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ABSTRACT Solar irradiance forecasting is essential in renewable energy grids amongst others for back-up
programming, operational planning, and short-term power purchases. This study focuses on forecasting
hourly solar irradiance using data obtained from the Southern African Universities Radiometric Network
at the University of Pretoria radiometric station. The study compares the predictive performance of long
short-term memory (LSTM) networks, support vector regression and feed forward neural networks (FFNN)
models for forecasting short-term solar irradiance. While all the models outperform principal component
regression model, a benchmark model in this study, the FFNN yields the lowest mean absolute error and
root mean square error on the testing set. Empirical results show that the FFNN model produces the most
accurate forecasts based on mean absolute error and root mean square error. Forecast combination of machine
learning models’ forecasts is done using convex combination and quantile regression averaging (QRA). The
predictive performance we found is statistically significant on the Diebold Mariano and Giacomini-White
tests. Based on all the forecast accuracy measures used in this study including the statistical tests, QRA is
found to be the best forecast combination method. QRA was also the best forecasting model compared with
the stand-alone machine learning models. The median method for combining interval limits gives the best
results on prediction interval widths analysis. This is the first application of LSTM on South African and
African solar irradiance data to the best of our knowledge. This study has shown that providing adequate
and detailed evaluation metrics, including statistical tests in forecasting gives more insight into the developed
forecasting models.

INDEX TERMS Forecast combination, machine learning, neural networks, solar irradiance forecasting,
support vector regression.

NOMENCLATURE Lasso Least Absolute Shrinkage and Selection
AAKR  Auto Associative Kernel Regression Operator
ANN Artificial Neural Networks LST™M Long Short-Term Memory

ARIMA  Autoregressive Integrated Moving Average MAE Mean Absolute Error

DBN Deep Belief Networks MAPE Mea1'1 absolute Percentage Error
MLPNN  Multi-Layer Perceptron Neural Network

ERBF Exponential Radial Basis function

FENN Feed Forward Neural Networks NWP Numerical Weather Prediction

GCV Generalised Cross validation lleCé}) Iljrmglp .al Component Regression .
. . rediction Interval Coverage Probability
GHI Global Horizontal Irradiance PINAW  Prediction Interval Normalised Width
KNN K-Nearest Neighbour PINC Prediction Interval Nominal Confidence
PIW Prediction Interval Width
The associate editor coordinating the review of this manuscript and PLAQR  Partially Linear Additive Quantile Regression
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QRA Quantile Regression Averaging

RMSE Root Mean Square Error

RNN Recurrent Neural Network

SVM Support Vector Machines

SVR Support Vector Regression

SVRGA  Support Vector Regression
based Genetic Algorithm

SVRPSO  Support Vector Regression

based Particle Swarm Optimisation

I. INTRODUCTION

The growth of industrialisation globally is resulting in the
depletion of fossil fuels which are used for electricity gener-
ation [1]. The continuous use of fossil fuels in the generation
of electricity also continues to cause environmental problems
such as global warming [2]. Renewable energy sources are
inexhaustible, clean and environmentally friendly [3]. This
calls for researchers to focus extensively on renewable energy
modelling and probabilistic forecasting.

Solar energy is one of the most important forms of
renewable energies that can contribute to the environmen-
tal and energy challenges [4]. However, the integration of
solar energy requires accurate forecasts for the effective
management of the electrical grid [5]. Electricity utility
decision-makers face a challenge of balancing demand and
supply of electricity in a cost-effective way which also
favours future economic prosperity and environmental secu-
rity. This paper compares the predictive performance of long
short-term memory (LSTM) networks, support vector regres-
sion (SVR), and feed forward neural networks (FFNN) model
for forecasting short-term solar irradiance.

A. AN OVERVIEW OF THE LITERATURE ON SOLAR
IRRADIANCE FORECASTING

Studies on solar energy were first initiated by Liu and Jordan
[6]. Since then, researchers have been giving attention to solar
irradiance with many modelling techniques being employed.
Solar irradiance forecasting mainly consists of physical mod-
els and statistical data-driven models [7]. Physical mod-
els are based on numerical weather predictions (NWP) for
solar irradiance forecasting. According to Sun ef al. [2],
solar irradiance forecasting techniques can be classified into
three groups; traditional mathematical statistics, numerical
weather forecasting and machine learning. Researchers have
recently paid attention to machine learning techniques such
as artificial neural networks (ANNs) [8]-[11], and sup-
port vector machines (SVM) [12]-[14] in forecasting solar
irradiance.

VanDeventer et al. [15] proposed a genetic algorithm-based
support vector machine model which they used for short-term
forecasting of photovoltaic power. Based on the mean abso-
lute percentage error and root mean square error measures the
proposed model was found to give more accurate forecasts
compared to the traditional support vector machine model.
In arecent study, [16] provided a detailed and comprehensive
comparative analysis of hybrid models used in solar radiation
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forecasting. The authors grouped hybrid models into six
classes. It is then argued that although the hybrid models are
more complex than stand-alone models, forecasting results
from these models are generally very accurate.

ANN has been applied extensively in forecasting solar
irradiance. Paoli er al. [17] presented an integrated model
to forecast daily solar irradiance using ANNSs. In the study,
the multi-layer perceptron neural network (MLPNN) is used
to forecast daily solar irradiance. Initially, the seasonal index
adjustment method is used to adjust the original solar irradi-
ance sequence. Empirical results from the study showed that
the mean absolute percentage error of the MLPNN model is
the lowest compared to those from the autoregressive inte-
grated moving average (ARIMA), Bayesian, Markov chain
and K-nearest neighbour (KNN) models. Using the K-means
clustering algorithm, [18] grouped input data into regions of
the reconstructed phase-space which had similar attributes.
The authors went on to model different groups using a
non-linear autoregressive neural network and then forecasted
the solar irradiance on the test data. The results of the study
showed that the clustering of the input space is an important
task to interpret the behaviour of the series.

Gensler et al. [19] in their study, discussed different ANN
and deep neural network (DNN) architectures in the field
of solar power forecasting. Different models such as phys-
ical forecasting model, MLPNN, LSTM, deep belief net-
works (DBN) and Auto-Encoders were employed and com-
pared. The results of the study showed that deep learning
algorithms have better solar power forecasting performance
compared to ANN and physical models on the data from
21 solar power plants in Germany. In another study, [20]
discussed an application of different machine learning algo-
rithms for short-term solar irradiance forecasting. The authors
used an SVR model with fixed parameter optimisation and
two hyperparameters optimised SVR models, support vector
regression with optimised hyperparameters using Genetic
Algorithm (SVRGA) as well as Particle Swarm Optimisa-
tion (SVRPSO). Their study used solar irradiance data from
Chicago, United States of America. The results showed that
SVRPO outperforms SVR model with fixed parameter opti-
misation and SVRGA.

Solar irradiance forecasting in South Africa using differ-
ent methods and techniques is discussed in the literature.
A hybrid model for solar irradiance and photovoltaic (PV)
power short-term forecasting is discussed in [5]. The predic-
tion of solar irradiance is done using physical models known
as clear-sky models which estimate solar irradiance in the
absence of clouds. Short-term PV forecasting was then done
using an auto-associative kernel regression (AAKR) tech-
nique which is usually used for fault detection. An application
of the proposed model was done using a PV plant located in
South Africa. The empirical results from this study showed
that the developed model produces accurate solar irradiance
forecasts.

Adeala et al. [21] presented a study on the prediction
of global solar irradiance using multiple linear regression
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with the inclusion of weather parameters in addition to the
traditional extraterrestrial irradiance and sunshine hours. The
study is done in all nine provinces of South Africa. It is
shown that the inclusion of weather parameters improves
the accuracy and performance of solar irradiance models for
some locations. In another study, Mpfumali et al. [22] used
partially linear additive quantile regression (PLAQR) models
in predicting day-ahead GHI. Data from Tellerie radiometric
station in the Northern Cape province was used. Two PLAQR
models were developed, one without interactions and the
other with hierarchical pair-wise interactions obtained using
the least absolute shrinkage and selection operator (Lasso).
The study also combined forecasts from individual models
using the convex combination method and quantile regres-
sion averaging (QRA). The results of the study showed that
the QRA forecast combination model was the best fore-
casting model compared with other individual models in
the study. A more recent study on global horizontal irradi-
ance using South African data is that of [23]. In this study,
[23] used three methods, seasonal autoregressive fraction-
ally integrated moving average (SARFIMA), harmonically
Coupled SARIMA (HCSAFRIMA) and Regression model
with SARFIMA error terms (SARFIMAX) to address the
long-range dependence inherent in the solar irradiance data
from three radiometric stations in South Africa. An additive
quantile regression model was used for benchmarking with
the three developed models. Results from this study showed
that long memory is anti-persistent in all models except one
that showed persistence.

B. RESEARCH HIGHLIGHTS

Based on the literature review discussed in I-A this study
makes the following contributions on global horizontal irra-
diance forecasting.

1) The Diebold-Mariano tests show that the forecasts in
all pairwise comparisons are not equally accurate.

2) Based on the Giacomini-White test, the feed forward
neural network has the highest predictive power.

3) Forecasts based on linear quantile regression aver-
aging are unbiased, while those from feed forward
neural networks and long short-term memory are
all biased with more under-predictions compared to
over-predictions.

4) As a stand-alone model, the feed forward neural net-
work is an appropriate model for forecasting hourly
solar irradiance.

5) Based on all the forecast accuracy measures and the
statistical tests used in the study, the linear quantile
regression averaging model produces the most accurate
forecasts that are unbiased.

6) The median method for combining interval limits
yields better results since the number of forecasts below
and above limits decrease significantly.

7) To the best of our knowledge, this is the first paper to
use LSTM in forecasting global horizontal irradiance
using South African data.
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The remainder of this paper is as follows. Section II pro-
vides a discussion about the models used in this study. The
empirical results and discussion are presented in Section III.
Finally, Section I'V concludes this paper and discusses future
work.

Il. MODELS

A. FEED FORWARD NEURAL NETWORKS

A feed forward neural network (FFNN) is a type of artificial
neural network (ANN) in which connections between the
nodes do not form a cycle or a loop. The study of this
technique was first initiated by McCulloch and Pitts [24]
who created a computational model of the concept. Different
researchers have further expanded the concept of ANN to
cover many features [25]. FFNN works by feeding input
data in one end which is then processed by the network and
comes out as output in the other end. Information flows in the
forward direction only. Two basic formulations of ANN are
discussed in the next two sections.

1) SINGLE-LAYER PERCEPTRON

Single-layer perceptron is the simplest type of a neural net-
work which has a single layer of output nodes [24]. A single-
layer neural network can be described mathematically as
follows:

D
W= g(Zwm), ey
i=0

where y is the output, g(-) is an activation function, x;
is input and w; represents the corresponding weight for x;.
Single-layer neural networks are not usually used in prac-
tice, but help in understanding the basic concept of neural
networks.

2) MULTI-LAYER PERCEPTRON

Multi-layer perceptron consists of multiple layers of com-
putational units, usually interconnected in a feed-forward
way [24]. A multi-layer neural network with one hidden layer
can be written as

M
Ve = h( > w,i?g(a,»)) , @
j=0

where,

aj = g( i a)l(-j])xi>. 3)
i=0

The multi-layer neural network is very similar to single-layer
neural network except that multi-layer neural network’s out-
put of the inner layer is again multiplied by a new weight
vector and wrapped in an activation function.

B. LONG SHORT-TERM MEMORY NETWORKS
The LSTM (long short-term memory) network is a type of
recurrent neural network (RNN). RNN is used when dealing
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with sequential data, like time series data. The LSTM network
was originally introduced by Hochreiter and Schmidhuber
[26] in a paper titled Long Short-Term Memory. The LSTM
network is different from regular RNN due to the reason that it
consists of LSTM blocks instead of nodes. One LSTM block
can be represented by the following system of equations,

fi = gWr.[xt, he—1 + br])

ir = gWi.lxe, he—1 + bi])

or = g(Wo.[xs, hi—1 + bo])

¢t = ficr—1 + iitanh(g(We.[x;, ly—1 + bcl))

h; = o; © tanh(c;), @)

where g(-) is the sigmoid function, tanh(-) is the hyperbolic
tangent, x; is the input vector, /, is the output vector, ¢; is a
cell state vector, W are weights and b are biases, f;, i;, and o,
are gates of the block.

C. SUPPORT VECTOR REGRESSION

Support vector regression (SVR) is based on support vec-
tor machine (SVM) which is a supervised machine learning
technique which involves statistical learning theory and the
principle of structural risk minimization. SVR was introduced
by Drucker et al. [27] and was extended from the SVM
model. Different basic kernel functions are used in SVM
models, which can be classified as polynomial (Poly), Gaus-
sian kernel, exponential radial basis function (ERBF), radial
basis function (RBF), sigmoid and linear [1]. The SVR works
by mapping the input space into a high-dimensional feature
space and constructs the linear regression in it which can be
expressed as

f(x) = wp(x) + b, ©)

where o is the weight vector, ¢(x) maps inputs x into a high
dimensional feature space that is nonlinearly mapped from
the input space x, and b is the bias term.

To calculate the coefficients w and b it is required to reduce
the regularized risk function which can be expressed as

1
0l + €7 3 e f ), ©)

i=1

! |
2
where ||cu||2 is a regularized term which maintains the func-

tion capacity. C is a cost error. The empirical term from
the second term in equation 6 can be defined as

LeQi fx)) = {lyi =f ()l = €, lyi=f@)l = €}). (D

Equation 6 expressed the transformation of the primal objec-
tive function in order to get the values of w and b by intro-
ducing the positive slack variables &;(*).

i
1 1
minimise 3 loll® + C7 Z(fi +&5)
i=1
yi—{w,xi) —b<e+§
(0, x)) +b—yi < e+ & (®)
é:l" S[* 2 0

subject to a(x) =
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The optimization problem expressed in equation 8 has to be
transformed into its dual formulation by using the Lagrange
multipliers to solve it more efficiently.

D. BENCHMARK MODEL

1) PRINCIPAL COMPONENT REGRESSION

Principal Component Regression (PCR), a benchmark model
in this study, is a regression analysis that is used to deal
with multiple regression data that have multicollinearity [28].
Multicollinearity occurs when one predictor variable in a
multiple regression model can be predicted with other vari-
ables linearly. It leads to least squares estimates which have
large variances, which means they may be distant from their
true values. A multiple regression model is given by

Y=XB3+¢, )

where Y is a vector of observed values, X is a matrix of
explanatory variables, f is a parameter vector, and ¢ is vector
of error terms. The least squares solution of equation 9 is
given by

B=X"xX)"'X"y. (10)

To get the first b Principal Components (PCs), we approxi-
mate the matrix X using singular value decomposition (SVD):

X =X + ex = (U D))V + ex = TPl + ex.
(1D

where T represents orthogonal scores and P loadings.
U and V are orthonormal and the matrix D is diagonal with
positive real entries. Now regressing Y on the scores leads to

g=PrT)'TTY. (12)

E. VARIABLE SELECTION

Variable Selection involves the selection of feature variables
that explains a target variable thereby reducing the number of
feature variables and complexity of a model. This process is
beneficial in terms of avoiding over-fitting, making a model
easier to interpret, and reduces in computational time. There
are many variable selection methods, however, in this study,
we use Lasso (least absolute shrinkage and selection oper-
ator) [29]. Let’s assume a regression model with response
variable Y and predictors Xi,...,X,. The Lasso formulation
is given as

1 p
min 5 (¥ = Xp) + 2Bl (13)
j=1

where h is the number of data points and A > 0 is the
parameter which controls the strength of the penalty. The
major advantage of Lasso is that it leads to simpler and
more interpretable models that involve only a subset of the
predictors [29].
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F. FORECAST COMBINATION

Forecast combination is a method used to combine forecasts
from different fitted models with a purpose of improving
forecast accuracy [30]. There are many forecast combination
methods, but this research will only focus on linear quan-
tile regression averaging (LQRA) and convex combination
method.

1) QUANTILE REGRESSION AVERAGING

QRA was first initiated by Maciejowska et al. [31]. QRA
treats forecasts from different models as independent vari-
ables and actual observations as a dependent variable (global
horizontal irradiance). Let J; ; be hourly global horizontal
irradiance, K be methods used to forecast the next m obser-
vations, i.e. m is the total number of forecasts. The forecast
combination, jzng, is given by

K
Y=o+ Bk e, TEO D, r=1,....m,
k=1
(14)

where J; ; represents predictions from method k, jthfA is the
combined forecasts, and & ; is the error term. QRA aims to
minimise

n K
arg mﬂin Z pf@,QRA —Bo— Z Br .k V1,k)s (15)
k=1

=1

where p; is the pinball loss function given as p;() = s(v —
I(s < 0) and I(.) is an indicator function. In this study we use
linear quantile regression averaging.

2) CONVEX COMBINATION

Convex combination method computes the sequence of
instantaneous losses suffered by the predictions from the
experts (models) using a loss function [32]. The loss function
can be based on square, absolute, percentage, or pinball loss.
The combined forecasts will be compared with forecasts from
each model using the equation given as

M
j\’;r = Z wmz)A’mt,r, (16)

m=1

where w,,; is the weight given to forecast m.

G. PREDICTION INTERVALS

The prediction interval widths (PIWs) for every model,
M;,j = 1,...,k, are denoted as PIW;,i = 1,...,m,
J=1,..., k. PIW;is calculated as

PIW; = UL; — LL;, (17)

where UL;; and LL;; are the upper and lower limits of the
prediction interval, respectively. Probability density plots and
box and whisker plots will be used in this study to find the
model which yields narrower PIWs.
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The probability that the forecast J; , lies in the prediction
interval (LL;;, UL;) is known as a prediction interval with
nominal confidence (PINC) of 100(1 —«)%. PINC is given by

PINC = P(; ; € (LL;, ULj) = 100(1 — a)%.  (18)

There are many indices used to assess the reliability of pre-
diction intervals, however, in this study we use the predic-
tion interval coverage probability (PICP) and the prediction
interval normalised average width (PINAW) [33]. PICP is
given by

1 m
PICP = ~ Z;Ii-, (19)
=

where m is the number of forecasts and / is a binary variable
given by,
1, ifyi S (LLij, ULij)

) (20)
0, otherwise.

I =
PINAW is another index used to evaluate the reliability of
prediction intervals and is given by

1

m(max(yy) — min(y;))

m
PINAW = Z(UL,-,- — LLy),
i=1

j=1,...k @

H. EVALUATION METRICS

The mean absolute error (MAE) and root mean squared
error (RMSE) are going to be used to evaluate the accuracy
of our forecasts. The equations of the above measures are
respectively given by

1 & )
MAE = — 3 |y = §il, (22)
=1
m —_5.)2
RMSE — | =10t =30 , (23)
m

where J, are predicted values by the model, y, are the values
actually observed, and m is the number of predictions.

I. TESTS FOR PREDICTIVE ACCURACY

1) DIEBOLD-MARIANO TEST

Testing the statistical significance in the accuracy of two fore-
casts is very important as this helps to determine a model with
higher predictive ability. One such test for predictive accuracy
is the Diebold-Mariano(DM) test [34], [35]. Under this test,
the null hypothesis is that of equal predictive accuracy of two
competing forecasts. One of the main advantages of this test
is that it takes into account the sampling variability in the
average losses [36].

Lety;,t = 1,...,m be the GHI values and two forecasts
Virs Vi Yi#joi,j=1,2,..., K. Assuming the errors from
the forecasts are defined as &;; = y;;, —y;, i = 1,2.If g(e; ;)
is an error loss function, then a loss function which penalises
heavily underprediction than overprediction is given as [35]:

g(eire) = € — 1 — heyp. (24)
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2) GIACOMINI-WHITE TEST

A generalisation of the DM test known as the Giacomini-
White (GW) test, tests the conditional predictive ability of
two competing forecasting methods [37]. The GW test, tests
for equal conditional predictive ability. The GW test has an
additional advantage over the DM test in that it accounts for
uncertainty in the estimation of parameters [37]. The GW test
is carried out under two test approaches. One is based on the
unconditional test which only focuses on the restriction to the
forecast model. The other is the conditional approach which
allows the evaluation of the model, the estimation method
used and the choice of the forecasting horizon [36].

J. DATA AND VARIABLES

The data used in this study are from the Southern African
Universities Radiometric Network (SAURAN) database,
accessible at http://sauran.net [38]. The focus is on only
one radiometric station found at an inland region in Pre-
toria, South Africa. The station of focus is the University
of Pretoria radiometric (UPR) station which is on latitude
-25.75308 and longitude 28.22859 and elevation 1410m.
The pyranometer (See Fig. 1) is on the roof of a university
building.

FIGURE 1. UPR-GIZ University of Pretoria pyranometer. Source:
https://sauran.ac.za/.

This study seeks to model hourly solar irradiance (global
horizontal irradiance (GHI)) using independent variables
such as temperature, wind speed, relative humidity, baro-
metric pressure, wind direction standard deviation, rainfall,
hour, month, a non-linear trend, and a lagged hourly solar
irradiance at lags 1 and 2.

The data used is hourly solar irradiance from 1 January
2014 to 31 December 2018 with 20056 observations with
hours from 7:00 AM to 5:00 PM considered to be sun-
shine hours. The UPR data set is split into training data,
1 January 2014 to 31 December 2017, i.e., ny = 16044
and testing data, from 1 January 2017 to 31 December 2018,
ie., np = 4012, which is 20% of the total number of
observations.
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K. COMPUTATIONAL TOOLS

The software packages that are used for data analysis in this
study are R and Python. The FFNN and LSTM networks
algorithm are implemented in this study using the Keras deep
learning package (https://keras.io/). SVR is implemented
using the sklearn python package.

Ill. EMPIRICAL RESULTS AND DISCUSSION

A. EXPLORATORY DATA ANALYSIS

The summary statistics of hourly solar irradiance for the
sampling period January 2014 to December 2018 is given
in Table 1 for the UPR radiometric station. The distribution of
hourly solar irradiance is not normally distributed since it is
skewed to the right and platykurtic as shown by the skewness
value of 0.089 and a kurtosis value of -0.997 given in Table 1.

TABLE 1. Descriptive statistics for hourly solar irradiance (W /m2).

Min | Median | Mean Max
0.0 496.7 496.6 | 11739

Kurtosis
-0.997

St.Dev. Skewness
298.760 0.089

Figure 2 shows the time series plot of hourly solar irradi-
ance together with density, normal quantile to quantile (Q—Q)
and box plots which all show that the data is not normally
distributed.

The non-linear trend values used in this project are
obtained or extracted by fitting a cubic smoothing spline
function which is given by:

T =y v —f) + 1 / U'oyd, (25
t=0

where A is a smoothing parameter which is estimated using
the generalised cross validation (GCV) criterion.

(a) Plot of irradiance (b) Density plot
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FIGURE 2. Diagnostic plots for hourly solar irradiance (W /m?).
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Figure 3 shows box plots of the monthly and hourly
distribution of hourly irradiance data from 2014 to 2018,
respectively. It can be seen that solar irradiance shows sea-
sonality since its values are low during the winter season
and are high during the summer season. The solar irradi-
ance series is also highly correlated with the hour of the
day since it tends to be low in the morning and increases
towards the peak in the afternoon and decreases towards the
evening.
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FIGURE 3. Distribution of monthly (left panel) and hourly (right panel)
solar irradiance data.

VARIABLE SELECTION USING LASSO

Different weather variables are recorded by SAURAN at
different radiometric stations. Variable selection is done in
this study using the Least Absolute Shrinkage and Selec-
tion Operator (Lasso) to remain with significant variables
in predicting global solar irradiance. Figure 4 shows the
importance of 13 weather variables in predicting global solar
irradiance as assessed by Lasso. Wind direction (Wd) and day
of the month have the least significance in forecasting solar
irradiance and are therefore not considered in the modelling
stage.

B. MACHINE LEARNING RESULTS

The models considered are M2 (LSTM), M3 (SVR), and
M4 (FFNN) which are all machine learning models and M1
(PCR) which is a benchmark model in this study. RMSE and
MAE are normally used for forecast evaluation and are used
in this study.

The parameters for the machine learning models were set

as follows:

o LSTM: Hidden neurons were 100. The input layer of our
trained LSTM network had 12 features and 1 timestep.
Output layer with no activation function had one neuron.
Maximum epochs were set to be 300. The performance
was measured by minimizing mean square error.
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FIGURE 4. Variable selection using Lasso.

e SVR: The radial basis function (RBF) is found to be a
better kernel than linear kernel according to the results
of Grid Search.

o FFNN: The used FFNN consists of 32 input layer,
32 hidden layers and one output layer. Output layer
with no activation function had one neuron. Maximum
epochs were set to be 100. The first two layers used
ReLU as an activation function. Several experiments for
an optimal choice of maximum epochs is done using
Grid Search.

Table 2 shows a comparative analysis of the fitted machine
learning models, together with the benchmark model. All
machine learning models outperform the benchmark model
on both the training set and testing set. The M4 (FFNN) model
has the least RMSE (83.087) and MAE (51.237), showing
that it is the best fitting model according to the summary
of the error measures for evaluation of the models on the
training set.

TABLE 2. Comparative analysis of the fitted machine learning models.

Evaluation of the models on the training set
MI (PCR) | M2 (LSTM) | M3 (SVR) | M4 (FENN)
RMSE 130.241 91.884 95.251 83.087
MAE 94.346 55.878 68.705 51.237
Evaluation of the models on the testing set
MI1 (PCR) | M2 (LSTM) | M3 (SVR) | M4 (FENN)
RMSE 129.449 94.131 99.302 88.326
MAE 94.554 56.291 72.606 53.719

Table 2 also summarises the error measures for the eval-
vation of the models on the testing set. From Table 2
model M4 (FFNN) has the least RMSE (88.326) and
MAE (53.719) among the three machine learning models.
This means that model M4 is the best forecasting model.
The results are contradictory to findings by [11] which
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FIGURE 5. Probability densities of (a) Top left panel: Forecasts (dashed line) using model M1 (PCR) and actual hourly
irradiance (solid line) (b) Top right panel: Forecasts (dashed line) using model M2 (LSTM) and actual hourly irradiance (solid
line) and (c) Bottom left panel: Forecasts (dashed line) using model M3 (SVR) and actual hourly irradiance (solid line)

(d) Bottom right panel: Forecasts (dashed line) using model M4 (FFNN) and actual hourly irradiance (solid line).

showed that the predictive performance of LSTM outper-
forms the multilayered FFNN using the backpropagation
algorithm.

The probability densities of hourly solar irradiance and
the forecasted values for the period January 2018 to Decem-
ber 2018 for machine learning models M2, M3, M4, are
shown in Figure 5, including that of M1. The forecasts from
the three models appear to have some slight difference with
the actual observations. Figure 9 in Appendix A1 shows plots
of forecasts on the first day of each season in South Africa.
The forecasts are fairly close to the actual observations, espe-
cially in spring and summer. Each of the figures shows fore-
casts for the first day of four seasons in South Africa which
are: autumn (March-May), winter (June-August), spring
(September-November), and summer (December-February).
The selected days are March 1 (autumn), June 1 (win-
ter), September 1 (spring), and December 1 (summer), all
in 2018.

VOLUME 8, 2020

C. FORECAST COMBINATION

This section gives results of forecast combination of machine
learning models forecasts. Two forecast combination meth-
ods are used, which are convex combination and quantile
regression averaging.

1) CONVEX COMBINATION

Combining forecasts often leads to better forecast accuracy.
The forecasts from different regression-based time-series
which are fitted above may be improved by combining them
using an R package called ‘opera’ developed by [39]. The
models developed are also referred to as experts. To com-
bine forecasts we find an aggregation of experts and anal-
yse them by looking at the oracles. The opera package
computes weights when combining the forecasts. Convex
combination method works by computing the sequence of
instantaneous losses suffered by the predictions from the
experts (models) using loss function. The absolute loss
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suffered by the experts are given in Figure 6. From
Figure 6 the convex combination model is shown as the best
forecasting model followed by model M4 (fFFNN), uniform
combination (Uniform), model M2 (fLSTM), and model M3
(fSVR), respectively.

Average loss suffered by the experts
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FIGURE 6. Average loss suffered by the models.

2) QUANTILE REGRESSION AVERAGING

Quantile regression averaging (QRA) is another technique
normally used to combine forecasts by using forecasts from
each model as independent variables. The three models M2
(LSTM), M3 (SVR), and M4 (FFNN) are combined based on
QRA, resulting in model M6. Model M6 (QRA) is given by:

V1,1 (QRA) = Bo + f1IM2 + pofM3 + B3tM4 + &, (26)

where M2, fM3, and fM4 represent the forecasts from mod-
els M2, M3, and M4, respectively.

Table 3 gives a summary of the accuracy measures for the
machine learning models, the M5 (Convex) model, and the
M6 (QRA) model. Based on MAE, model M6 is the best
forecasting model compared with the convex model and the
machine learning models. MAE shows a slight improvement
after forecast averaging. The results of absolute loss suffered
by the models based on pinball losses show M6 as the best
model since it has the smallest average pinball loss value
(26.017).

Combining forecasts from individual models improves
the accuracy of hourly solar irradiance predictions. Since
model M6 is giving the best forecasts we plot its forecasts
in Figure 7. Figure 10 in Appendix Al shows plots of
forecasts on the first day of each season in South Africa.
The forecasts are fairly close to the actual observations,
especially in spring and summer.
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TABLE 3. Comparative analysis of the machine learning models, Convex
model, and QRA model.

Measure M2 M3 M4 M5 (Convex) | M6 (QRA)
RMSE 94.131 | 99.302 | 88.326 88.732 88.600
MAE 56.291 | 72.606 | 53.719 52.405 52.034
Pinball loss | 28.146 | 36.303 | 26.859 26.202 26.017
©
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FIGURE 7. Model M6 (QRA) forecasts with density plot.

D. COMPARATIVE ANALYSIS OF THE MODELS

The evaluation of the fitted models based on the empirical
prediction intervals (PIs) and forecast error distributions of
each model forecasts are presented in this section.

1) EVALUATION OF PREDICTION INTERVALS

To select the best model based on the analysis of the PIWs,
we need to calculate the PICPs and PINAWS including a count
of the number of predictions below and above the PIs. This is
done for various PINC values, which are 90%, 95% and 99%,
respectively. A model with a PICP value close to the PINC
value is preferred. A fitted model that has better PIWs has
the lowest value of PINAW and is one which is preferred over
other fitted models. Table 4 shows a comparative evaluation
of the models using PI indices for different PINC values. All
models have valid PICPs for the three PINC values. Model
M2 and M3 have the same lowest PICPs at 90% and 95%,
with model M3 having the lowest PICP at 99% compared to
all other models. The best model based on PINAW at 90% is
M6, M4 at 95%, and M3 at 99%. There is no consistency in
the PICPs and PINAW  for different PINC values. However,
due to results in Table 3, model M6 (QRA) is selected as the
best model.

2) COMBINATION OF INTERVAL LIMITS

Suppose we have 100(1 — )% forecast intervals [LL;;, UL;;],
i =1,....,mj = 1,...,k, where m is the number of
forecast point and & is the number of forecasters. In this study
we use three basic methods for combining interval forecasts
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TABLE 4. Model PINCs comparisons.

TABLE 6. Model residuals comparisons.

PINC Model PICP (%) PINAW (%) BelowLL Above UL Mean Median Min Max St.Dev.  Skew. Kur.
90% M2 90.03 25.58 200 200 M2 -637 297 -711.64 63496  93.93 -1.01 8.44
M3 90.03 26.59 201 199 M3 19.05 33.09 -637.20  600.87  97.47 -126 544
M4 90.05 2391 199 200 M4 3.05 8.22 -662.40  624.52  88.29 -1.18 8.83
M5 90.05 23.88 200 199 M5 -044 4.17 -680.11  628.38  88.74 -1.16 9.15
M6 90.03 23.67 200 200 M6 -545  0.00 -681.13  619.63  88.44 -1.21 9.19
95% M2 95.04 36.17 100 99
M3 95.04 34.35 100 99
M4 95.06 32.79 99 99 - O
M5 95.06 33.08 99 99 2 7 ° ° ¢ ¢
M6 95.06 32.81 99 99 R
99% M2 99.05 58.03 19 19 g - g
M3 99.03 53.35 19 20
M4 99.05 54.96 19 19 2 4 JL
M5 99,05 55.12 19 19 o 4 4+ 1 0
M6 99.05 54.94 19 19

which are; average method, median method, and envelop
method discussed by [30]. Average (Av) limits are given by
LLyy = (1/k)Yj_ LLj and ULy, = (1/k) Y i, ULy
Median (Md) limits are given by LLyy = {LL;1, ..., LLj}
and ULyy; = {ULj,...,ULy}. Envelop (En) limits are
given by LLEn = min{LLil, ey LL,'k} and ULEn =
max{UL;, ..., ULy}. Table 5 shows a comparative analysis
of PIWs after combining the PIWs of individual models
based on the average, median, and envelop methods. All
combination methods have valid PICPs for the three PINC
values with the median method having the lowest PINAWs
for the three PINC values. Combining interval limits yield
better results since the number of forecasts below and above
limits decreases significantly.

TABLE 5. PINCs comparisons based on average, median, and envelop of
lower and upper Pls.

Residuals (w/m”2)
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FIGURE 8. Box plots of residuals from models M2 (ResLSTM), M3
(ResSVR), M4 (ResFFNN), M5 (ResConvex), and M6 (ResQRA).

4) PERCENTAGE IMPROVEMENT

Table 7 gives the percentage of improvement rates of the best
model over other models. The percentage improvement of
M6 over M2, M3, and M4 are found to be 7.56%, 28.33%,
and 1.30%, respectively. This means M4 (FFNN) is the
second-best model after M6 (QRA) and their predictive per-
formances are very close to one another.

TABLE 7. Percentage improvement rates.

PINC  Model PICP (%) PINAW (%) Below LL  Above UL
90% Average  90.68 24.73 194 180 Models MAE (best) | MAE (other) | % improvement
Median 90.18 23.89 200 194 LQRA & LSTM 52.034 56.291 7.56%
Envelop  93.82 30.03 136 112 LQRA & SVR 52.034 72.606 28.33%
95%  Mean 95.26 33.84 99 91 LQRA & FFNN 52.034 53.719 1.30%
Median 95.09 33.05 98 99
Envelop  96.68 39.09 72 61
99% Mean 99.10 55.28 20 16
Median ~ 99.10 55.08 19 17 5) EMPIRICAL RESULTS ON EVALUATION AND
Envelop  99.33 59.79 14 13

3) RESIDUAL ANALYSIS

Summary statistics of the residuals of the models are given
in Table 6. It can be seen that model M4 has the smallest stan-
dard deviation which indicates that it has the narrowest error
distribution compared to models M3 to M6, this implies that
M4 is the best compared to other models, followed by model
MB6. All the error distributions are skewed to the left since the
values of their skewness are all negative. The values for kurto-
sis are all greater than 3, showing that the distributions are all
leptokaurtic.

Figure 8 shows box plots of the forecast errors for all the
fitted models. From the figure, M4 has the narrowest error
distribution compared to models M3 to M6, implying that
M4 is the best model compared to other models.
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COMPARISON OF MULTIPLE FORECASTS

We present the results from the DM and GW tests. In all
cases the null hypothesis is: Hy : forecasts are equally
accurate.

The three best models considered are M4 (feed forward
neural network), M5 (convex combination based on the pin-
ball loss) and M6 (quantile regression averaging). The null
hypotheses are:

1) Hj : forecasts from M4 and M5 are equally accurate.
2) Hj : forecasts from M4 and M6 are equally accurate.
3) Hy : forecasts from M5 and M6 are equally accurate.
Based on the results from Table § the DM tests show that
in all cases the forecasts are not equally accurate. For the
GW test we shall use the following to denote dominance,
M; < M;,Vi # jto mean that M; dominates M;. From
Table 8, M5 < M4, M6 < M4, M5 < M6 implies that M5
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TABLE 8. Model comparisons.
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FIGURE 9. Graphical plot of forecasts (dashed line) using model M4
(FFNN) and actual hourly irradiance (solid line) for the first day of season
in (a) Top left panel: Autumn (1 March 2018) and (b) Top right panel:
Winter (1 June 2018) (c) Bottom left panel: Spring (1 September 2019)
and (d) Bottom right panel: Summer (1 December 2019).

< M6 < M4. Therefore M4 has the highest predictive power
since it dominates the other two models.

On testing for unbiasedness in the forecast errors we use
the Mincer-Zarnowitz test based on the HAC robust VCV
approach. The null hypothesis is that the forecasts are unbi-
ased. From Table 8 the null hypothesis is rejected for mod-
els M4 and M5 and we fail to reject for model M6. This
means that forecasts from M4 and M5 are biased and those
from M6 are unbiased all at the 5% level of significance.
Based on these results we then compute the residuals and
count the number of under-predictions and over-predictions.
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Diebold-Mariano test

Null hypothesis | Test statistic p-value Result

M4 = M5 6.5149 0.0000 Not equally accurate

M4 = M6 8.0586 0.0000 Not equally accurate

M5 = M6 3.9311 0.0001 Not equally accurate

Giacommini-White test

Null hypothesis | Test statistic Result

M4 =M5 6.9489 Sign of mean loss is (-). M4 dominates M5

M4 =M6 6.8686 Sign of mean loss is (-). M4 dominates M6

M5 =M6 2.2477 Sign of mean loss is (+). M6 dominates M5

Testing for unbiasedness (Mincer-Zarnowitz test)

Model Test statistic p-value Result: Unbiased

M4 10.5381 0.0145 No

M5 4.3821 0.0160 No

M6 8.8210 0.4235 Yes

Testing for unbiasedness using residuals (¢ = y¢ — ft)

Model Number of y¢ — ft > 0 | Numberof y; — ft <0 | Numberofy; — ft =0

M4 2379 (59.30%) 1633 (40.70%) 0

M5 2240 (55.80%) 1772 (44.20%) 0

M6 2004 (49.95%) 2005 (50.05%) 3

(a) Autumn (b) Winter (a) Autumn (b) Winter
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FIGURE 10. Graphical plot of forecasts (dashed line) using model M6
(QRA) and actual hourly irradiance (solid line) for the first day of season
in (a) Top left panel: Autumn (1 March 2018) and (b) Top right panel:
Winter (1 June 2018) (c) Bottom left panel: Spring (1 September 2019)
and (d) Bottom right panel: Summer (1 December 2019).

Positive residuals (¢; = y; — fy > 0) means we have
under-predictions and negative residuals (¢; = y; — f; < 0)
implies over-predictions. Based on the results approximately
59.30%, 55.80% and 49.95% of the forecasts from models
M4, M5 and M6, respectively are under-predictions. This
implies that forecasts from model M6 are unbiased. These
results are consistent with the Mincer-Zarnowitz test.

E. DISCUSSION
From the comparative analysis based on MAE and average
pinball losses, M6 (QRA) is the best fitting model and can be

VOLUME 8, 2020



T. Mutavhatsindi et al.: Forecasting Hourly Global Horizontal Solar Irradiance in South Africa

IEEE Access

used for predicting hourly solar irradiance. From the PIWs
analysis at 95% level of confidence, M2 (LSTM) has the
narrowest PI compared to models M3 to M6, implying that
M2 is the best compared to other models. Further analysis
of the PIWs based on the PICPs and PINAWSs including a
count of the number of predictions below and above the PIs
shows no consistency. The best model based on PINAW at
90% is M6 (QRA), M4 (FFNN) at 95%, and M3 (SVR)
at 99%. There is no consistency in the PICPs and PINAWs
for different PINC values. The residual analysis shows M4
(FFNN) as the best model with narrowest error distribution
compared to other models, followed by model M6.

Table 5 shows a comparative analysis of PIWs after com-
bining the PIWs of individual models based on the average,
median, and envelop methods. All combination methods have
valid PICPs for the three PINC values with the median
method having the lowest PINAWs for the three PINC
values. Combining interval limits yield better results since
the number of forecasts below and above limits decreases
significantly.

Empirical results on the evaluation and comparison of
multiple forecasts given in Table 8§ show that the forecasts
are not equally accurate in all pairwise comparisons using
the Diebold-Mariano test. Using the Giacomini-White test
model M4 (FFNN) dominates all the other two, models M5
(convex) and M6 (QRA) meaning that it has the highest
predictive power, followed by M6 and lastly M5. On testing
for unbiasedness in the forecasts, it is seen that M4 and
MS produce forecasts which are biased and most of the fore-
casts are under-predictions. Model M6 produces unbiased
forecasts. Based on all these analyses of the forecast accuracy
measures and the statistical tests, M6 is considered as the best
forecasting model.

TABLE 9. Forecast accuracy measures root mean square error (RMSE),
mean absolute error (MAE) for the forecasts of January to December 2018.

Month RMSE MAE

January 103.389  69.195
February 124.483  91.413
March 103.091  75.659
April 92.043 58.864
May 59.154 33.180
June 34.847 20.039
July 44.066 24.256
August 40.814 23.729
September  53.305 30.064
October 98.832 51.750
November  118.346  71.924
December 121.898  77.909

Table 9 in Appendix Al summarises the error measures
for out of sample evaluation using model M6 for the month
January to December 2018. The accuracy measures are sig-
nificantly lower from April to August. Figures 11 and 12
show hourly solar irradiance superimposed with forecasts
together with their respective densities. The forecasts fol-
low actual hourly solar irradiance very well, especially in
June and September 2018.
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FIGURE 11. Hourly irradiance with forecasts for March and June 2018.
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FIGURE 12. Hourly irradiance with forecasts for September and
December 2018.

IV. CONCLUSION

The paper presented an application of modelling hourly
solar irradiance using long short-term memory (LSTM) net-
works, support vector regression (SVR) and feed forward
neural networks (FFNN) models. Variable selection was
done using the least absolute shrinkage and selection oper-
ator (Lasso). According to findings, among the three fit-
ted machine learning models, the FFNN model produced
the best forecast accuracy based on the MAE and RMSE.
Later, the forecasts from the machine learning models were
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combined using the convex combination method and quan-
tile regression averaging (QRA). Based on all the forecast
accuracy measures used in this study including the statistical
tests, the QRA model was found to be the best forecast com-
bination method, and also the best forecasting model com-
pared with the machine learning models. The median method
for combining interval limits gave the best results on PIWs
analysis.

The information derived from this research study on fore-
casting solar irradiance is important to electricity utility
decision-makers in South Africa in balancing demand and
supply of electricity in an effective way which favours future
economic prosperity and environmental security. Our results
in forecast combination are consistent with what is discussed
in literature ( [16], [40], among others). The main contri-
bution of this paper is in providing adequate and detailed
evaluation metrics including statistical tests in forecasting
solar irradiance. Future work could focus on including more
radiometric stations based in South Africa and also consider
different weather conditions at coastal and inland regions by
doing spatial analysis.
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