
Received October 16, 2020, accepted October 26, 2020, date of publication October 29, 2020, date of current version November 11, 2020.

Digital Object Identifier 10.1109/ACCESS.2020.3034760

Efficient Rigorous Coupled-Wave Analysis
Without Solving Eigenvalues for Analyzing
One-Dimensional Ultrathin Periodic Structures
JIE LI , JIAN-BAO WANG , ZHENG SUN, LI-HUA SHI , (Member, IEEE), YAO MA ,
QI ZHANG , SHANG-CHEN FU , YI-CHENG LIU , AND YU-ZHOU RAN
National Key Laboratory on Electromagnetic Environmental Effects and Electro-Optical Engineering, Army Engineering University of PLA, Nanjing 210007,
China

Corresponding author: Jian-Bao Wang (zwang0417@outlook.com)

This work was supported by the National Natural Science Foundation of China under Grant 51977219.

ABSTRACT Based on the first-order Taylor expansion, an efficient Rigorous Coupled-Wave Analy-
sis (RCWA) for one-dimensional ultrathin periodic structures is proposed in this paper. The derivation of the
ultrathin form RCWAmethod is completed by using the first-order Taylor expansion to rearrange the matrix
in the equations of boundary conditions. Then, the reliability of the proposed algorithm is verified by two
examples. Finally, it is concluded that the proposed algorithm can reduce the CPU time of TE polarization
and TMpolarization bymore than 50%.Meanwhile, comparedwith the conventional algorithm, the proposed
algorithm also needs less memory.

INDEX TERMS RCWA, eigenvalues and eigenvectors, computational efficiency, ultrathin periodic
structures.

I. INTRODUCTION
Periodic structures, which are widely applied in frequency
selective surfaces (FSSs), metasurfaces, and so on, are the
most universal and aesthetic structure in nature. In the
study of the interaction between electromagnetic waves and
periodic structures, a variety of analytical or numerical
electromagnetic calculation methods have been proposed.
Numerical methods can generally be divided into time-
domain methods and frequency-domain methods, such as
FDTD [1], [2] and FDFD [3], [4]. Thesemethods have certain
universality, but for some specific structures, other methods
have more advantages in efficiency and accuracy. For exam-
ple, among the existing methods for analyzing electromag-
netic field scattering problems of one-dimensional periodic
structures, RCWA is the most successful and widely used
one [5]–[10]. For improving the poor convergence of RCWA,
Li and Lalanne et al. rearranged Maxwell’s curl equations
and proposed the Inverse rule [11]–[13]. Evgeny Popov and
Schuster et al. proposed the NV method by decomposing
the electromagnetic field [14], [15]. To improve the com-
putational efficiency, S. Peng et al. proposed an efficient
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RCWA method, which reduces the eigenvalue problem
of the grating in a conical mounting to two eigenvalue
problems in the corresponding nonconical mounting [16].
I. Semenikhin et al. improved the computational efficiency of
RCWA by using a series of auxiliary equations [17]. By com-
bining RCWA with the perturbation method, Edee et al.
avoided the repeated calculation of eigenvalues of multilayer
gratings [18], [19].

However, for one-dimensional ultrathin periodic struc-
tures, especially ultrathin metallic gratings, the conventional
RCWAmethod have such shortcomings as low efficiency and
needs large memory. Besides, when the accuracy is high and
the truncation orders are large, how to solve the eigenvalues
of the super-large eigenmatrix is also a difficult problem that
restricts the further development of this method. Therefore,
it is necessary to develop simple and efficient algorithms
for one-dimensional ultrathin periodic structures. Different
articles have contributed to this. For zero-thickness gratings,
Wakabayashi et al. [20] put forward that surface relief dielec-
tric gratings with various profiles can be treated as a plane
grating with surface impedance functioning as of the posi-
tion parameter. Lalanne and Lemercier-Lalanne et al. [21]
improved the convergence by using the second-order
Taylor expansion. At the same time, he also gave the
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closed-form expression of the effective indices of ultra-
thin gratings based on the equivalent medium theory. It is
worth noting that the work of Wakabayashi et al. [20] is
only applicable to dielectric surface-relief gratings, while
ultrathin metallic surface-relief gratings cannot be replaced
by plane gratings with surface impedance. Lalanne and
Lemercier-Lalanne [21] only gave the approximate expres-
sion of TE polarization incidence while TM polarization
incidence does not apply to this theory. Further studies are
needed on one-dimensional ultrathin periodic structures.

In this paper, based on the first-order Taylor expansion,
an efficient algorithm that can be used for one-dimensional
ultrathin periodic structures is proposed. In section II, for
better introducing this method, a brief introduction about
RCWA and the geometry used in this paper are presented.
In this section, the notations and some equations can be
found in [10]. In Section III, for one-dimensional ultrathin
periodic structures, based on the first-order Taylor expansion,
the equations of boundary conditions are reformulated by
using the sum of two simple diagonal matrices to take the
place of the exponential matrix. After that, a new method
for solving the equations of boundary conditions is proposed.
This new method involves nor eigenvalues or eigenvectors.
Section IV provides numerical evidence that the new method
significantly improves efficiency. Discussion and concluding
remarks are given in Section V and Section VI respectively.

II. GEOMETRY AND CONVENTIONAL METHOD
The geometry of the grating diffraction problem is depicted
in Fig. 1. The grating periodic along the x-direction with a
relative permittivity εr (x). The z-axis is perpendicular to the
boundaries, and the diffraction problem is invariant in the
y-direction. The grating region is bound by two different
media with relative permittivity ε1 and ε2, and the perme-
ability is µ0. The period of the structure is denoted by 3, its
depth is d , f denotes duty cycle, and the length of the grating
vector K is equal to 2π /3. θ denotes the angle of the incident
wave.

TE polarization is taken as an example in this section, and
extension to TM polarization is quite simple. The periodic
relative permittivity of the grating region (0< z < d) can be
expanded to a Fourier series of the form as

εr (x) =
+∞∑

h=−∞

εrhe
jKhx , (1)

where εrh is the hth Fourier coefficient of ε
r (x) .

Using the space harmonic expansion, the tangential electric
field Egy and magnetic field Hgx in the grating region may be
expressed as

Egy =
+∞∑
i=−∞

Syi(z)e−jkxix , (2)

Hgx = −j
√
ε0

µ0

+∞∑
i=−∞

Uxi(z)e−jkxix , (3)

FIGURE 1. Geometry for the grating diffraction problem. (a) front view,
(b) top view.

where Syi and Uxi represent the normalized amplitudes of the
ith space harmonic fields of Egy and Hgx respectively, and
j is the imaginary unit. kxi is determined from the Floquet
condition and is provided by

kxi = k0n1 sin θ − iK . (4)

where k0 is the wavenumber in air, and n1 is the square root
of ε1.
Maxwell’s curl equations in the grating region are

∂Egy
∂z
= jωµ0Hgx , (5)

∂Hgx
∂z
−
∂Hgz
∂x
= jωε0εr (x)Egy. (6)

In the actual calculation process, it is necessary to truncate
the Fourier expansion of relative permittivity εr (x) and space
harmonic expansion of the tangential electric field Egy and
magnetic field Hgx in the grating region. Suppose the trunca-
tion order is N , then substituting (2) and (3) into (5) and (6)
and eliminating Hgz, the coupled-wave equations in matrix
form can be expressed as[

∂2Sy
∂(z′)2

]
= [A]

[
Sy
]
, (7)

where z′ = k0z and

[A] =
[
K 2
x

]
− [E] , (8)

where Kx is an N × N diagonal matrix with the elements
kxi/k0, and E is anN×N Toeplitz matrix with the i, p element
being equal to εri−p.

Solving the eigen equation, Syi and Uxi are then given by

Syi(z) =
N∑
m=1

wi,m
{
e−k0qmz · c+m + e

k0qm(z−d) · c−m
}
, (9)

Uxi(z)=
N∑
m=1

vi,m
{
−e−k0qmz · c+m + e

k0qm(z−d) · c−m
}
, (10)

where wi,m and qm are the components of eigenvector matrix
[W ] and diagonal matrix [Q] composed by positive square
roots of eigenvalues of matrix [A], respectively. The formula
vi,m is the element of matrix [V ], where [V ] = [W ][Q]. The
quantities c+m and c−m are unknown constants to be determined
from the boundary conditions.
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By matching the tangential electric- and magnetic-field
components at boundaries z = 0 and z = d , the following
matrix equations can be obtained[
δi0
jn1 cos θδi0

]
+

[
I
−jYI

]
[R] =

[
W WX
V −VX

] [
c+

c−

]
, (11)[

I
jYII

]
[T ] =

[
WX W
VX −V

] [
c+

c−

]
, (12)

where [X ] is a diagonal matrix with the diagonal elements
exp(-k0qmd). [YI], [YII] are N × N diagonal matrices with
elements k1,zi/k0, and k2,zi/k0 and

kl,zi =

{
(k20n

2
l − k

2
xi)

0.5, k0nl > kxi
−j(k2xi − k

2
0n

2
l )

0.5, k0nl < kxi,
l = 1, 2, (13)

[I ] is an identity matrix, δi0 = 1 for i = 0, and δi0 = 0
for i 6=0. The forward- and backward-diffracted amplitudes
Ti and Ri can be got by solving (11) and (12) simultane-
ously. However, because of possible zero columns on the
right-hand sides of (11) and (12), which is caused by very
small terms in the diagonal matrix [X ] when some of the
generally complex eigenvalues have a large positive real part,
attempts to solve (12) for [c+] and [c−] in terms of [T ] and
then substitute for [c+] and [c−] in (11) to determine [T ] and
[R] will probably cause numerical instability [10].

In this paper, the original complex exponential term matrix
is transformed into the sum of two simple matrices by
using the first-order Taylor expansion. Then the rearranged
equations of boundary conditions not only improve the
computational efficiency but also solve the problem that
TM polarization is not applicable.

III. NEW FORMULATION OF THE PROPOSED METHOD
In this section, a new method will be proposed to implement
the coupled-wave formulation. For one-dimensional ultra-
thin periodic structures, the proposed method can effectively
reduce the number of operations and the operation time.
Generally, when k0d � 1, it can be regarded as ultrathin.
Equation (14) gives the rigorous conditions that d should
satisfy, more details can be found in the Appendix.

d ≤

∣∣∣∣∣∣∣∣
a+ bj

2π

√
Nn21 sin

2 θ +
λ20
32

m(m+1)(m+2)
3 − Nεr0

∣∣∣∣∣∣∣∣ λ0 (14)

Considering ultrathin structures and qm is a finite
value, so according to the first-order Taylor expansion,
exp(±k0qmd) can be expanded as

e±k0qmd ∼ 1± k0qmd . (15)

Therefore, matrix [X ] can be replaced by

[X ] = [I ]− k0d [Q] , (16)

where [Q] is a diagonal matrix with the elements qm.
Similarly,

[X ]−1 = [I ]+ k0d [Q] . (17)

According to (16) and (17), there are

[W ]
[
X−1 + X

]
[W ]−1 = 2 [I ] , (18)

[W ]
[
X−1 − X

]
[V ]−1 = 2k0d [I ] , (19)

[V ]
[
X−1 + X

]
[V ]−1 = 2 [I ] , (20)

[V ]
[
X−1 − X

]
[W ]−1 = 2k0d [W ] [Q]2 [W ]−1 . (21)

Using (12), the equation can be rewritten as[
X−1

X

] [
W W
V −V

]−1 [ I
jYII

]
[T ] =

[
I
X

] [
c+

c−

]
. (22)

Besides, (11) can be rewritten as[
δi0
jn1 cos θδi0

]
+

[
I
−jYI

]
[R]=

[
W W
V −V

] [
I
X

] [
c+

c−

]
. (23)

Substituting (22), and (18)-(21) into (23), it may be reformu-
lated as[
δi0
jn1 cos θδi0

]
+

[
I
−jYI

]
[R]=

[
I k0dI
M I

] [
I
jYII

]
[T ], (24)

where

[M ] = k0d [W ]
[
Q2
]
[W ]−1 . (25)

According to the relationship between matrix [W ] and [Q]
and eigenmatrix [A], there is

[W ]
[
Q2
]
[W ]−1 = [A] . (26)

Therefore, (25) can be rewritten as

[M ] = k0d [A] . (27)

Thus, matrix [M ] is only related to eigenmatrix [A] rather
than eigenvectors matrix [W ] or eigenvalues matrix [Q].
By solving (24), [R] and [T ] can be calculated from the eigen-
matrix rather than its eigenvalues and eigenvectors, which
avoids numerical instability due to some of the generally
complex eigenvalues have a large positive real part as men-
tioned in section II.
For convenience, (24) is replaced by the following

expression

[A1]+ [A2] [R] = [A3] [A4] [T ] , (28)

where

[A1] =
[
δi0
jn1 cos θδi0

]
, (29)

[A2] =
[
I
−jYI

]
, (30)

[A3] =
[
I k0dI
M I

]
, (31)

[A4] =
[
I
jYII

]
. (32)
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To calculate the reflection and transmission amplitudes of
each diffraction order, (28) is rearranged to[

T
R

]
= [A3A4 − A2]−1 [A1] . (33)

Then the diffraction efficiency of each diffraction order can
be obtained by using

DEri = RiR∗i Re(
k1,zi

k0n1 cos θ
),

DEti = TiT ∗i Re(
k2,zi

k0n1 cos θ
), (34)

where DEri and DEti represent the forward and backward
diffraction efficiency of each order respectively, R∗i and T ∗i
denotes the conjugate amplitudes of the diffracted fields Ri
and Ti. Conservation of energy without loss is defined by∑

i

DEri + DEti = 1 (35)

and is a necessary criterion for the numerical stability of the
algorithm. It must be remembered that satisfying the power
conservation condition does not guarantee the accuracy of the
diffraction efficiency of each diffraction order. The accuracy
of the individual diffraction efficiency depends on the number
of space harmonics retained in the field expansions. The
higher the truncation order, the higher the accuracy of the
individual diffraction efficiency.

By using (22), [c+] and [c−] are directly substituted
into (11), which avoids the numerical instability of replacing
[c+] and [c−] with [T ] to solve [R] in (11). Through the above
derivation, the forward and backward diffraction efficiency
of each order can be solved using the eigenmatrix rather than
eigenvalues and eigenvectors.

IV. NUMERICAL VALIDATION
To validate the accuracy and the efficiency of the proposed
algorithm, two examples are selected to compare the calcu-
lation results of the conventional method proposed in [10],
the proposed method of this paper, and the CST simulations
respectively. The binary grating is a classic example that has
been analyzed bymany papers. Considering that this structure
is a one-dimensional periodic structure, thus an ultrathin
binary grating is chosen as the first example to verify the per-
formance of the proposed method. Thereinto, the numerical
results obtained by the traditional RCWA method [10] and
CST simulations are used as a benchmark for comparison.
Moreover, to furthering certify the accuracy of and proving
the applicability of the proposed method, a Frequency Selec-
tive Surfacewhich is amixture ofmetal andmedia is analyzed
in the second example.

A. RECTANGLE ULTRATHIN BINARY GRATING
Consider a rectangle ultrathin binary grating depicted
in Fig. 1. Region 1 is air and region 2 is FR4 with ε2 = 3.75.
The period of the structure3 is 1 cm, f is 0.5 and the grating
depth d is 100µm. In the grating region, εgr = 1. The grating

structure is mediumwith relative permittivity εr = 1 and con-
ductivity σ = 5× 103S/m. The incident angle θ is 0 degrees,
30 degrees, and 60 degrees. Fig. 2 shows the transmission
efficiency of TE and TM polarization in the case of truncation
ordersN = 301, which include forward diffraction efficiency
of all orders. The simulation information of the two methods
under 30 degrees incidence is shown in Table 1, and the
memory listed in Table 1 is obtained when N = 301.

FIGURE 2. The transmission efficiency and 0-order diffraction efficiency
of example 1. ((a) Transmission efficiency of TE polarization,
(b) transmission efficiency of TM polarization. (c) The 0-order diffraction
efficiency of TE polarization, (d) 0-order diffraction efficiency of TM
polarization. Solid line, the conventional method. Triangular,
the proposed method. Cross, the CST simulations).

TABLE 1. The simulation information of two algorithms (processor: Intel
Core CPU I 7-7700 3.6GHz, operating system: Microsoft Windows 10,
programing language: MATLAB, time unit: s, memory unit: MB).

B. FREQUENCY SELECTIVE SURFACE
The second example is a Frequency Selective Surface (FSS)
which is one of the metasurfaces that can be used as spa-
tial filters to transmit or reflect electromagnetic waves with
different operating frequencies, polarizations, and incident
angles. In the following, the diffraction problem of an
FSS consisting of metallic gold and silica under TE polariza-
tion will be considered. The geometry and related parameters
of the FSS are shown in Fig. 3. Table 2 shows that, com-
pared with the conventional method, the proposed method
has greatly improved both in computational efficiency and
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memory, which is consistent with the conclusion in example
1. In this example, there is more than one propagating order
due to the wavelength of the incident field (3.33-10 mm) is
smaller than the period of the structure (3 = 10 mm). As can
be seen from Fig. 4 that under normal incident, when the
frequency is greater than 60 GHz, the positive second-order
begins to propagate and the ratio of the period to wavelength
is greater than 2. Likewise, negative first order and nega-
tive second-order begin to propagate when the frequency is
greater than 30 GHz, and 60 GHz respectively.

FIGURE 3. Geometry of the FSS considered in this paper.

TABLE 2. The simulation information of example 2 (processor: Intel Core
CPU I 7-7700 3.6GHz, operating system: Microsoft Windows 10,
programing language: MATLAB, time unit: s, memory unit: MB).

V. DISCUSSION
It can be seen from Fig. 2 and Fig. 4 that the calculation
results of the proposed method, the conventional method,
and the CST simulations have good consistency in both
TE polarization and TM polarization, indicating that the
proposed method is reliable. Comparing the calculation time
in Table 1 and Table 2, it is obvious that the proposed algo-
rithm can save more than 50% CPU time. This is mainly
because for one-dimensional ultrathin periodic structures,
the proposed method involves nor eigenvalues or eigenvec-
tors, and the diffraction efficiency is directly solved from the
eigenmatrix. Thus, the time-consuming problem of solving
eigenvalues and eigenvectors is effectively avoided. It is not
difficult to draw from the above results that compared with
the conventional RCWA method, the proposed method has
the following advantages,

a. Simpler executive equations. Compared with the con-
ventional method, the proposed method of this paper owns
simpler executive equations. Ti and Ri can be calculated by
using (33) rather than solving a series of complex-linear
boundary conditions equations.

b. Less memory. The proposed method does not need to
solve eigenvalues and eigenvectors, nor store their values,
which reduces the memory requirements. Besides, from the

FIGURE 4. The forward diffraction efficiency of each order. ((a), DEt0.
(b), DEt1. (c), DEt2. (d), DEt3. Blue solid line, 0 degrees of the conventional
method. Brown solid line, 45 degrees of the conventional method. Yellow
dotted line, 0 degrees of the proposed method. Purple dotted line,
45 degrees of the proposed method. Green cross, 0 degrees of the CST
simulations. Blue cross, 45 degrees of the CST simulations).

comparison of (11) and (12) and (33), the proposed method
significantly reduces the storage of intermediate variables,
which will also reduce the demand for memory. This con-
clusion can be drawn more clearly from the data comparison
of Table 1 and Table 2.

c. More efficient. The proposed method uses two sim-
ple diagonal matrices to replace the exponential matrix so
that there is no need to solve the eigenvalues and eigen-
vectors of the eigenmatrix when calculating the forward-
and backward-diffracted amplitudes Ti and Ri. Generally,
the larger the N , the longer the computational time required
by the RCWA method, and the computational time pro-
portional to N 3. From the data provided in Table 1 and
Table 2, compared with the conventional method, the pro-
posed method can save more than 50% CPU time.

VI. CONCLUSION
In this paper, based on the first-order Taylor expansion,
an algorithm for one-dimensional ultrathin periodic struc-
tures with higher efficiency and fewer memory requirements
is proposed. The proposed algorithm solves the forward and
backward diffraction efficiency by using the eigenmatrix
rather than eigenvalues and eigenvectors, which avoids the
time-consuming problem of solving eigenvalues and greatly
improves computational efficiency. The numerical results
show that the results of the proposed method are in good
agreement with those obtained by the traditional RCWA
method [10] and the CST simulations in different cases.

The algorithm proposed in this paper is not only suitable
for dielectric and metallic ultrathin binary gratings, but also
other one-dimensional ultrathin periodic structures. Also,
we hope this method will be extended to two-dimensional
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ultrathin periodic structures and metasurfaces in future
research.

APPENDIX
In the following, a specific derivation on the condition that
the thickness d can be regarded as ultrathin will be made.
According to the relationship between eigenvalue and

eigenmatrix, there is

λ1 + λ2 + λ3 + · · · + λN =

N∑
i=1

aii (36)

where λi and aii are the ith eigenvalue and the i, i element of
eigenmatrix [A] respectively.

A. THE CONDITION THAT THE PROPOSED METHOD
DEVIATES FROM THE CONVENTIONAL METHOD
Using (36), there is

Nλmax ≥

N∑
i=1

aii (37)

where λmax denotes the maximum value of λi.
Substituting (8) into (37), the following equation can be got

Nλmax ≥

m∑
i=−m

(
kxi
k0

)2

− Nεr0 (38)

Substituting (4) into (38), the following equation can be got

Nλmax≥

m∑
i=−m

(
n21 sin

2 θ−2
λ0

3
n1 sin θ i+

λ20

32 i
2

)
−Nεr0 (39)

where λ0 is the wavelength in air and N = 2m+ 1.
Equation (39) can be simplified as

Nλmax ≥ Nn21 sin
2 θ + 2

λ20

32

m∑
i=1

i2 − Nεr0 (40)

Namely

λmax ≥ n21 sin
2 θ +

λ20

32

m(m+ 1)(m+ 2)
3N

− εr0 (41)

So, according to (41), the minimum value of λmax is

(λmax)min = n21 sin
2 θ +

λ20

32

m(m+ 1)(m+ 2)
3N

− εr0 (42)

and the minimum value of qmax is

(qmax)min=

√
n21 sin

2 θ+
λ20

32

m(m+ 1)(m+ 2)
3N

−εr0 (43)

where min denotes the minimum value.
As we knew, the closer x is to 0, the smaller the error of

replacing exp(x) with 1+x is. Supposed that when |k0dq| is
greater than |a+ bj|, 1+ k0dq can no longer be used to take
the place of exp(k0dq). So when

|k0(qmax)mind | > |a+ bj| (44)

Namely∣∣∣∣∣∣k0d
√
n21 sin

2 θ+
λ20

32

m(m+ 1)(m+ 2)
3N

−εr0

∣∣∣∣∣∣> |a+ bj| (45)

According to (45), the range of thickness d can be got

d >

∣∣∣∣∣∣∣∣
a+ bj

2π

√
n21 sin

2 θ +
λ20
32

m(m+1)(m+2)
3N − εr0

∣∣∣∣∣∣∣∣ λ0 (46)

Under this condition, the calculation results of the pro-
posed method deviate from those of the conventional method.

B. THE CONDITION THAT THE THICKNESS D CAN BE
REGARDED AS ULTRATHIN
In the actual calculation process, λi is always greater than 0,
so (36) can be rewritten as

λmax ≤

N∑
i=1

aii (47)

Namely

λmax ≤

m∑
i=−m

(
kxi
k0

)2

− Nεr0 (48)

Substituting (4) and (8) into (48), it can be rewritten as

λmax ≤ Nn21 sin
2 θ +

λ20

32

m(m+ 1)(m+ 2)
3

− Nεr0 (49)

So, according to (49), the minimum value of λmax is

(λmax)max = Nn21 sin
2 θ+

λ20

32

m(m+ 1)(m+ 2)
3

−Nεr0 (50)

and the maximum value of qmax is

(qmax)max=

√
Nn21 sin

2 θ+
λ20

32

m(m+ 1)(m+ 2)
3

−Nεr0 (51)

where max denotes the maximum value.
Contrary to part A, when |k0dq| is smaller than |a+ bj|,

1+ k0dq can be used to take the place of exp(k0dq). Namely∣∣k0 (qmax)max d
∣∣ ≤ |a+ bj| (52)

Using (52), we can get

d ≤

∣∣∣∣∣∣∣∣
a+ bj

2π

√
Nn21 sin

2 θ +
λ20
32

m(m+1)(m+2)
3 − Nεr0

∣∣∣∣∣∣∣∣ λ0 (53)

Under this condition, the calculation results of the pro-
posed method are in good agreement with those of the con-
ventional method.

Different values of a and b correspond to different calcu-
lation accuracy. The higher the accuracy requirements are,
the closer the values of a and b are to 0. Generally, when a
and b are equal to 0.1, the accuracy requirements can be met.
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FIGURE 5. The influence of the ratio of thickness to wavelength on the
results of the two methods under different parameters. ((a) TE
polarization, (b) TM polarization solid line, the conventional method.
Circle, the CST simulation. Cross, the proposed method. Purple, Green,
and Blue represent examples 1, 2, and 3 respectively.)

C. SIMULATION RESULTS
In the foregoing work, the condition that the thickness d
can be regarded as ultrathin is derived analytically. Next,
three simulation examples are used to show this condition
more clearly. In the simulation process, it is assumed that
θ is 0 degrees. The related parameters of examples 1 and 2
correspond to the two numerical examples in Section IV, and
the frequency of 15 GHz and 90 GHz are chosen as the
reference respectively. The third example is a grating with
ε1 = 1 and ε2 = 10 respectively. In the grating region,
the relative permittivity εrd = 10 and εgr = 1, and it is
assumed that λ0 and 3 are 1 cm, f is 0.5. Fig. 5 shows
the transmission efficiency of three examples under different
ratios of thickness to wavelength.

It can be seen from Fig. 5 that when d is less than 10−3λ0,
the calculation results of the conventional method, the CST
simulation, and the proposed method are consistent. In this
case, from a numerical point of view, d can be considered as
ultrathin. As d continues to increase, there will be differences
between the proposed method, the conventional method, and
CST simulation results. But, when d is less than 10−2λ0,
the difference between the calculation results of the three
methods is still very small. By substituting the parameters of
the three examples into (46) and (53), it can be concluded that,
when d is greater than 10−3.74λ0, 10−5.01λ0, and 10−3.43 λ0,
the results of the two methods will begin to show differences.
When d is less than 10−4.98λ0, 10−6.25λ0, and 10−4.67λ0,
the results of the two methods are in high agreement. From
the comparison between the theoretical derivation and the
simulation results, it can be found that the conditions of the
theoretical derivation are more stringent than the simulation
results, which means that in the actual calculation process,
we can appropriately take larger a and b as the condition to
judge whether the d can be regarded as ultrathin. Usually,

when d is less than 10−3λ0, the calculation results of the
proposed method can meet the requirements. Of course, if the
requirement of numerical accuracy is reduced, when d is less
than 10−2λ0, it can also be regarded as ultrathin, and the
proposed method can be used for more efficient calculation.
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