopted to determine the best
input vector. After that, several NNs, including BP, RBF,
GRNN, and ELM are applied to forecast the prepared energy
series. The results of these multiple individual forecasting
models are weighted by the GPR to generate the final fore-
casting results. Finally, several famous indices are used to
assess the performance of all relevant models. The proposed
AVMD-RF-MNN-GPR, denoted as AVRM-GPR, model is
compared fully with eleven forecasting models including
individual and hybrid models.

The main contributions of this study are demonstrated as
follows:
(1) The most effective data preprocessing method AVMD

is adopted for extract more detailed information from
original energy series. The obtained subseries is more
predictable than the mother series.

(2) The RF as an input selection approach can get
more nonlinear relationship between all input factors
than the commonly used PACF (partial autocorrection
function).

(3) Different data characteristics can be portrayed effec-
tively by multiple NNs, thus the weakness of individual
models can be overcome through composite the fore-
casting results of multiple NNs.

(4) The weights of all these NNs is determined by a non-
linear way GPR, which can both provide the determin-
istic results and uncertainty bounds. This unique way
can achieve many things such as nonlinear weighting,
uncertainty analyzing at one stroke.

The remainder of this paper is arranged as follows.
Section 2 presents the framework of the proposed model.
Section 3 introduces the proposed forecasting frame-
work and the methodologies used in the proposed model.
Section 4 describes the construction and development of the
models for energy series forecasting. Section 5 compares the
performance of the proposedmodel with several other models
on four different wind speed datasets and two streamflow
datasets. Discussions are presented in Section 6. Finally,
conclusions are drawn in Section 7.

II. THE FRAMEWORK AND PROCESS OF THE PROPOSED
MODEL
The framework of the AVRM-GPR model is depicted
in Figure 1, and the whole process is described in detail as
follows:
Stage 1: (Data pre-Decomposing): In our previous

paper [14], an AVMD (adaptive variational mode decom-
position) was proposed by adding a decomposition qual-
ity factor (QF) as the termination condition to automatic
determine the key parameter ( the number of modes K ) of
VMD and thereby improve its decomposition performance.
The AVMD is adopted to decompose the original series into
several sub-series to make them easy to be predicted. The
AVMD method is introduced in Section 3.1.
Stage 2 (Selecting the Input Vector for Each Subseries):

The random forest (RF) technique is utilized to select the
appropriate input vector of each sub-series. The introduction
of the RF is presented in Section 3.2.
Stage 3 (Forecasting of Individual Engines): In this paper,

BP, RBF, GRNN, and ELM which have strong nonlinear fit-
ting ability, are selected as the individual forecasting engines
to establish the developed AVRM-GPR model.
Stage 4 (Establishing the Proposed AVRM-GPR Model):

All forecasting results of the above four engines are taken
as inputs to drive the GPR model, a very famous probabilis-
tic AI technique, to merge all advantages of these engines.

VOLUME 8, 2020 209253



N. Sun et al.: Composite Uncertainty Forecasting Model for Unstable Time Series

FIGURE 1. The flowchart of the proposed AVRM-GPR.

The AVRM-GPR model can provide both deterministic and
probabilistic forecasting results.
Stage 5 (Evaluating): To illustrate the prediction perfor-

mance of the proposed AVRM-GPR model, eleven bench-
mark models are used. These compared models can be
divided into three types. The first one is the individual mod-
els, including GRNN, RBF, BP, and ELM. The second one
is the hybrid models with PACF and different decomposition
methods, including DWT-PACF-ELM, EEMD-PACF-ELM,
and AVMD-PACF-ELM. The third one is coupling the
individual model with AVMD and RF, which consists of
AVMD-RF-BP (denoted by AVR-BP) model, AVR-GRNN,
AVR-RBF, and AVR-ELM model.

III. METHODOLOGIES
A. ADAPTIVE VARIATIONAL MODE DECOMPOSITION
In the standard VMD method, the number of modes K is
very important for the decomposition quality. As Dragomiret-
skiy and Zosso [13] mentioned, small K may cause that
a few modes may be either shared by neighboring modes
or mostly discarded, while large K may lead to excessive
decomposition and produce some components with useless
information. Therefore, a decomposition quality factor (QF)
has been designed as the termination condition during the
VMD decomposition process to determine the suitable K
quickly and automatically.

For a given signal f (t), the decomposition process of
VMD is implemented by solving the following optimization
problem:

min
{uk },{ωk }

{∑
k

∥∥∥∂t [(δ (t)+ j/(π t)) ∗uk (t)] e−jωk t∥∥∥2
2

}
,

k = 1, 2, · · · ,K

s.t.
∑

k
uk = f (t) (1)

where uk and ωk represent all modes and their frequencies,
respectively; δ (t) is the Dirac distribution and ∗ denotes the
convolution operator.

The Eq. (1) can be translated into an unconstrained one by
adding a quadratic penalty term and Lagrangian multipliers,
as follows:

L ({uk} , {ωk} , λ)

= α
∑

k

∥∥∥∂t [(δ (t)+ j/(π t)) ∗ uk (t)] e−jωk t∥∥∥2
2

+

∥∥∥f (t)−∑
k
uk

∥∥∥2
2
+

〈
λ, f (t)−

∑
k
uk
〉

(2)

where α denotes the balancing parameter of the data-fidelity
constraint.

The alternate direction method of multipliers (ADMM)
can be used to solve the unconstrained optimization prob-
lem Eq. (2). Through a series of iterative sub-optimizations
by updating un+1k , ωn+1k , and λn+1, the saddle point of the
augmented Lagrangian can be found. The updating formulas
are below:

ûn+1k =

f̂ (ω)−
∑

i6=k ûi (ω)+ λ̂ (ω)
/
2

1+ 2α (ω − ωk)2

ωn+1k =

∫
∞

0
ω
∣∣ûk (ω)∣∣2dω/∫

∞

0

∣∣ûk (ω)∣∣2dω
λ̂n+1 (ω) = λ̂n (ω)+ τ

(
f̂ (ω)−

∑
i6=k

ûn+1k (ω)
)

(3)

where n is the total number of iterations; τ is the time-step of
the dual ascent; ûn+1k , ûi (ω), f̂ (ω), and λ̂ (ω) are the Fourier
transform of un+1k , ui (ω), f (ω), and λ (ω), respectively.
Suppose the K modes {Mode1, Mode2, . . . , ModeK}

obtained by the standard VMD, the sample entropy values
{Si, i = 1, 2, · · · ,K } of each mode can be calculated. The
entire error between the original series x(t) and the recon-
structed series x̂(t) = Mode1+· · ·+ModeK is then calculated
by:

Er =
∑N

i=1
|x(t)− x̂(t)| (4)

The decomposition quality factor (QF) is defined as:

QF = Cv/Er (5)

where Cv is the variation coefficient of sample entropy values
for all modes.

The details of AVMDmethod can be found in our previous
paper [14].

B. RANDOM FOREST
Random Forests (RF) algorithm was first developed in
year 2001 to enhance the performance of classification and
regression trees as well as reducing overfitting risk [33].
It is a powerful AI technique to extract features and/or map
nonlinear relationship for high-dimensional data. So, it has
been widely utilized in various realms since its birth, includ-
ing rainfall forecasting [34], solar radiation forecasting [35],
urban water consumption [36], and land cover classifica-
tion [37]. It turned out to be a suitable tool for handling
classification and regression tasks of high-dimensional data
with small samples. In addition, it also can provide variable
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importance measure (VIM) for each input feature variable by
permuting each feature to measure its importance.

All data collected in this study are time series, so the rest
of this subsection is limited to introduce the RF used in
regression issues. A training set with n observations (denoted
by Trn), which contains an input vector X withm features and
its corresponding expected output vector Y , is written as:

Trn = {(X1,Y1), (X2,Y2), · · · , (Xn,Yn)},

X ∈ Rm, Y ∈ R (6)

The process of RF for solving a regression problem is
briefly presented as follows [38]:
Phase 1: Generate Ntr random samples from the original

training data according to bootstrap technique.
Phase 2: Grow unpruned regression trees to fit the boot-

strap samples. In this stage, mtry variables are first randomly
selected from all predictors at each node of the regression
tree. Then, divide each node into a couple of sub-nodes
according to the optimal split point (OSP) strategy. The
OSP is a point that has ability to minimize the mean square
error (MSE) using the selected mtry variables. The fission
process is finished until achieving the default termination
criterion, such as the smallest number in a child node.
Phase 3: Repeat phases 1∼2 and aggregate Ntr trees as the

final RF model.
Phase 4: Compute the average results of sub-trees as the

final prediction.
One merit of the RF is embedding bootstrap technique into

sample phase to enhance its ability in anti-noise interference.
In the sample phase, many unrelated trees can be generated
from different training samples obtained by bootstrap tech-
nique. The VIM value of each predictor can be calculated
by the error of the out-of-bag sample (denoted by EOOB).
The out-of-bag samples are defined as the observations that
are not in the bootstrap sample (denoted by SBn ). In this
study, MSE between expected output Y and the estimated
output Ŷ is adopted as the EOOB to evaluate the generalization
ability of each regression model. The VIM can be calculated
through disturbing predictors one by one. The VIM value of
a specific predictor is the mean value of the differences of
EOOB before and after perturbation of this predictor on all
trees. Specifically, for a bootstrap sample SBn with total m
predictors, its permuted sample denoted byOOB′B is obtained
by disturbing the predictor at the position j among the m
predictors. TheVIM value of the j-th variable is defined by the
average difference between the original EOOB and the E ′OOB
for the disturbed OOB′B, and it is calculated by:

VIM
(
X j
)
=

1
Ntr

Ntr∑
i=1

(
E iOOB − E

′i
OOB

)
(7)

where Ntr represents the total number of the regression trees.
The larger the VIM value, the more important the permutated
predictor.

As mentioned above, the RF includes two key parameters:
the number of regression trees Ntr and the maximum number

of variables mtry are used to grow a regression tree, mtry is
specified as m/3 [39].

C. GAUSSIAN PROCESS REGRESSION (GPR)
Compared with NNs, the GPR, a non-parametric
kernel-based probabilistic model [40], merges many machine
learning tasks, including model training, hyper-parameters
estimation and uncertainty quantification. So, GPR not only
has the strong nonlinear learning capacity of NNs, but also
has the inferential ability of Bayesian. Therefore, it can
generate both deterministic and probabilistic results.

A gaussian process (GP) can be uniquely determined by
its mean function E (X) and covariance function matrix
K (X ,X). The nonlinear function (denoted by g (X)) between
the energy series y and its relevant predictors X can be con-
sidered as a GP:

g (X) ∼ GP (E (X),K (X ,X)) (8)

In reality, due to the interference of noise, the energy
series y be expressed as the superposition of mapping
function g (X) and noise ε:

y = g(X )+ ε (9)

Supposing that the noise ε conforms to the Gaussian dis-
tribution with the mean value of 0 and the variance of σ 2

n ,
denoted by ε ∼ N

(
0, σ 2

n In
)
, the prior distribution of the

y can be written as:

y ∼ N (0,K (X ,X )+ σ 2
n In) (10)

where In is the n-dimensional unit matrix;K (X ,X ) represents
the covariance function matrix which is a symmetric and
positive semi-definite one.
The joint prior distributions of the observed y and the

predicted yp is:[
y
yp

]
∼ N

(
0,
[
K KT

∗

K∗ k (xtest , xtest)

])
(11)

where K and K∗ are:

K =


k (x1, x1), k (x1, x2), · · · , k (x1, xn)
k (x2, x1), k (x2, x2), · · · , k (x2, xn)
· · · · · · · · ·

k (xn, x1), k (xn, x2), · · · , k (xn, xn)

 (12)

K∗ = [k (xtest , x1), k (xtest , x2), · · · , k (xtest , xn)] (13)

According to the properties of GP, the posterior distribution
of the predicted value yp for the new input xtest and output y
under the given training input data X also conforms joint
Gaussian distribution, so the output for the new input xtest
is calculated:

p(yp|X , y, xtest ) ∼ N (E (ytest), cov(ytest ))

E (ytest) = K∗K−1y

cov(ytest ) = k(xtest , xtest )− K∗K−1KT
∗ (14)

where E (ytest) and cov(ytest ) are the expected value and
posterior variance of yP, respectively. The cov(ytest ) can show
the uncertainty of the predicted results.
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The standard GPR can be determined by simplifying the
mean function E (X) of GP to be zero [41]. The covariance
function K (X ,X) can be equivalent to the kernel function.
Hence, the main task is determined the K (X ,X). Most
commonly used kernel functions in the GPR are squared
exponential kernel (SEK), rational quadratic kernel (RQK),
periodic kernel (PK), and Matérn kernel (MaK) [42]. In this
study, the SEK is adopted because its infinitely differentiable
feature can make GPR smoother. The SEK is given by:

k
(
X ,X∗

)
= σ 2

f exp
(
−
1
2

(
X − X∗

)T P−1 (X − X∗))
P = diag([λ1, λ2, · · · , λm]T ) (15)

where P is a diagonal matrix of smoothing coefficients λ;
σ 2
f is the signal variance linked to the general function vari-

ance. Generally, the parameter set θ = {σ 2
f , λ1, λ2, · · · , λm}

is called the hyper-parameter set of the kernel function in
the GPR. The most commonly used method for solving
hyper-parameters is maximum likelihood function (MLF).

IV. MODEL CONSTRUCTION AND DEVELOPMENT
In this section, the numerical modeling of the developed
AVRM-GPRmodel in this study is performed to domulti-step
ahead wind speed and streamflow forecasting.

A. DATA COLLECTION
In this study, two types of classic unstable time series: wind
speed and streamflow are used. Four wind speed series
(see Figure 2 (a)), collected from the famous wind farm,
the Sotavento Galicia (SG) wind farm1, are used. Each
wind speed series includes 2700 data with 10-min time
intervals. Moreover, two monthly streamflow series for the
period year 1953 to 2015, collected from the Yangtze River
Waterway Bureau, China, from different hydrological sta-
tions are obtained in this study as shown in Figure 2 (b).
Figure 2 reveals the strong volatility of the original wind
speed and the streamflow series. For each series, the first 75%
of the whole dataset are selected as the training samples to
establish the forecasting model, and the remaining 25% are
used for validation.

The statistical information including average (Ave.), max-
imum (Max.), minimum (Min.), standard deviation (Std.),
coefficient of variation (Cv) and the skewness coefficient (Cs)
of these six series are presented in Table 1. The statistical
information also verifies the strong volatility of the original
wind speed and the streamflow series, indicating a hard fore-
casting task.

B. PARAMETER SETTINGS
Besides the proposed AVRM-GPR model, there are four
AVMD-RF-based models as benchmark models including
the AVMD-RF-GRNN (AVR-GRNN), the AVMD-RF-RBF

1Wind speed data can be downloaded on the website
http://sotaventogalicia.com/en/realtimejj-data/historical.

FIGURE 2. Four wind speed series and two streamflow series.

(AVR-RBF), the AVMD-RF-BP (AVR-BP), and the AVMD-
RF-ELM (AVR-ELM). Similar to the proposed method,
the number of inputs in GRNN, BP, ELM, and RBF is deter-
mined by RF. The other three hybrid models DWT-PACF-
ELM, EEMD-PACF-ELM, and AVMD-PACF-ELM used
PCAF to determine the inputs. Specifically, the Daubechies
10 is selected as themother wavelet mother function for DWT
according to Ref [43]. The EEMD method is employed with
the ensemble number of 100 and the white noise amplitude
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TABLE 1. Statistic information of all series.

of 0.2 times standard deviation [12]. For AVMD, the number
of modes is searched in the range [2, 15] with increasing
step of 1 [14]. For individual models, the number of hidden
neurons of the ELM and BP neural networks are selected
using grid search (GS) algorithm. The search range is set as
[m, 2n + 20], where n denotes the number of input neurons,
m is set as 2n − 20 when n is bigger than 10, otherwise m is
set as 1 [44]. The Levenberg-Marquardt (trainlm) is selected
as the training function for BP. The smoothing parameter
of GRNN is determined by cross validation method (CV)
in the range (0,1) with interval 0.01. For RBF model, the
spread is searched by CV method in the range [0.5, 1.5] with
0.1 increments.

C. DECOMPOSITION RESULTS
The original series were processed by AVMD for the
proposed model, and the decomposition result is shown
in Figure 3. The initial sequence is broken into K modes.
And the K is adaptively determined by the decomposition
accuracy. The decomposition results reflect features of wind
speed/streamflow sequences at different scale. The first mode
in each graph represents the residual term, describing the
trend information of wind speed and streamflow sequences.
For the modes of the streamflow series E and F, mode 2 shows
obvious periodicity.

D. PERFORMANCE EVALUATION
Three mainstream indexes MAE (mean absolute error),
MAPE (mean absolute percentage error), and RMSE (root
mean squared error) are utilized to evaluate the performance
of all the involved models in this study. Equations of these
indices are shown as follow [14]:

RMSE =

√
1
N

∑N

i=1

(
yobs,i − yfore,i

)2
, RMSE > 0

(16)

MAE =
1
N

∑N

i=1

∣∣yobs,i − yfore,i∣∣, MAE > 0 (17)

MAPE =
1
N

∑N

i=1

∣∣(yobs,i − yfore,i)/yobs,i∣∣,
1 > MAPE > 0 (18)

where yobs,i is the i-th measured wind speed or streamflow
data, yfore,i is the i-th forecasted wind speed or streamflow
data, and N is the total number of all sample data.

In addition, Pearson’s test is also applied to evaluate the
agreement of the forecasting results with real data. The Pear-
son’s test was developed by scientist Karl Pearson [24]. The
Pearson’s test correlation coefficient (CC) is given as:

CC =

∑N
i=1

(
yobs,i − ȳobs

) (
yfore,i − ȳfore

)√∑N
i=1

(
yobs,i − ȳobs

)2∑N
i=1

(
yfore,i − ȳfore

)2 ,
1 > CC > 0 (19)

where ȳobs and ȳfore are the average values of the measured
and forecasted wind speed or streamflow data, respectively.

When the CC value is equal to 1, it indicates that there is a
significant linear relationship between the actual data and the
forecasting data, whereas, CC value is equal to 0, representing
no relationship between these two datasets.

V. EXPERIMENTS
In this section, to illustrate the forecasting performance of
the proposed AVRM-GPR model, six experimental tests
are conducted for 1-step, 2-step, and 3-step predictions.
Six datasets (Series A, B, C, D, E, and F) were collected
to testify the effectiveness and efficiency of the proposed
AVRM-GPR model for unstable energy series forecasting.
The first four datasets are wind speed series among vari-
ous seasons from the same wind farm, and the other two
are streamflow series from different hydrological stations.
In other word, the datasets of these experimental tests have
different characteristics, because they are collected from dif-
ferent stations and have different time intervals. Therefore,
these six datasets have obvious different complexities on
non-stationarity, non-linearity, randomicity, and irregularity,
which can provide sufficient evidence for the experimental
conclusion. In each experimental test, the first 75% of the
whole dataset are selected to establish the involved forecast-
ing models, and the remaining 25% are used for testifying.

Based on the historical data, three comparisons were
conducted to illustrate the applicability and efficiency of
the developed combined model compared with eleven
other benchmark models. These benchmark models are:
1) classic individual models: GRNN, RBF, BP, and ELM;
2) hybrid models employing diverse DDTs: EEMD-
PACF-ELM, DWT-PACF-ELM, and AVMD-PACF-ELM;
3) AVR-based models: AVR-GRNN, AVR-RBF, AVR-BP,
and AVR-ELM.

A. COMPARISON WITH CLASSIC INDIVIDUAL MODELS
This part reveals prediction abilities of the proposed model
by contrasting the proposed model with several classic indi-
vidual models, such as GRNN, RBF, BP, and ELM. The
forecasting results of thesemodels in 1-step ahead forecasting
for Datasets A ∼ F are listed in Table 2, where the bold
part represents the best forecasting results. Clearly, the pro-
posed model has a distinguished forecasting performance,
whether for wind speed forecasting (Datasets A∼D) or for
streamflow forecasting (Datasets E and F). Specifically, for
Dataset A, the smallest RMSE, MAE, and MAPE values are
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FIGURE 3. Decomposition results in the testing period for all series using AVMD.
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TABLE 2. Results for the proposed model and classic individual models
in 1-step ahead forecasting.

all obtained from the developed AVRM-GPR model, with
values of 0.238 m/s, 0.175 m/s, and 0.036, respectively. For
Dataset E, the RMSE, MAE, and MAPE values are 50 m3/s,
38 m3/s, and 0.044, respectively, which are the best compared
with the other four individual models.

Among all these four individual models, the priority of
these forecasting model for the six Datasets is not identical,
which indicate no perfect single model for energy series
forecasting. Relatively, theRMSE,MAE, andMAPE values of
ELM are nearly all smaller than those of the other individual
models.

To further investigate the performance of the proposed
model, these four neural networks have been also applied
to do 2-3 step ahead forecasting for Datasets A∼F. The
statistical error indices for 2-3 step ahead forecasting are
presented in Figure 4 and Figure 5. The conclusions obtained
from 2-3 step ahead are similar to those from 1-step ahead
forecasting. It can be found that the AVRM-GPR model
exhibit superior performance, while the best individual fore-
casting model for different Dataset is also different.While the
ELM performs relative better than the other individual neural
networks in most cases.

Overall, the forecasting ability of these four individual
models for all Datasets are not identical, which empha-
sizes the individual model is not suitable in every situation.
To resolve this issue, a new hybrid model which learns from
strong points of many individual models should be proposed.

B. COMPARISON WITH MODELS EMPLOYING DIVERSE
DDTS
The aim of this part is to testify the superiority of the
combination of AVMD and RF as data pretreatment for

FIGURE 4. Forecasting performance of GRNN, RBF, BP, ELM, and
AVRM-GPR in 2-3 step forecasting for Datasets A∼ D.

the proposed model AVRM-GPR. The relatively excellent
single model ELM is used as the basic prediction module.
The AVMD-RF-ELM (AVR-ELM) is compared with other
three hybrid models with different DDTs and using PACF
input determination method. Diverse DDTs includes EEMD,
DWT, and AVMD. So, the three hybrid benchmark mod-
els are denoted as EEMD-PACF-ELM, DWT-PACF-ELM,
and AVMD-PACF-ELM. Tables 3∼5 display the calculated
statistical error values for 1-3 step forecasting results, respec-
tively. Among these three benchmark models, AVMD-PACF-
ELM always performs the best for all datasets and all lead
times, followed by the EEMD-PACF-ELM, the DWT-PACF-
ELM produces the worst results. For example, for Dataset
A, the RMSE of AVMD-PACF-ELM, EEMD-PACF-ELM,
and DWT-PACF-ELM for 1-step forecasting are 0.242 m/s,
0.363 m/s, and 0.493 m/s. For 2-step forecasting, the RMSE
values are 0.317 m/s, 0.489 m/s, and 0.520 m/s. For 3-step
forecasting, the RMSE values are 0.361 m/s, 0.550 m/s, and
0.633 m/s. These results indicate the AVMD is more suit-
able for preprocessing the original energy series than EEMD
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FIGURE 5. Forecasting performance of GRNN, RBF, BP, ELM, and
AVRM-GPR in 2-3 step forecasting for Datasets E and F.

and DWT. Additionally, the AVR-ELM is always superior to
the best hybrid benchmark model AVMD-PACF-ELM, with
lower statistical error values. For Dataset A, the RMSE of
AVR-ELM for 1-3 step forecasting are 0.24 m/s, 0.312 m/s,
and 0.358 m/s. This indicates the combination of AVMD and
RF can dig more information from the original series than the
coupling of AVMD and PACF. Therefore, the combination of
AVMD and RF is suitable as the preprocessing module for
developing the energy series forecasting model.

C. COMPARISON WITH AVR-BASED MODELS
To further prove the effectiveness of our proposed com-
bined model AVRM-GPR, it is compared with the other four
AVR-based models. The statistical error indices including
RMSE, MAPE, and MAE values of all five involved fore-
casting models for these six experimental tests are presented
in Tables 6∼8, where the best value of each index is high-
lighted in boldface. It can be found that (1) for Dataset
A, among the four AVR-based models, the performance of
the AVR-ELM model is the best, followed by the AVR-BP

TABLE 3. Results for the combined models with diverse DDTs in 1-step
ahead forecasting.

TABLE 4. Results for the combined models with diverse DDTs in 2-step
ahead forecasting.

model, later the AVR-GRNN, that of the AVR-RBF is the
worst for all three steps ahead wind speed forecasting. The
RMSE, MAE, and MAE values of the AVR-ELM model are
all the smallest. For instance, the RMSE of the AVR-ELM
in 1-step aheadwind speed forecasting is 0.24m/s while those
of the AVR-GRNN, AVR-RBF, and AVR-BP are 0.51 m/s,

209260 VOLUME 8, 2020



N. Sun et al.: Composite Uncertainty Forecasting Model for Unstable Time Series

TABLE 5. Results for the combined models with diverse DDTs in 3-step
ahead forecasting.

TABLE 6. Results for the proposed model and AVR-based models
in 1-step ahead forecasting.

0.749 m/s, and 0.517 m/s, respectively. The same conclusion
can be found in the 2- and 3-step ahead wind speed fore-
casting results and streamflow forecasting results. (2) from
the comparison of the AVR-ELM and the proposed model
AVRM-GPR, it can be seen that the RMSE, MAE, and MAE
of the AVRM-GPR model are nearly all less than those of
the AVR-ELM model for all three horizons. (3) the proposed

TABLE 7. Results for the proposed model and AVR-based models
in 2-step ahead forecasting.

TABLE 8. Results for the proposed model and AVR-based models
in 3-step ahead forecasting.

model is more valid than the other AVR-based model for
all forecasting steps. To be more specific, the MAPE values
of the developed model for Dataset A in three steps fore-
casting are 0.036, 0.047, and 0.051, respectively, which are
lower than the corresponding values obtained from the other
AVR-based combined models. These results indicate that the
idea of series decomposition, dimensionality reduction and
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FIGURE 6. Scatters of the proposed AVRM-GPR and four AVR-based model for series A∼F.

multiple AI techniques driven GPR can effectively promote
the prediction performance of the forecasting model.

Additionally, the scatters of the predicated and the mea-
sured data for the proposed AVRM-GPR and four AVR-based
models are plotted in Figure 6. These scatters can reflect

the forecasting performance of the prediction model in high,
middle, and low regions. Among the four benchmark models,
the AVR-RBF always provides the worst results, especially
in high and middle regions, the AVR-GRNN produce worse
results for streamflow forecasting, the AVR-BP provides
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over-forecasted results in middle region and under-predicted
results in high region, while AVR-ELM always show the
best performance. Compared with the best AVR-based model
AVR-ELM, the scatters of the predicated data and the mea-
sured data for the AVRM-GPR are more close to the 45◦ line
with a narrower coverage and evenly distributed on both sides
of the 45◦ line, for all six experimental tests and all three lead
times. Though the forecasting performance deteriorates with
the extension of lead time, the deterioration of the proposed
model is less than these of the other models. This indicates
the superior merits of the AVRM-GPR.

The results of Series B (wind speed) and Series E (stream-
flow) are used to further illustrate the effective of the pro-
posed model. Figures 7 and 8 exhibit the results of the
benchmark models and the proposed AVRM-GPR models
using Series B and Series E, where the blue line denotes
the observed data, the green line is the worst benchmark
model, the cyan line represents the best benchmark model,
the magenta line means the deterministic results and the grey
bounds are the uncertainty bounds of the AVRM-GPR. It can
be seen from Figure 7 that the predicted data provided by
the AVRM-GPR are closer to the measured data than the
benchmark models, especially for relative high wind speed.
Meanwhile, the observed data are entirely in the 50% pre-
dicted interval (PI) provided by the AVRM-GPR for all lead
times. The same conclusion can be found from Figure 8.

FIGURE 7. Forecasting results of Series B. (blue line: the observed data;
green line: the worst results among all benchmark models; cyan line: the
best results among all benchmark models; magenta line: the
deterministic results of the AVRM-GPR, and the grey bounds are the
uncertainty bounds provided by the AVRM-GPR).

VI. DISCUSSION
A. ASSOCIATION STRENGTH
Pearson’s test can reveal the association strength between the
actual data and the forecasting result. In this section, the dis-
cussion of association strength based on Pearson’s correlation
coefficients are calculated to further justify the excellent
ability of the proposed AVRM-GPR compared with the other
elven competitors. Generally, the correlation coefficient (CC)
is equal to 1, indicating a significant linear relationship
between the actual data and the forecasting data, whereas CC
is equal to 0, representing no relationship between these two
datasets. The average CC values of different lead times are

FIGURE 8. Forecasting results of Series E. (blue line: the observed data;
green line: the worst results among all benchmark models; cyan line: the
best results among all benchmark models; magenta line: the
deterministic results of the AVRM-GPR, and the grey bounds are the
uncertainty bounds provided by the AVRM-GPR).

FIGURE 9. Comparison of correlation coefficient.

presented in Figure 9, where Model1 to Model12 represent
GRNN, RBF, BP, ELM, DWT-PACF-ELM, EEMD-PACF-
ELM, AVMD-PACF-ELM, AVR-GRNN, AVR-RBF, AVR-
BP, AVR-ELM, and the proposed AVRM-GPR model. It can
be found that the CC values of the proposed AVRM-GPR
are significantly higher than these of individual models and
hybrid models with different DDTs. The overall forecasting
accuracy of the proposed AVRM-GPR model is no less than
these of the AVR-based models and AVMD-ELM model.
The average improvement percentages of average CC value
from the GRNN, RBF, BP, ELM, DWT-PACF-ELM, EEMD-
PACF-ELM, AVMD-PACF-ELM, AVR-GRNN, AVR-RBF,
AVR-BP, and AVR-ELM on all cases of the testing data are
9.53%, 8.91%, 7.46%, 7.51%, 1.94%, 1.98%, 0.65%, 1.41%,
2.38%, 0.95%, and 0.11%, respectively.

B. IMPROVEMENTS
In this subsection, three indicators (PRMSE, PMAE, and
PMAPE) are adopted to discuss the accuracy and effective-
ness of our developed model in detail. PRMSE, PMAE, and
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TABLE 9. Improved percentages between compared models and the
proposed model on all six datasets for all steps forecasting.

PMAPE represent the improvement percentages of the indices
RMSE, MAE, and MAPE, respectively. Table 9 presents the
mean percentages of these three error improvements values
compared with eleven models for three steps forecasting in
all observed series. It is found that remarkable performance
improvement of indices RMSE,MAE, andMAPE on all three
horizons. The average improvement percentages of MAPE
from GRNN, RBF, BP, ELM, DWT-PACF-ELM, EEMD-
PACF-ELM, AVMD-PACF-ELM, AVR-GRNN, AVR-RBF,
AVR-BP, and AVR-ELM on all cases of the testing data are
76%, 71%, 73%, 70%, 50%, 49%, 28%, 51%, 49%, 36%, and
11%, respectively.

To sum up, we can safely and reasonably conclude that:
(a) the proposed forecasting model is insensitive to the col-
lected data, time interval, and the number of the training data
due to its excellent forecasting effectiveness; (b) the proposed
AVRM-GPR achieves extremely competitive results and pro-
vide more information on uncertainty, so it is a valuable alter-
native for stochastic, nonlinear, and non-stationary energy
series forecasting problems.

C. LIMITATIONS
Although the proposed AVRM-GPR shows a good perfor-
mance in the wind speed and streamflow forecasting, there

remain aspects of this model that need to be improved, which
can be summarized as follows.
(1) The proposed model is just verified in the field

of energy systems, including wind farms and water
resources system, other unstable series like load and
price have not been tested.

(2) The proposed model is focused mainly on short-term
wind speed forecasting. More effort can be invested in
long-term wind speed prediction to further improve the
efficiency of operation and scheduling in a wind power
system.

(3) In the proposed model, the GPR was adopted to merge
advantages of many neural networks and quantify the
forecasting uncertainty. However, thus far no perfect
theory exists that can help effectively determine the
kernel function when using GPR. In the current study,
the kernel function in GPR was determined by empir-
ical studies. Accordingly, the effective determination
of the appropriate kernel function when developing
energy series forecastingmodels should be investigated
in future.

(4) Additionally, further work also can consider several
other impact factors, such as humidity, air pressure,
as inputs to enhance the energy series forecasting
accuracy.

VII. CONCLUSION
As the serious environmental pollution, climate change
and energy crisis, clean energies, such as wind and water
resources, have attracted more attentions. One of the means
to promote the efficient and rational utilization of such
energy is forecasting. However, the energy series always is
non-stationary and highly non-linear, these intrinsic prop-
erties make their accurate forecasting very challengeable.
Merging merits of data decomposition method, feature selec-
tion, and multiple AI techniques, we develop a new compos-
ite uncertainty model. In the developed model, the AVMD
(adaptive variational mode decomposition) is first applied to
excavate implicit information from the original time series.
Then, the RF (random forest) is utilized to select the suitable
inputs for each mode. After that, the forecasting results of
multiple neural networks are taken as inputs to drive the
GPR model (called AVRM-GPR) for unstable energy time
series forecasting, such as wind speed and streamflow. Eleven
models in three categories, i.e., the individual models, hybrid
models with different DDTs, and AVR-based models, are
compared with the proposed model. Experimental results
on 1-3 step forecasting indicate the AVRM-GPR can pro-
vide more accurate results than any involved forecasting
benchmark models. Additionally, the proposed AVRM-GPR
can provide both deterministic and probabilistic forecasting
results. The obtained uncertainty information can benefit
many relevant management departments in the allocation of
wind/water energy, the integration of wind energy into the
power system, and the safe of the power system. By com-
prehensively comparing the results of one to three horizons,
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the average PMAPE of the ELM, AVMD-PACF-ELM, and
AVR-ELM on all tested cases are 70%, 28%, and 11%,
respectively. The results also indicate the positive influence
of time series decomposition method, and feature selection
imposing on the developed model. Therefore, by reasonably
integrating time series decomposition method, feature selec-
tion, and designing suitable composite strategy, the perfor-
mance of the unstable energy series forecasting model could
be improved.
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