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ABSTRACT Convolutional neural networks have demonstrated powerful abilities to achieve state-of-the-art
results in many classification tasks, while the interpretability and reliability of these complicated models are
also a non-negligible problem. Understanding how these networks arrive at their final decisions becomes
more andmore indispensable, so this article puts forward an interpretivemethod to obtain feature importance,
which indicates to what extent an input feature can discriminate different classes. The proposed method
utilizes the attribution maps of multiple-class predictions and can decomposes the feature importance into
individual and co-variation effects. Some properties of the method are justified theoretically. Furthermore,
a visualization method is proposed to sketch the silhouette of the target object. And to improve computational
efficiency, some practical tricks are applied. For the purpose of evaluating this method, some comparative
experiments are performed; the results testify that the proposed method can identify important features and
improve the visualization effects.

INDEX TERMS Class discriminability, convolutional neural networks, model interpretation, feature
importance, visualization map.

I. INTRODUCTION
In recent years, CNNs have shown promising performance
in various tasks, such as image classification [1], [2], face
recognition [3], [4], semantic segmentation [5], [6], and
object detection [7], [8]. Yet, due to the sophisticated internal
structures and operation mechanisms, it is problematic to
interpret their predictions. Consequently, how to clarify the
behavior of these black-box models and make them more
credible and understandable is of considerable significance
in areas of healthcare, autonomous driving, bank loans, etc.
For example, when doctors use a CNN model to diagnose a
patient’s medical image, knowing which parts of the image
are used to make decisions is the key to judging whether
the model diagnosis is correct or wrong. Another case in
point is that the generalization ability of a model can be
effectively measured by analyzing which input features are
used to predict, e.g. the model of using snow to distinguish
huskies from wolves does not have strong generalization [9].

With the increasing attention on the interpretation of
CNNs, large quantities of researchers have proposed var-
ious methods to resolve this issue. Plenty of works have
concentrated on explaining an individual prediction, which
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can be realized by computing the attribution of each input
feature to the score of a target class. The approaches include
perturbation-basedmethods [9], [10], backpropagation-based
methods [11], [12], gradients-based methods [13], [14], and
so on. Most of the attribution methods satisfy the Conser-
vation theorem [11] that information will not be lost when
it spreads between hidden layers, i.e. the target class score
can be completely converted to the sum of the attributions
of all input features. However, a common drawback of the
attribution methods is that the feature attributions are calcu-
lated based on only a single target class that is usually the real
class when it is known or the class with maximum prediction
probability. Therefore, the attribution methods only use part
of the information in neural networks to evaluate feature
contributions.

The feature attributions can be used to interpret the model
predictions; however, in some cases they cannot give proper
interpretation. For example, given a simple neural network
model without hidden layers (left in Fig 1), in which the
two class outputs are only the linear combination of the two
inputs, we can calculate the feature attributions by using the
LRP, DeepLift (the baseline is set to 0), perturbation (the
baseline is set to 0), input*gradient and integrated gradients
techniques, all of which obtain the same feature attributions
for the instance (1,1). As shown in right table in Fig 1,
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FIGURE 1. A simple neural network model (left) and the feature
attributions (right).

the feature X1 plays more import role than X2 for interpreting
the predictions of C1 and C2 because the feature attribution
of X1 is larger than that of X2. However, it is obvious that
X2 can determine the final decision because X1 contributes
equally to the predictions of C1 and C2, and X2 contributes
more to C1 than to C2.

This article mainly focuses on how to measure and under-
stand the importance of input features in classification tasks
by utilizing all class information in CNNs. The feature impor-
tance score indicates to what extent an input feature can
discriminate different classes. The main contributions of this
research are summarized as follows: 1)
1) The proposed feature importance score is the attri-

bution to the variation of multiple-class predictions
instead of the attribution to a single target class pre-
diction; the feature importance score ground on the
attribution methods has an improvement in the visual-
ization effect compared with the existing approaches
(see Fig 2 (STD)).

2) The feature importance can be decomposed into indi-
vidual effects and co-variation effects, which solve
the limitations of most of current methods that cannot
give co-variation effects between features. Moreover,
some practical tricks are introduced into the realization
of feature importance maps to enhance computational
efficiency.

3) A simple visualization method based on the generated
feature importance score map is proposed, which can
sketch the silhouette of the object related to the predic-
tion in the picture (Fig 2 (Silhouette)).

This article is organized as follows: Section 2 reviews some
previous techniques that explain the individual predictions
of CNN classification networks; in Section 3, the proposed
method in this article is illustrated in detail; to evaluate the
quality of this method, some experiments are elaborated in
Section 4; finally, Section 5 includes the conclusions and the
attention of future work.

II. RELATED WORKS
This section firstly describes some properties that local inter-
pretation methods may have. Then some existing methods of
calculating feature attributions to single target class predic-
tion are summarized.

A. PROPERTIES OF LOCAL INTERPRETATION
Because the effects of local interpretation methods are
not easy to evaluate based on some quantified criterion,

researchers propose some properties that a good local inter-
pretations method should satisfies. We list the properties
as in [15].

1) Sensitivity (also calledDummy in [16] andMissingness
in [17]). If a model does not depend on some feature,
then the attribution of that feature is always zero.

2) Completeness (also called Local Accuracy in [17], Effi-
ciency in [18]). The feature attributions add up to the
prediction of model at any input.

3) Linearity (also called Additivity in [18]). The attribu-
tions for a model αf + βg, a linear combination of
two models f and g, should be the weighted sum of
the attributions for f and g with weights α and β,
respectively.

4) Symmetry-Preserving (also called Symmetry in [18]).
An attribution method is symmetry-preserving, if for
all inputs that have identical values for symmet-
ric features, the symmetric features receive identical
attributions.

5) Implementation Invariance. The attributions are always
identical for two functionally networks, whose out-
puts are equal for all inputs, despite having different
implementations.

B. LOCAL INTERPRETATION METHODS
1) PERTURBATION-BASED METHODS
These approaches make ablation to some input features
(e.g. some pixels of the input image) and observe the change
of the activation of the interested output neuron. Deconvolu-
tional Network (DN) [19] occluded some parts of the input
image, and the change of the output decision showed which
part of the image was more important for prediction. Predic-
tion Difference Analysis (PDA) [10] removed multiple input
features simultaneously and measured the change of target
class score by the difference between p(c|x) and p(c|x\i)
under the assumption that the input features are correlated,
where p(c|x) represents the probability that the prediction of
the input image x is c and p(c|x\i) represents the probability
that the input image x is predicted as class c when the feature
(or pixel) i is removed

2) BACKPROPAGATION-BASED METHOD
These approaches propagate back the class score of a specific
output neuron through each hidden layer down to the input
variables.
Deconvolutional Network [19] proposed a deconvolution

visualization framework where the feature map of each layer
could be visualized by mapping back to the input space
through unpooling, rectification, and filtering. Layer-wise
Relevance Propagation (LRP) [11] explained the contribution
of each input variable to the target output neuron activation.
The attribution map was realized by layer-wise linear propor-
tional distribution with one forward and one backward propa-
gation. Deep Taylor Decomposition (DTD) [20] decomposed
the activation value for each neuron according to the contri-
bution of its input based on layer-wise Taylor’s first-order
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FIGURE 2. Visualization of the proposed method. The original image is sampled from
ImageNet dataset (Original), the feature importance map is obtained by the proposed
method (STD), and the silhouette map is based on the feature importance map
(Silhouette).

expansion, but it ignored the negative impact of input ele-
ments on the target output score. DeepLIFT (DL) [12] com-
pared the activation value of each neuron with its reference
value, and converted discrete gradients into feature attribu-
tions based on gradient chain rule. The methods of LRP, DTD
and DL solve the saturation problem and satisfy sensitiv-
ity ground on explaining the individual prediction without
considering the class separation of input features. PatternNet
and PatternAttribution [21] separated the signals from the
distractors during the backward pass, trained a signal estima-
tor for each neuron, and substituted the informative direction
generated by the signal estimator for the weight.

3) GRADIENTS-BASED METHODS
These methods construct a saliency map by calculating the
derivative of the output class function concerning each input
pixel.
Saliency maps (SM) [13] were acquired by differentiating

the class scores with respect to the individual input pixel
and taking the absolute value. SmoothGrad (SG) [14] was
achieved by repeatedly adding random Gaussian noises to
the input image and averaging the resulting saliency maps.
This process produces less noise and better performance in
visual coherence and discriminability. Guided Backpropaga-
tion (GB) [22] proposed that the generated map contained
both forward and backward propagation information by com-
bining the gradients-based method and the deconvolution
framework to operate ReLU activations in the process of
backpropagation. Nevertheless, the essence of SM, SG and
GB is to calculate the gradients, so when saturation prob-
lem [23] occurs, i.e. the prediction flattens in vicinity of input,
the gradient violates sensitivity [15].
Input*Gradients (Inp.*Grad.) [24] proved that if only lin-

ear or approximately linear (e.g. ReLU) functions were used
to activate neurons and bias terms were included in activation
vectors propagated between hidden layers, then LRP reduced
to Inp.* Grad.; this technique improves the resolution of
attribution maps and leverages the information of inputs, but
dose not solve the saturation problem of Gradients-based
methods. Integrated Gradients [15] hypothesized that the
reference value and the original input value fell on a straight
line for each input feature; then calculating the gradient

for each point on the line and integrating all the gradients
could obtain the input feature relevance score; this method
addresses the saturation problem and satisfies the sensitivity
and implementation invariance [15].
Gradient * Input [25] is a unified framework, under which

the occlusion method of DN, ε-LRP, SM, DL, Integrated
Gradients can all be realized, and eachmethod has a particular
expression corresponding to the gradient of the activation
function.

4) ADDITIVE MODEL-BASED METHODS
Local Interpretable Model-agnostic Explanations (LIME) [9]
trained a linear separable explainer with interpretable fea-
tures near an input point through perturbating the explain-
able feature representations, which locally approximated the
behavior of the original model. This method can be widely
applied to manymachine learning models. SHapley Addictive
exPlanations (SHAP) [17], [18] is based on Shapley value
of cooperative game, and can be employed in explaining
various models of machine learning and deep learning, and
also can produce a unique explanation. SHAP is subject to
the properties of consistency, missingness, and additivity.

III. METHODOLOGY
To calculate feature importance, feature attribution maps
need to be obtained firstly by some methods mentioned in
Section II; then, the attribution maps ground onmultiple class
scores are utilized to measure the class discriminability of
each input feature. In addition, extracting somemore essential
features from the feature importance map can sketch the
silhouette of the target object; thus, the feature selection
mechanisms of CNN models can be displayed more visually
in prediction processes.

A. FEATURE IMPORTANCE
First of all, let A be a K × N matrix of K classes and
N features as shown in Table 1. Each row j, denoted as
[Aj1,Aj2, . . . ,AjN ] corresponds to an attribution map which
is achieved by an attribution method regarding the target
class Cj. Each column i, denoted as [A1i,A2i, . . . ,AKi]T ,
corresponds to the ith input feature’s attributions to K classes.
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TABLE 1. The form of matrix A.

Moreover, let Aj. =
∑N

i=1 Aji, A.i =
∑K

j=1 Aji and A =∑
j
∑

i Aji.
Definition 1: Feature attribution. Aji is defined as the

attribution of feature Xi on class Cj.
Feature attribution can be calculated by LRP, Inp.* Grad.,

DL and other attribution methods described in Section II.
If the attribution map satisfies the property of Completeness,
then for each row j inA,

∑N
i=1 Aji = pred(Cj), where pred(Cj)

refers to either pre-softmax or after-softmax value of the
jth class.
Definition 2: Variation of class predictions.The variation

of classes (C1,C2, . . . ,CK ) is defined as

V [C] =
K∑
j=1

(
pred(Cj)−

1
K

K∑
i=1

pred(Ci)

)2

V [C] suggests the intensity of change of K class scores.
The bigger the value of V [C], the greater the degree of
distinction between classes is.
Definition 3: Individual effect of feature. The individual

effect of feature Xi’s attribution on classes (C1,C2, . . . ,CK )
is defined as

V [Xi] =
K∑
j=1

(Aji −
1
K
A.i)2

V [Xi] implies the variation of attributions of Xi to K class
scores, and the magnitude of V [Xi] illustrates the capacity
of Xi to distinguish classes. Additionally, the standard devia-
tion of feature Xi’s attribution on classes (C1,C2, . . . ,CK ) is
defined as

STD[Xi] =
√
V [Xi] (1)

Definition 4: Co-variation effect of two features.The
co-variation of features Xi and Xs’s attributions is defined as

COV [Xi,Xs] =
K∑
j=1

(
Aji −

1
K
A.i

)(
Ajs −

1
K
A.s

)
(2)

The larger the value of COV [Xi,Xs], the stronger the
co-variation between the two features in the prediction pro-
cess. When i = s, COV [Xi,Xs] = V [Xi].

Definition 5: Feature importance. The feature importance
of feature Xi is defined as

φi = V [Xi]+
N∑

s=1,s6=i

COV [Xi,Xs] (3)

The first term on the right hand side of (3) denotes the
individual effects of feature Xi; the second term denotes the
co-variation effects of feature Xi with the other features.
If features are independent of each other, then the feature
importance of feature Xi is simplified as φi = V [Xi]. In fact,
φi represents the ability of Xi to distinguish between classes.
Proposition 1: The feature importance defined in (3) sat-

isfies the properties of Dummy, Implementation Invariance,
Symmetry-Preserving if the attribution method satisfies these
properties.

The proofs of the propositions throughout the paper are
shown in Appendix A.
Proposition 2: The sum of feature importance equals the

variation of classes, i.e. V [C] =
∑N

i=1 φi if the feature
attribution map satisfies the property of Completeness.

Proposition 2 illustrates that the feature importance add up
to the variation of class scores, other than adding up to a single
class score like the feature attributions.
Proposition 3: For a linear combination f + g of two

models f and g, φi(f + g) = φi(f )+ φi(g)+ φi(f ∗ g) where

φi(f ∗ g) =
N∑
s=1

K∑
j=1

(
Aji −

1
K
A.i

)(
Bjs −

1
K
B.s

)

+

N∑
s=1

K∑
j=1

(
Bji −

1
K
B.i

)(
Ajs −

1
K
A.s

)
where A and B denote the attribution matrices of models f
and g, respectively.

For a linear combination of models, the feature importance
takes into account the co-variation between model f and g,
φ(f ∗ g). However, the attribution methods that satisfies the
property of Linearity, such as LRP and Inp.*Gra., assume that
there are no co-variation effects between two models.

B. SILHOUETTE
Based on the obtained STD map of input features defined
in (1), this article presents a novel visualization method of
important features, which can sketch the silhouette of the
target object related to prediction in the image.

For each element of the STDmap, the ratios of the element
to its neighboring elements in its neighborhood of size r are
calculated. If the maximum value of all ratios is greater than
a specified threshold θ , then the target element is retained in
the Silhouette map; otherwise, it is set to 0.

The process of the Silhouette map generation is equivalent
to filtering features with far less important in the STD map
and only preserving features that are essential for the class
separation. Algorithm 1 expounds the process of generating
a Silhouette map.
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Algorithm 1 Generating Silhouette Map
Input: the STD_map, S, of size H ×W × C ; the neighbor

size r ; threshold θ
Output: the Silhouette mapM
1: for each element Sijk in S do
2: Mijk = 0
3: N (Sijk , r) = {Xlmk ∈ S : |l − i| ≤ r and |m-j| ≤ r}
4: for each neighbor s in N (Sijk , r) do
5: if Sijk/s ≥ θ then
6: Mijk = Sijk
7: exit for
8: end if
9: end for

10: end for
returnM

C. PRACTICAL ESTIMATION
To enhance computational efficiency, three practical tricks
are employed: first, top-k (k < K ) class scores, instead of all
K classes, are used to calculate feature importance; second,
the attribution maps of multiple-class scores can be obtained
by Jacobian matrix in the framework of TensorFlow; third,
the co-variation between input features can be efficiently
calculated based on matrix operations.

1) TOP-k SELECTION
In Section 3.1, all class scores (K classes) of a neural network
model are used to obtain A that is further used to calculate
feature importance in (3). Although for an input feature,
calculating the variation of its attributions for all classes can
better evaluate its class discriminability, the calculation cost
will be prohibitive if the model has a great many of output
neurons, such as 1,000 classes in VGG16. Therefore, in order
to ensure high computational efficiency, the top-k (k < K )
classes are selected for computing feature importance in this
study.

To prove that the utilization of top-k classes will not
have a significant impact on the feature importance results
and visualization effects, this article employs VGG16 and
ImageNet database to perform two sets of verification
experiments. The premise of these experiments is to ran-
domly select 500 images from the ImageNet database and
apply Inp.* Grad. to calculate A, then for each input
image:

1) The first experiment sets three threshold values:min_p1
= 1e-5, min_p2 = 1e-6, min_p3 = 1e-7; then selects
ki classes with prediction probabilities larger than
min_pi, i = (1, 2, 3) to calculate the feature importance
map, respectively. The Pearson correlation coefficient
between the importance map of ki classes and the map
obtained by 1,000 classes is calculated; furthermore,
this experiment draws the frequency distribution his-
togram of ki classes (first row in Fig 3 (a)) and the
scatter diagram that describes the relationship between

FIGURE 3. Correlation between feature importances of top-k classes and
all K classes.

the correlation coefficient and the number of selected
classes ki (second row in Fig 3 (a)).

2) The second experiment sets up three threshold val-
ues: top-k1 = 100, top-k2 = 300, top-k3 = 500; next,
calculates directly feature importance map by top-ki,
i = (1, 2, 3) class scores. Meanwhile, this experiment
computes the Pearson correlation coefficient between
the importance map of top-ki, i = (1, 2, 3) classes
and the map acquired by 1,000 classes; on this basis,
the frequency distribution histogram of the correlation
coefficient is plotted (Fig 3 (b)).

Fig 3 (a) suggests that one probability threshold, min_p,
can result in a large range of k; and for some images, the fea-
ture importance maps with small k can be very close to the
results obtained by all classes scores, i.e. the correlation coef-
ficients are close to 1. However, even if the probability thresh-
old is set to 1e-7, for some images, k are not large enough
such that the correlation coefficients are small. Therefore,
determining top-k classes by setting the probability thresh-
olds has certain limitations. As can be seen from Fig 3 (b),
as the number of selected classes increases, the correlation
coefficients of more samples fall into the range of [0.8, 1],
which means that fixing the value of k can control the results
easily.

Furthermore, Fig 4 compares the visualization effects real-
ized by top-k class scores with those obtained by all class
scores based on Inp.* Grad., which demonstrate that the
utilization of top-k classes almost does not affect the effects of
visualization while improving the computational efficiency.

2) GRADIENTS CALCULATION
Shrikumar et al. [24] first demonstrated that LRP was equiv-
alent to Inp.* Grad. under certain conditions; then the view-
point presented in [12] suggested that Inp.* Grad. took
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FIGURE 4. Comparison of the visualization effects produced by using different values of top-k . The second and
third columns are the results calculated by top-300 classes, and the last two columns are the heatmaps
generated by all classes. Furthermore, the results are realized by VGG16 and ImageNet dataset.

advantage of information about the signs and values of input
features and was more desirable than the methods of merely
calculating the gradients. Afterwards Ancona et al. [25]
argued that Inp.* Grad. belonged to global attribution meth-
ods, which made the contributions of input features more rea-
sonable and improved the visualization effects of attribution
maps.

With that in mind, this study adopts Inp.* Grad. attribution
method and obtains the gradients of multiple-class scores on
input features in parallel through Jacobian matrix that is suit-
able for first-order differential of vectors, which can greatly
improve the computational efficiency. If class scores vector is
denoted as Sc = [S1, S2, . . . , SK ]T and input features vector
is X = [X1,X2, . . . ,XN ]T , then the partial derivative of Sc
with respect to X can be expressed as matrix J:

J =
∂SC
∂X
=



∂S1
∂X

∂S2
∂X
...

∂SK
∂X



=


∂S1
∂X1

∂S1
∂X2

· · ·
∂S1
∂XN

...
...

. . .
...

∂SK
∂X1

∂SK
∂X2

· · ·
∂SK
∂XN


and matrix J can be easily calculated by tf.jacobian in
the framework of Tensorflow. The matrix A defined in
Section 3.1 is calculated by X ⊗ J where ⊗ denotes
element-wise product.

3) CO-VARIATION CALCULATION
To calculate all features’ importance, the number of
co-variations needed to be calculated is N (N − 1)/2, whose

computation cost is very high when N is large. For example,
for an image with size of 224 × 224 × 3, the number of
co-variations is more than 11 billion. Therefore, it is neces-
sary to find an efficient way to calculate co-variations.
Proposition 4: Let Ac = [A.1,A.2, . . . ,A.N ], Ar =

[A1.,A2., . . . ,AK .]T . The co-variation term in feature impor-
tance can be calculated by

COV = sumc

(
(A−

1
K
Ac) ⊗ [(Ar−

1
K
A) − (A−

1
K
Ac)]

)
(4)

where⊗ denotes element-wise product; sumc(X) denotes the
column sum of matrix X. In this equation, a matrix minus a
column (row) vector means that each column (row) in the
matrix minus the column (row) vector; a matrix minus a
scalar value means each element in the matrix minus the
scalar value.

Since the calculation in (4) adopts the matrix operation,
the co-variations of all input features can be calculated in
parallel, which greatly improves the calculation efficiency.

IV. EXPERIMENTS
In this Section, four comparative experiments and results are
elaborated: (1) STD and Silhouette shows the improvement of
the proposed method over Inp.* Grad. through the visualiza-
tion of STD maps and Silhouette maps; (2) Occlusion objec-
tively measures the correctness of the proposed method by
blocking multiple input features simultaneously in descend-
ing order of the importance scores and observing the changes
of the predictions; (3) Model Comparison further explores
the characteristics of three CNN models through comparing
the diversity of input features concerned by different models
in predictions; (4) Method Comparison compares the imple-
mentation effects by using different attribution methods to
calculate feature importance scores.

A. EXPERIMENT SETUP
In the experiments, this study adopts three popular pre-trained
CNN models: VGG16 [26], ResNet50 [2], and Inception
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FIGURE 5. Visualization of the effects of Inp.* Grad. and the proposed method. The third column refers
to the results of the feature importance scores calculated in (3).

TABLE 2. The structure of MNIST_CNN.

V3 [27]; Furthermore, this article trains a simple CNNmodel
for the MNIST dataset [28], which is called MNIST_CNN.
MNIST_CNN refers to the structure of LeNet and param-
eters setting proposed in [29], and achieves 98.89% testing
accuracy. The structure and parameters of MNIST_CNN are
detailed in TABLE 2. To measure the quality of this pro-
posed method, ImageNet dataset [30] and MNIST dataset
are chosen; and for these two data sets, the four experi-
ments respectively select top-300 and all ten class scores
to obtain matirx A, respectively. Furthermore, the first three
experiments apply Inp.*Grad. to calculate feature importance
maps and the last experiment compares different attribution
methods.

B. RESULTS
1) STD AND SILHOUETTE
This experiment randomly samples some images, which are
correctly predicted by VGG16 and MNIST_CNN, from Ima-
geNet dataset and MNIST dataset, respectively. To generate
Silhouette maps, the neighbor size r is set up to 3 and the
default value of threshold θ is 3 in Algorithm 1. In addition,

FIGURE 6. Visualization of the co-variation effects for three chosen pixels
from top-left image in Fig 5. The columns from left to right correspond to
the pixels with maximum, minimum and almost zero feature importance,
respectively. The first and second rows are the visualization and
distribution (box plots) of co-variation effects, respectively.

for Inp.* Grad. attribution maps, only the maximum class
score is propagated backward.

As shown in Fig 5, the results of this experiment suggests
that the attribution maps based on Inp.* Grad., the feature
importance maps (FeaImp) and the co-variation maps (Cov)
have high similarities. Furthermore, the STD maps can
highlight the important input features more clearly and the
Silhouette maps can sketch the silhouettes of the objects.
Thus, owing to the competitive performance of visualization,
the following experimental results are mainly based on STD
maps. In particular, a large number of tests have proven that
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FIGURE 7. The occlusion results of Inp.* Grad. and the proposed method. The metrics, including prediction
of the label, the entropy and standard deviation of interested classes, are used to evaluate methods. The
vertical axis of the line chart indicates the value of the metrics, and the horizontal axis represents the
number of occluded pixels. The pictures are sampled from ImageNet dataset and MNIST dataset.

STDmaps and Silhouette maps have a better effect on images
with more complex textures (see Appendix A).

To illustrate the co-variation effects, we choose three pixels
with maximum, minimum and almost zero feature impor-
tance, respectively, from the top-left image in Fig 5. We cal-
culate the co-variation effects in (2) of the chosen pixels with
the other pixels and show them in the first row of Fig 6.
And the second row of Fig 6 shows the distributions of
co-variations. We can find that all of the co-variation effects
for the three pixels highlight the main objects – bottles in the
image. However, the distribution of co-variation effects are
different greatly.

2) OCCLUSION
Aiming to objectively evaluate the proposed method, this
article adopts the region perturbation method [31]. In the
first place, this experiment selects some images which are

classified accurately by InceptionV3 andMNIST_CNN from
ImageNet dataset and MNIST dataset. Second, the feature
importance maps and the Inp.* Grad. score maps gener-
ated from Inception V3 and MNIST_CNN are sorted in
descending order concerning the score values. Next, each
iteration will further ablate a certain number of pixels accord-
ing to the order, while keeping the occluded pixels of last
iterative step. Finally, for each iteration, the experiment
observes the values of three metrics, including the prediction
of the target class, entropy and standard deviation of selected
multiple-class scores. The entropy of top-k class scores has
the mathematical form:

E[p] = −
k∑
c=1

pc log (pc)

where p represents the vector of k class scores and pc denotes
the cth element in p.
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FIGURE 8. Visualization of the important features extracted from three CNN models. The
right side of the figure is marked with the predicted classes and probabilities of the
corresponding model for the target objects in the sample.

The three metrics stand for different meanings: the
change of the target class prediction depicts the influence
of occluded pixels on the prediction; the entropy refers to
the degree of information confusion, and standard devia-
tion describes the variation range of the data. Because the
proposed method focus on variation of multiple-class pre-
dictions, this experiment pays attention to the entropy and
the standard deviation. Intuitively, when the pixels with
higher class discriminability are occluded, the divergence
between the decisions of multiple classes tends to be smaller,
so the standard deviation of these class scores will decrease;
in accordance with it, the entropy of these scores will
increase.

Fig 7 displays the results of this experiment. Each occlu-
sion processes the pixels that have positive importance (rele-
vance) scores. As the number of occluded pixels increases,
in general, the entropy of multiple-class scores will grow
and the standard deviation of these predictions will decline;
moreover, the values of the entropy and standard devia-
tion calculated by the feature importance scores change
more dramatically than those from Inp.* Grad.. This phe-
nomenon reveals that the pixels with strong class separation
capacity are ablated when the image is continuously per-
turbed, and compared with Inp.* Grad., the proposed method
embodies the class discriminability of input features more
prominently.

3) MODEL COMPARISON
We may want to know if different networks extract dis-
tinctive crucial features in the classification tasks. As net-
work structures become more complicated, the features that
are extracted by the last convolutional layer will contain
more spatial and semantic information. In an attempt to

understand which features are used to classify in different
CNN networks, this experiment compares the heat maps
calculated by the proposed method and Inp.* Grad., sepa-
rately, with three network structures. The prerequisites of this
experiment is to choose some pictures which have different
decisions relying on the network structures from ImageNet
dataset.

As illustrated in Fig 8, VGG16 predicts that the top-1 class
is the motor scooter (prob= 0.348); ResNet50 and Inception
V3 forecast that the top-1 class is the beacon with the prob-
ability of 0.342 and 0.949, respectively. It is consistent that
the STD map of VGG16 highlights the motor scooter in the
picture, while the other models only emphasize the beacon in
the image.

4) METHOD COMPARISON
In the previous experiments, the feature attribution maps,
which are used to calculate the proposed STD and Silhouette
maps, are obtained based on Inp.* Grad.. In this experiment,
the results based on some other attribution methods, includ-
ing ε-LRP, SM, Inp.* Grad., DL, Integrated Gradients,
are compared. In this experiment, some samples cor-
rectly predicted by VGG16 and MNIST_CNN are ran-
domly drawn from ImageNet dataset and MNIST dataset,
respectively.

The visualization results (Fig 9) demonstrate that the STD
and Silhouette maps on different attribution methods are
roughly similar except the maps generated from SM, which
confirms the conclusion drawn by Ancona et al. [25] that
ε-LRP, SM, DL, Integrated Gradients could be unified in
Inp.* Grad. framework. Moreover, the performance of SM is
undesirable, probably because just calculating the gradients
will produce more noise.
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FIGURE 9. Implementation effects of different attribute methods. The last column are heat maps
generated directly from the attribution methods.

V. CONCLUSION
For complex nonlinear models (e.g. CNNs), it is of great prac-
tical significance to understand their internal operation mech-
anisms and make their decisions more reliable. Preferable
performance combined with comprehensible interpretation
processes has a profound and positive impact on the future
applications in many fields.

The method proposed in this article can improve the inter-
pretability and visualization effects of existing attribution
methods for classification tasks of CNNs. Specifically, STD

maps achieved by backpropagating multiple predictions can
concentrate on the class discriminability of input pixels. Sil-
houette maps generated from the STD maps can approxi-
mately sketch the silhouettes of the target objects. At the
same time, three practical tricks including selection of top-k
classes, calculation of Jacobian matrix and matrix operation
of co-variations can ensure the computational efficiency.

The proposed method can also be applied to some other
complex models, not limiting to CNNs, if we can obtain
the attribution matrix. Fortunately, some model-agnostic
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FIGURE 10. Heatmaps produced by the proposed method and Inp.* Grad., which are randomly sampled
from ImageNet dataset.

methods, such as LIME and SHAP, can help obtain the attri-
bution matrix for almost any model in classification tasks.

The future work is to study the application of the proposed
method on some other network structures, such as recurrent
neural networks, or more diversiform data sets, such as natu-
ral language data.

APPENDIX A
PROOF OF PROPOSITIONS
A. PROOF OF PROPOSITION 1
If the attribution method satisfies the property of Dummy,
the attribution to the feature not contained in model is zero
for any class. Thus, the variation and co-variation effects of
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the feature are zero; and further its feature importance is
zero. If the attribution method satisfies the property of Imple-
mentation Invariance, then the attribution matrix (Table 1)
keeps invariant for different functionally models with the
same implementation; thus, the feature importance is imple-
mentation invariant. If a model is symmetry-Preserving for
two feature Xi and Xj, then the columns corresponding to
Xi and Xj in attribution matrix (Table 1) are identical; thus,
the feature importance of Xi and Xj are identical.

B. PROOF OF PROPOSITION 2
If the feature attribution map satisfies the property of Com-
pleteness, then Aj. = pred(Cj). Eq. (3) can be transformed
into another representation:

φi = V [Xi]+
N∑

s=1,s6=i

COV [Xi,Xs] =
N∑
s=1

COV [Xi,Xs]

So,
N∑
i=1

φi =

N∑
i=1

N∑
s=1

K∑
j=1

[(
Aji − A.i

) (
Ajs −

1
K
A.s

)]

=

K∑
j=1

[
N∑
i=1

(
Aji −

1
K
A.i

) N∑
s=1

(
Ajs −

1
K
A.s

)]

=

K∑
j=1

[(
Aj. −

1
K
A
)(

Aj. −
1
K
A
)]

=

K∑
j=1

(
pred(Cj)−

1
K

K∑
i=1

pred(Ci)

)2

= V [C]

C. PROOF OF PROPOSITION 4
Let Â = A− Ac, â = Ar − A, and Âi denotes the ith column
of Â. It is obvious that â =

∑N
i=1 Âi, and the ith element of

COV in (4) can be written as:

COVi =

(
Âi

)T (
â− Âi

)
, i = 1, 2, . . . ,N

In (2),

COV [Xi,Xs] =
K∑
j=1

(Aji − A.i)(Ajs − A.s)

= (Âs)T Âi

So, the second term in (3) is

N∑
s=1,s6=i

COV [Xi,Xs] =
N∑

s=1,s6=i

(Âi)T Âs

= (Âi)T
N∑

s=1,s6=i

Âs

= (Âi)T (â− Âi)

APPENDIX B
THE VISUALIZATION EFFECTS OF IMAGES WITH
COMPLEX TEXTURES
Fig. 10 shows some results of the proposed method, which
further testify the visualization effects of images with com-
plex textures.
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