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ABSTRACT Advanced data analysis tools and techniques are important for semiconductor companies
to gain competitive advantage. In particular, yield prediction tools, which fully utilize production data,
help to improve operational efficiency and reduce production costs. This paper introduces a novel and
scalable framework for semiconductor manufacturing Final Test (FT) yield prediction leveraging machine
learning techniques. This framework is able to predict FT yield at wafer fabrication stage, so that FT low
yield problems can be caught at an earlier production stage compared to past studies. Our work presents
a robust solution to automatically handle both numerical and categorical production related data without
prior knowledge of the low yield root cause. Gaussian Mixture Models, One Hot Encoder and Label
Encoder techniques are adopted for data pre-processing. To improve model performance for both binary and
multi-class classification, model selection and model ensemble using the F1-macro method is demonstrated.
The framework has been applied to three mass production products with different wafer technologies and
manufacturing flows. All of them achieved high F1-macro test score indicative of the robustness of our
framework.

INDEX TERMS Semiconductor manufacturing, smart manufacturing, yield prediction, final test, Gaussian
mixture models, clustering, ensemble methods.

I. INTRODUCTION
The semiconductor manufacturing process flow involves
hundreds of processes and the production life-cycle from
raw material to packaged chips can take 8-16 weeks in all.
In general, Wafer Fabrication (WF), Wafer Sort (WS) and
Final Test (FT) are the three major stages where huge amount
of production data are generated every day, but most of them
are not fully utilized. During WF stage, Wafer Acceptance
Test (WAT) is conducted to monitor important WF process
related parameters. Wafers that have passed WAT will then
proceed to WS stage where functional defects are filtered
before assembly. FT is done on packaged chips and it has the
largest test coverage and longest test time to make sure defec-
tive parts are not shipped to customers. Normally, FT has
more low yield problems and higher test cost compared to
WAT and WS. Therefore, FT yield control is one of the
most important factors which contribute to manufacturing
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cost and forgone production losses, especially for fabless
semiconductor companies.

Current practice for FT low yield analysis is to monitor
production FT yield. If there is any low yield problem, engi-
neers need to manually review all related production data and
identify the root cause. There are two major categories of
root causes. The first one is front-end WF process variation.
The second one is backend manufacturing flow problems,
involving package types, product configurations, test facili-
ties, human interference, etc. However, due to lack of high
dimensional and unstructured data analysis capability, it is
very time consuming to carry out manual root cause analysis,
which results in a prolonged corrective action process.

In this paper, we propose a holistic framework for FT yield
prediction using a suite of machine learning techniques. The
framework is able to predict FT yield at the WF stage itself,
which implies that FT low yield problems can be identi-
fied two months earlier when compared to current practice.
The novelty of our framework is that it takes into consid-
eration of all manufacturing related parameters and is able
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FIGURE 1. Semiconductor manufacturing flow and final test yield prediction at wafer fabrication stage.

to automatically handle numeric, categorical, nominal and
cardinal type of manufacturing data. Based on the output
from the framework, corrective actions can be taken to reduce
yield loss at an earlier stage as illustrated in Fig 1. Using
the WAT measurements and backend manufacturing flow
parameters, our proposed model is able to classify wafer
material into different yield sub-populations. Based on the
binning or multi-modal classification of the yield, wafer
process adjustment or backend related manufacturing flow
adjustment can be selectively carried out. For example, low
to moderate yield sub-population wafers can be intentionally
used for fabrication of low-end non-critical application prod-
ucts (such as home-based security and IoT solutions) and sold
to customers in such markets. Moreover, the testing priority
can be adjusted for each yield sub-population and resource
allocation and shipment forecast made easier based on the
prediction results. Our data-driven decision-making process
is able to overcome the limitations of manual work for low
yield materials’ data review and disposition.

II. OVERVIEW OF RELATED WORK
Recent semiconductor yield prediction studies are focusing
mainly on WF and WS stages. The prediction targets are
wafer map design optimization [1], [2], wafer map defect pat-
tern monitoring [3]–[5] as well as wafer yield prediction [6].
Jang et al. [1] introduced a die level yield prediction model
with wafer die spatial features as input parameters. Themodel
was used to evaluate the productivity of wafer maps consider-
ing yield variations based on the die positions and die sizes of
a wafer map. Studies byKim et al. [2] also usedwafer die spa-
tial features as input parameters, and the model was focused
on evaluation of lithography process related yield problem.
Both these studies used the Deep neural network (DNN)
algorithm. Convolutional Neural Network (CNN) was also
applied by Nakata et al. [3] for wafer map failure pattern
monitoring. The authors proposed a framework to classify
failure patterns taking the wafer map as input. Their results
showed that CNN outperforms Support Vector Machine
(SVM). A novel DNN model was proposed by J. Wang et al.
in Ref. [4] to resolve wafer map imbalance data problem.
DNN is widely used in wafer map related studies because it

is suitable for pattern recognition application and wafer maps
can be treated as images [5]. However, DNN is more suitable
for large datasets and may not be suitable for yield predic-
tion due to over-fitting problem and poor model visibility as
mentioned in [6]. Kong and Ni [6] used SVM and partial
least square algorithm to predict functional block based die
yield with inline metrology data as input parameters. Their
yield model was based on the assumption that wafer yield
loss is dominated by inline defects which may not be suit-
able for other situations in a real production environment.
Kim et al. in Ref. [7] discussed equipment-related variable
selection for WS yield prediction. Partial least squares, least
absolute shrinkage and selection operator regression were
utilized as prediction models. The limitation of their work
is that the proposed model only allowed for prediction of
two wafer process parameters’ performance instead of the
overall yield. Besides, the model does not show the rela-
tionship between the two measurements. In practise, if the
two measurements are not independent, adjustment of one of
the equipment variables will affect the other measurement as
well. Therefore, the overall yieldmay not necessarily increase
when the correlation between the measurements is ignored.

There are few studies on FT yield prediction. WS mea-
surements and wafer spatial features were used as input by
S. Kang et al. in Ref. [8] to predict two types of die level
FT yield. To the best of our knowledge, there is no prior
study on FT yield prediction using WAT data yet. Besides,
most of the past studies mentioned above tend to predict a
specific failure mode, which does not cover all failure types.
The input data were closely related to low yield problems
based on engineers’ past experience or prior knowledge on
the root cause. Their input data including wafer die fea-
tures, WS measurements, inline metrology data or process
equipment information, only represent certain manufacturing
stages. For example, wafer map design is one of the most
important factors for wafer low yield problems. However,
wafer low yield problem root causes are not limited to wafer
map design. It can be related to product design constraints,
human error, equipment or subcontractors’ performance
deviations etc. In our proposed framework, all production
related parameters including both numerical and categorical
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parameters are considered as input parameters to account
for all manufacturing stages’ factors into the yield model.
Moreover, no manual data labelling or filtering is required,
the data can be automatically fed into our FT yield prediction
model framework.

III. METHODOLOGIES ADOPTED IN OUR FRAMEWORK
A. OUTPUT DISCRETIZATION
Production FT yield is a continuous random variable ranging
from 0% − 100%. The yield distribution can sometimes be
multi-modal, highly skewed or long tailed. The distribution
variation is caused by different wafer fab technology and
product-specific manufacturing flow. For individual prod-
ucts, majority materials’ FT yield are acceptable to ship to
customer when all the processes are well controlled. Only a
small portion of low yield material need further analysis and
reprocessing. Normally, the low yield threshold is decided
based on engineers’ past experience and manual review of
historical production data. In order to define material as high
yield or low yield, output discretization is required to convert
the numeric yield into categorical classes. Past semiconductor
yield problems used quartile discretization method, which
aimed to identify excursions for the points outside the region
of (Q1−k × IQR,Q3 + k × IQR), where k is a constant
and interquartile range (IQR) is the difference between the
third and the first quartiles (Q3 and Q1) of the yield [9].
However, this method is not suitable for multi-modal yield
distributions. The equal width and equal frequency binning
approaches are also commonly used discretization methods.
However, they require users to decide on the number of
intervals, k, and then discretize the continuous attributes into k
intervals simultaneously. However, the hard coded k may not
be suitable for all products. Other discretization algorithms
focus on either minimizing the number of identified intervals
or maximizing the classification accuracy.

The purpose of our framework is not only to optimize
prediction accuracy, but also to correctly identify different
yield classes and provide guided material disposition and
root cause analysis. Material subject to similar manufacturing
flows tend to have similar yield distributions. For products
with the same manufacturing flow, but different FT subcon-
tractors, the major low yield root cause is that one of the
subcontractor’s test performance is worse than the others.
The FT yield distribution then becomes bi-modal due to the
particular subcontractor. For output discretization, we’ll need
to differentiate the target beforehand due to subcontractor
variations. Therefore, in our framework, we propose using
Gaussian Mixture Models (GMM) to automatically cluster
and identify optimal number of FT yield classes.

B. GAUSSIAN MIXTURE MODELS (GMM)
GMM is a probabilistic model representing a mixture of
Gaussian distributions. It is a popular statistical technique
and widely used for clustering problem, heterogeneous pop-
ulations and multivariate density estimations. Let M denote
the number of Gaussian components, which represent FT
yield classes in our proposed framework. Assuming we

have a training dataset with N number of FT yield values
{X1, . . . ,XN }. Let Z be the latent parameter where

p(Z = m) = πm, m = 1, . . . ,M , (1)

πm are the mixture weights for the M components and
therefore

M∑
m=1

πm = 1 (2)

The joint probability of X with a latent variable Z is

P(X ,Z ) =
M∑
m=1

πmN (Xi|µm, 6m) (3)

where πm, µm, 6m are unknown parameters representing the
mth Gaussian component’s mixture weight, mean and covari-
ance. Therefore, the log-likelihood is

L(π,µ,6) =
N∑
i=1

log
M∑
m=1

πmN (Xi|µm, 6m) (4)

One of the popular algorithm to estimate maximum
likelihood of GMM’s unknown parameters is
Expectation-Maximization (EM) [10]. The algorithm is used
to optimize the log likelihood function L(π,µ,6) using an
iterative approach by repeating the following two steps until
there is no more update required for the parameters or the
update meets predefined threshold.

1) EXPECTATION-STEP
The first step is to compute posterior distribution of latent
variable Z :

P(Zi = m|Xi) =
P(Xi|Zi = m)P(Zi = m)

P(Xi)

=
πmN (µm, 6m)∑M
m=1 πmN (µm, 6m)

= γZi (m) (5)

2) MAXIMIZATION-STEP
Once we compute the value of γZi (m), parameters
πm, µm, 6m can be updated using below equations

πm =

∑N
i=1 γZi (m)
N

(6)

µm =

∑N
i=1 γZi (m)Xi∑N
i=1 γZi (m)

(7)

6m =

∑N
i=1 γZi (m)(Xi − µm)

2∑N
i=1 γZi (m)

(8)

C. ONE HOT ENCODER AND LABEL ENCODER
In our FT yield prediction framework, part of the input data
are descriptive text data which need to be converted to a
numerical representation in order to fit into the machine
learning models. One Hot Encoding and Label Encoding are
two of the most popular techniques for categorical parameter
pre-processing. Both of them have benefits and drawbacks.
It depends on the characteristics of the dataset to decidewhich
one should be used for categorical data pre-processing.
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The benefit of the Label Encoder is that it does not increase
the dimension of the input data. Label Encoder directly uses
integers to represent different text under the same categorical
parameter. For example, the product A to be discussed in
later section has one categorical parameter named Tester
Type, which includes 6 different types. After applying Label
Encoder, integers from 0 − 5 are used to represent different
Tester Types. But one of the drawbacks for using Label
Encoder is that it introduces meaningless numerical com-
parison between the different types. Practically there should
be no weight or ordering difference for each tester and they
should be treated equally during model training. The ordering
problem can bring misinterpretation, thereby affecting model
performance.

The One Hot Encoder is able to avoid this problem.
It creates new parameters to represent different categorical
values, and assigns 0 or 1 to indicate whether or not each data
point belongs to the particular category. All the processed
columns have an independent relationship. For example, after
applying the One Hot Encoder for the Tester Type column,
the parameter columns vector size increases from 1 to 6,
where each column denotes one type of Tester. For a partic-
ular data point, if it uses TESTER_03, then the third element
of the vector TESTER_03 is 1 and the entries in the other five
columns are all zero (0). However, the disadvantage of One
Hot Encoder is that it leads to a huge increase in the input
dimension space. For input parameters with high cardinality,
this will result in sparse and high dimensional data thereby
resulting in poor model performance.

D. F1 MACRO MEASUREMENT METRIC
FT yield prediction is either a binary or a multi-class problem
with an imbalanced dataset. Normally, production yield dis-
tributions are skewed towards the high yield end, while low
yield wafers tend to be the minority. The common model
accuracy metric is not suitable in such a case because the
majority class will tend to dominate the accuracy result.
However, the low yield wafers’ analysis and disposition are
more important from a cost perspective.

Precision and recall are two effective metrics used for
evaluating imbalanced dataset’s model performance. Let TP,
FP, FN denotes True Positives, False Positives and False Neg-
atives. The precision for any individual class m is defined as

Pm =
TPm

TPm + FPm
(9)

It measures the probability of a wafer that is classified as
‘‘positive class’’ is truly positive. It focuses on reducing FP.
For example, let positive class stand for low yield wafers.
By increasing Precision, it helps reduce cases where high
yield class wafers are misclassified as low yield wafers. From
a production control point of view, it helps reduce wastage of
good material and avoid excessive wafer fabrication.

Recall evaluates the ratio of TP over all Positive Class
wafers. It is defined as

Rm =
TPm

TPm + FNm
(10)

It aims to reduce FN, which is the case when actual low yield
class wafers are not fully identified. Both metrics are equally
important as we need to have balance between Precision
and Recall to better control production cost and shipment
forecast. Therefore, in this framework, we use the F1 metric
which takes into account both Precision and Recall. F1 score
is defined in Ref. [11] as

F1m = 2 ∗
Pm × Rm
Pm + Rm

(11)

For a multi-class classification problem, metrics can be com-
puted using a micro averaging or macro averaging method.
Micro averaging method is to compute the probability with
total number of all TP, FP or FN. In contrast, the macro
averaging method takes the average performances for each
class. It is known that macro-averaged scores are more influ-
enced by the performance of rare categories as mentioned by
Y. Yang et al. in Ref. [12]. Therefore, F1-macro is the apt
model evaluation metric for our proposed framework. Since
F1-macro treats all classes equally, it can be mathematically
defined as

F1(macro) =

∑M
m=1 F1m
M

=
2
M

M∑
m=1

Pm × Rm
Pm + Rm

(12)

IV. FINAL TEST YIELD CLASSIFICATION FLOW
The overall FT yield classification flow framework is
illustrated in Fig 2. In this section, we will explain the fol-
lowing steps in detail.

A. DATA PREPROCESSING
1) NUMERICAL AND CATEGORICAL INPUT DATA
The numeric input data are theWAT parameters, whose range
varies widely between 10−13 and 103. It is important to
keep all the numerical values in a similar range of value
or magnitude. To do this, first, a WAT parameter standard
scaler is generated by fitting with historical production WAT
data. For dimension reduction purpose, the Pearson Corre-
lation is calculated for the WAT data and highly correlated
WAT parameters are removed if their correlation coefficient
exceeds 0.9. Thereby, a WAT standard scaler with reduced
dimension is generated. Any new incoming production WAT
data are transformed using this scaler.

The categorical input data describe the variety in the man-
ufacturing configurations. In general, the categorical data
include wafer technology, RAM/ROM versions, firmware
versions, package types, product functionality, fab and test
locations, test program versions, tester and handler types
etc. They are descriptive string type data and can be either
nominal or ordinal. The number of parameters and their
values are different across products and production lines.
For example, IoT products tend to have many customized
firmware versions while audio products’ firmware version is
relativelymore standardized. Themost significant categorical
parameters are selected using ANOVA analysis. Categorical
parameters with significance levels corresponding to a p −
value ≥ 0.05 are removed. To overcome the limitations

197888 VOLUME 8, 2020



D. Jiang et al.: Novel Framework for Semiconductor Manufacturing FT Yield Classification Using Machine Learning Techniques

FIGURE 2. Flow chart for final test yield classification.

imposed by the Label Encoder and One Hot Encoder methods
as discussed previously, both of them are used for categorical
input conversion. Based on the overview from Kline [13],

a sample size of at least 10 per parameter is required to obtain
trustworthy results. Therefore, we propose here a guideline
that when the ratio between the number of data points and
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the number of input parameters is larger than 10, it is rec-
ommended to use the Label Encoder and for all other cases,
the One Hot Encoder is preferred.

2) OUTPUT DATA
The output data ‘‘FT Yield’’ is a continuous random vari-
able. To convert yield prediction into a classification prob-
lem, we need to carry out output labeling. In this paper,
we propose to use the GMM for FT yield clustering and
labeling. The number of classes for binning and evaluation
can range anywhere from one to four. The GMM model
with the lowest Bayesian Information Criterion (BIC) score
is selected. BIC is a common model selection criterion which
allows for a penalty based approach for statistical mixture
distribution fitting to sample data. The penalty term in BIC
prevents redundant overfitting of the data. It is easy to inter-
pret by visual inspection and can be used generally with any
prior [14]. We avoid considering a class size higher than
four as it may result in poor prediction performance due
to highly imbalanced datasets and is practically unneces-
sary for production wafers disposition in the semiconductor
domain.

B. MODEL TRAINING AND VALIDATION
After data preprocessing, the train test dataset split is carried
out. 90% of the data are used for training and validation
while 10% of the data are used for testing at the final stage.
A ten split stratified cross validation step is used for model
selection, because its bias and variance are relatively lower
compared to regular cross validation methods as concluded
by Kohavi et al. in Ref. [15]. Several popular and diversified
classifiers are applied in this step, as listed below along with
the justification for their choice.

Support VectorMachine Classifier (SVC) uses hyper plane
and kernel tricks to classify different groups. It was used
in several semiconductor yield related studies [3], [6]. The
K Nearest Neighbor (KNN) determines the result based on
a majority vote from K closest neighbors. The neighbors
are selected based on the distance metric function. It is a
non-parametric algorithm [16] and easy to implement but
very sensitive to training samples. It is suitable for classifi-
cation problems without any prior knowledge on the training
dataset because the KNN algorithm does not require any
assumptions on the underlying data distribution. Gaussian
process is a natural way of defining prior distributions over
functions of one ormore input variables [17]. It is widely used
in statistical settings andmachine learning applications due to
its high flexibility, ability to render interpretable results and
its conceptual simplicity [18].

For model selection here, we use the Gaussian Process
Classifier (GP) with a Laplace’s method for approximating
the Bayesian inference. The reason we choose GP is that
it is robust to noisy data and able to work even for small
datasets. Moreover, models defined with GP can discover
higher-level properties of the data, such as which inputs are
relevant to predicting the response [17]. Logistic Regres-
sion (LR) models are used to understand data from a wide

variety of disciplines. It is best known and used in the medical
and healthcare domains. Also, it is commonly used in social
sciences, economic research and in physical sciences. LR is
one of the statistical tools used in Six Sigma quality control
analyses, and it plays an important role in the data mining
domain [19]. LR is able to explain the relationship between
one dependent data variable and one or more nominal and
ordinal independent variables, which is suitable for the FT
yield classification. Therefore, it is used as the benchmark
for model performance measurement.

The remaining three classifiers used are ensemble learning
methods based on decision trees. Extra Tree Classifier (XT)
builds an ensemble of unpruned decision trees according
to the classical top-down procedure. It essentially consists
of randomizing strongly both attribute and cut-point choice
while splitting a tree node [20]. The benefit of XT is that
the variance is smaller compared to weak randomization
methods like Random Forest. The other main strength of
the XT algorithm is its high computational efficiency. The
Gradient Boost (GB) model utilizes machine learning based
boosting method. It can be used as a generic algorithm to find
approximate solutions to the additive modeling problem [21].
It improves weaker learner’s performance by minimizing the
loss function. The reason we choose GB is that it produces
competitive, highly robust and interpretable procedures for
classification [22]. Finally, XGBoost (XGB) provides for
an efficient and scalable implementation of gradient boost-
ing framework with L1 and L2 regularization to improve
model generalization [23]. It is widely used by data scientists
to achieve state-of-the-art results on many machine learn-
ing challenge datasets [24]. XGB is able to handle sparse
and noisy data, and the parallel and distributed computing
makes execution speed faster than the traditional GB, thereby
enabling quicker model exploration.

C. MODEL OPTIMIZATION AND ENSEMBLE
Based on the above cross validation results, the top three high
performance models are selected using F1-macro measure-
ments. Grid search with cross validation is applied for hyper
parameter tuning and optimization of the top models. Hard
voting and soft voting grid search results are compared to
define which one of them is to be used as the final voting
classifier (VC). The hard voting result is computed based on
an average weight for each classifier whereas soft voting is to
sum up all the prediction probability values and the prediction
result for each classifier. Finally, test result is generated using
10% test dataset.

V. EXPERIMENTS AND RESULTS
We have conducted experiments for three different products
in this study. All production manufacturing data are pro-
vided by Silicon Laboratories. In this section, we will discuss
product A’s classification procedure in detail. The other two
products prediction flow is similar and therefore, a summary
of the results are presented in a tabular format.

Product A has 1887 backend lots, with FT yield ranging
from 82.36% to 99.27%. After output data pre-processing,
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TABLE 1. Input and output parameters after data pre-processing. Categorical input pre-processing using one hot encoder.

FIGURE 3. Product A - FT yield GMM clustering result.

three classes are identified using GMM clustering method
as shown in Fig 3. Each backend lot consists of 74 WAT
parameters and 18 categorical parameters. After numerical
and categorical input data pre-processing, the number ofWAT
parameters has been reduced to 57 and categorical parameters
reduced to 3. After applying the One Hot Encoder technique
to significant categorical parameters, the dimension increases
from 3 to 86. The total input dimension is therefore 143, still
less than 10% of training dataset size. Therefore, the One Hot
Encoder is preferred for this product. Overall input and output
data after pre-processing are presented in Table.1.

To compare the performance for different encoding meth-
ods, the cross validation F1-macro result comparison between
One Hot Encoder and Label Encoder and without using cate-
gorical inputs is shown in Fig.4. The F1-macro result for each
model is the mean value over 10 split cross validation. By
using Label Encoder, total number of input parameters is 60.
For the case of no categorical inputs, the input parameters are
only the WAT parameters. If we compare the mean F1-macro
across all the 7 models, One Hot Encoder method has the
highest score of 0.714, while Label Encoder has the lowest
score of 0.652. The Label Encoder method performance is
worse than without using categorical input whose score is
0.672. The reason for this trend is that product A’s WAT
parameters are the major root cause factor for low yield
problem. However, Label Encoder brings with it the ordering
problem for high cardinality categorical parameters, where

FIGURE 4. Product A cross validation: F1-macro comparison for One Hot
Encoder, Label Encoder and without categorical input parameters.

the encoded number is numerically much larger than WAT
parameters which ranges from −3 to 3. SVC using Label
Encoder score has the lowest value of 0.345 in Fig.4. As it
is based on the Euclidean distance, a high cardinality cate-
gorical parameter can distort the decision plane. The KNN is
also based on Euclidean distance; however, its performance is
better than SVC. The reason is that Product A’s dataset is not
linearly separable as illustrated by the poor LR results. The
KNN in this case is more suitable for the non-linear problem
compared to the Support Vector Machine Classifier (SVC)
model. Besides, KNN is able to handle noisy datasets [25]
which is another reason it outperforms SVC. Tree-based
models including GB, XT and XGB performance are better
than Non-Tree based models. This is because Tree-based
models are better at handling both categorical and continuous
numerical parameter values.

During model validation and selection step, three top
models are selected for further optimization. The top 3 mod-
els are XT, GP and XGB for both encoding methods based
on the validation results in Fig.4. Three models’ F1-macro
scores are 0.776, 0.799 and 0.784 by using One Hot Encoder.
The average score is 0.786. The F1-macro scores are 0.783,
0.744 and 0.765 by using Label Encoder, wherein the average
score is 0.764. Although One Hot Encoder model, XT’s
F1-macro score is slightly lower than that using the Label
Encoder, the average performance is 2.88% higher than Label
Encoder. Therefore, it is proven that OneHot Encodermethod
is preferred for product A. The detailed number of input
parameters and cross validation results’ comparison is sum-
marized in Table.2 for the three products. For Product B
and Product C, cross validation of all models’ results are
presented in Fig.5 and Fig.6.
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TABLE 2. Three product input parameters and cross validation results’ comparison with different encoding methods.

TABLE 3. Test result for 3 products.

FIGURE 5. Product B cross validation: F1-macro comparison for One Hot
Encoder, Label Encoder and without categorical input parameters.

FIGURE 6. Product C cross validation: F1-macro comparison for One Hot
Encoder, Label Encoder and without categorical input parameters.

For product B, categorical parameters play an important
role for FT yield variation based on engineers’ past experi-
ence, which is already reflected in the cross validation results.
The validation results using categorical input are better than

without using it for all models except for SVC. SVC per-
formance is worst when handling a mixture of continuous
numeric and categorical inputs. For the One Hot Encoder
method, the average F1-macro score of the 7 models is 0.772,
higher than Label Encoder’s 0.751. If we only evaluate top
3 models’ performance, namely XT, KNN and XGB, Label
Encoder’s averaged result of 0.799 is slightly better than that
of the One Hot Encoder’s 0.798. For Product C, the Label
Encoder F1-macro results are better for both seven models
and top three models. Overall, the results prove that if we
choose the proper encoding method based on our proposed
guideline, we are able to achieve better performance than
with other encoding method or without using categorical
parameters.

Based on the three products’ validation results, it can be
seen that the prediction performance varies between different
models and different encoding methods. Therefore, when
doing data pre-processing and machine learning model selec-
tion, it is important to take into consideration of the following
factors which provide guidelines as to the device model to
be used and its computational demand: number of input
parameters, size of training dataset and model’s capability to
handle mixture type of input.

At the model optimization step, product A’s top three
model (XT, GP, XGB) hyper parameters are fine tuned with
grid search cross-validation method. Finally, VC is generated
using the optimized top three models. The 10% test dataset
VC F1-macro results are compared with other models as pre-
sented in Fig.7. The detailed test results including precision-
macro, recall-macro and F1-macro are presented in Table.3.
The best outcomes of our analysis are highlighted in bold.
In general, VC’s performance using all the three measure-
ment metrics are top among all the models. Product A’s
recall-macro score is 0.809, which is slightly lower than
GP’s score of 0.828. However its precision-macro score
of 0.859 is much higher than GP’s 0.786. Therefore, VC’s
overall performance is still better thanGP. It can been inferred
from the table that the F1-macro is a suitable metric for
model selection and optimization for all the three products.
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FIGURE 7. Products A, B and C test dataset prediction result with a
comparison between VC (voting classifier) and other classifiers.

The VC performance is the best among all the models for all
three products with an F1-macro score of 0.831, 0.889 and
0.961. We have achieved 28.17%, 3.44%, 23.48% F1-macro
improvement compared to a purely LR performance for
Products A, B and C respectively.

VI. FEATURE IMPORTANCE ANALYSIS
Based on the above analysis, we have now generated suitable
classifiers for FT yield prediction. With this, we can proceed
to carry out a feature importance analysis of the data using
Gini importance [26]. Gini importance is a general indicator
of feature relevance. It describes the importance of a feature
by computing the normalized total reduction of the criterion
(which is the objective function, in our case, it is the discrete
class value of the yield sub-population - (0, 1, 2)) brought
about by that feature [26]. The best classifier for product
A turns out to be XT. We carry out the feature importance
ranking and visualisation of the fitted XT model using the
method prescribed in Ref. [27]. The resultant most important
15 features are plotted in Fig 8. It can be seen that the top three
features are all categorical features - PACKAGE_MSOP_3,
PROGRAM_37,TESTER_024. Based on the production data
investigation, we confirm that the material tested with
PROGRAM_37 and TESTER_024 did exhibit low yield prob-
lems. Corrective actions can now be taken to modify the test
program and the tester as well for yield improvements.

One of the three important features identified viz.
PACKAGE_MSOP3 stands for the assembly package type,
which is in turn related to the product functionality. Yield
variations between different product functionality may most
likely be caused by different WAT parameters. Therefore,
WAT parameter feature importance analysis can now be
done under two conditions. First condition is considering the
dataset with assembly package PACKAGE_MSOP3 only and
the second one is using dataset without PACKAGE_MSOP3.
The same model optimization process is then repeated for
these two conditions and the resulting top 15 feature impor-
tance results are shown in Fig 9(a) and Fig 9(b). The top three
most important features’ names are modified with descriptive
names for better understanding in Fig 9. It is worth noting that

FIGURE 8. Product A ExtraTree Classifier Top 15 Feature Importance
Ranking.

FIGURE 9. Product A ExtraTree Classifier based feature importance
ranking analysis results (a) without PACKAGE_MSOP3 and (b) with
PACKAGE_MSOP3 showing the 15 most sensitive input parameters.
There is a significant change in the order of importance of the input
parameter for these two cases.

the top three most important features are completely different
between these two conditions. For product with only one type
of package, PACKAGE_MSOP3, the top three WAT param-
eters are all contact resistance related parameters, includ-
ing Contact_Resistance_DNW, Contact_Resistance_Nw and
Contact_Resistance_TV. While for the other package types,
the top three WAT parameters are Continuity_M6, Thresh-
old_Voltage_N4H and Contact_Resistance_V3. These results
can now be used for fine tuning of the top three WAT param-
eters, separately for the different package types, so as to
optimize the product yield further.

VII. CONCLUSION
In this paper, we have introduced a novel framework for final
test yield prediction at the wafer fabrication stage. This is
a challenging task since there are many unknown factors in
between WF and FT that can cause FT low yield problems.
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Three different products’ production data were fitted into
the framework and all of them managed to achieve a good
F1-macro score. This framework can be extended to predict
any semiconductor production stage’s yield based on the
production data prior to the stage. The major contribution
of our framework is to automatically convert semiconductor
production related data into the yield prediction model with-
out prior knowledge of the data. Furthermore, the framework
introduced amodel selection and ensemblemethod to achieve
good model performance for both binary and multi-class
problems.

The novelty of our study is that we propose a generic
framework that can be applied to address several semi-
conductor manufacturing yield problems for advanced
logic / memory technology nodes. The framework is robust,
scalable and configurable to include both numerical as well
as categorical inputs and map their relationships to the output
yield of multiple product lines and also allows for automated
feature importance, sensitivity analysis and multi-modal
yield classification. Our framework takes into account all
the manufacturing related parameters as input data, with no
necessity for any manual filtering as compared to existing
yield prediction models [9], [28]. Additional machine learn-
ing models can also be added as candidate models during
the model selection step to accommodate other types of yield
problems.

Futureworkwill involve furthermethodological explorations
into improving the model performance and enabling dedi-
cated low yield root cause analysis. The low yield root cause
analysis task should be able to automatically identify whether
the causal factor is WAT related or production flow related so
as to provide corrective and effective recommendations for
faster turn around yield improvements.
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