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ABSTRACT This work describes design process toward fully analogue binary memory where two coupled
piecewise-linear (PWL) resistors are implemented using novel network topology with the voltage gain
amplifiers (VGA). These versatile active devices allow slopes of individual segments of ampere-voltage
(AV) characteristics associated with PWL two-terminals to be electronically adjustable via the external DC
voltage. Numerical analysis of designed binary memory cell covers all mandatory parts: phase portraits,
calculation of the largest Lyapunov exponent (LLE), basins of attraction for the typical strange attractors,
and high-resolution circuit-oriented bifurcation sequences. A transition from the stable states toward chaotic
regime through metastability is proved via real measurement. The robustness of the generated chaotic
attractors is verified by captured oscilloscope screenshots.

INDEX TERMS Analogue binary memory, bifurcation diagram, electronic tuning, chaos, Lyapunov
exponent, piecewise-linear (PWL) resistors, strange attractor.

I. INTRODUCTION

It is well known that isolated dynamical systems having at
least three degrees of freedom can exhibit complex, irregular,
continuous, bounded in state space volume, random-looking,
frequency-wideband motion known as a deterministic chaos.
Chaos, as one of the possible solutions associated with given
set of differential equations, can be understood as universal
dynamic phenomena. It means that physical interpretation of
individual state variables and internal system parameters are
not important. Instead of this, global vector field geometry
plays crucial role since folding and stretching mechanism
caused by inevitable intrinsic system nonlinearity needs to
apply on state trajectories simultaneously. Of course, not all
trajectories can be affected since several different attractors
can coexist.

General properties of the chaotic motion are interesting,
at the same time due to theoretical, educational and applica-
tion perspectives. Robust chaotic system generates waveform
that is sensitive to the small changes of initial conditions,
contains continuous scale of periodic signals, provides dense
strange attractor with the non-integer geometric dimen-
sion, chaotic waveforms have increased entropy, etc. This
facts have been demonstrated within hundreds of dynamical
systems among all fields and research branches of physics;
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for example in classical mechanics [1]-[3], math description
of the chemical reactions [4], [5] and fluid dynamics [6], [7],
in frame of the simplified population growth models [8],
during analysis of climate model [9]-[11], in optics [12], [13]
and, of course, analogue electronics. However, all chaotic
systems represent simplified models of the real situations
with a finite number of state variables. It is well known
that probability of chaotic steady state solution rises with
increased order of analyzed system. Therefore, considering
very complex behavior of real events, chaos probably belongs
to relatively common motion.

In the case of chaotic circuits, more detailed specification
of chaos sources can be applied. Lumped analogue circuits
were subject of research from the viewpoint of investigation
of chaotic behavior for the last four decades. Robust strange
attractors were reported in dynamics of standard structures
of oscillators such as Colpitts [14], [15], Hartley [16], [17],
Wien-bridge topology [18], [19], and many others. Regions
with chaotic solution were detected in the phase locked
loops [20], [21] and frequency filters [22], [23]. In the latter
case, it turns out that both parameters of the input harmonic
signal, amplitude and frequency, can continuously switch
between chaotic and regular operational regimes of filtering
two-port. Power electronics and switching circuits can be
(and often are) subjects of nonlinear dynamics, unpredictable
behavior, and chaos as well. Evolution of various strange
attractors was revealed in the case of DC-DC converters
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having different topologies [24]-[26]. Chaotic phenomena
can be observed, both numerically and experimentally, inside
simple nonlinear switched capacitors circuits [27], [28].
Logic networks and gates are not excluded from potentially
chaotic systems [29]. Recent paper [30] presents evolution of
chaos in fundamental class C amplifier having a single bipo-
lar transistor modeled by admittance-type equivalent two-
port. Several very simple chaotic circuits with one or two
bipolar transistors and three accumulation elements are dis-
cussed in [31]. Of course, both Colpitts and Hartley oscillator
topologies are members of this group of autonomous systems.
Paper [32] shows that chaos in oscillating circuit can be
detected thanks to the automatic gain control loop. Detailed
study [33] suggests construction of robust chaotic system
via closed loop of nonlinear active two-port and arbitrary
realization (passive and active) of low-pass frequency filter.
There, fundamental filter parameters, that is pole frequency
and quality factor, are used as natural bifurcation parameters.
This list of chaotic circuits is by no means complete; it
continues to grow every day. Due to the problem topicality
further investigation in this research area can be expected.

This paper is organized as follows. Next section provides
mathematical model of binary memory system and its linear
analysis. Third section is focused to show numerical analysis
results that are widely considered as common standard if new
chaotic dynamical system is presented [34]. Fourth section
describes individual analog building blocks that are utilized
in design process of chaotic oscillator. Active realization of
memory including limitations coming from utilization of the
commercially available variable gain multipliers is subject of
section five. This section also gives experimental verification
of the binary memory via measured period doubling route-
to-chaos scenario. Finally, open research areas are suggested
and concluding remarks are stated; where overall properties
of developed chaotic memory are summarized.

Il. MATHEMATICAL MODEL OF MEMORY
One of the simplest circuit concepts of a multi-state memory
system is based on series or anti-series connection of several
resonant tunneling diodes (RTD) [35]-[37] as demonstrated
in Fig. 1a). AV curve of RTD with properly adjusted bias point
via voltage Vyias can be approximated by PWL function hav-
ing following properties: 1) itis scalar function having at least
three linear segments, 2) exhibits both positive and negative
slopes, 3) is odd-symmetrical with respect to a non-zero cen-
ter. Of course, number of linear segments determine maximal
amount of the stable states of memory.

Although configuration of static memory mentioned above
is old chaos was discovered quite recently, see work [38]
and [39] for details. Evolution of chaos is allowed if a
very high-frequency models of micro-scale RTDs are consid-
ered [40]. In this case, connection of two ideal diodes with
non-zero threshold voltage is supplemented by a lead induc-
tance and two parasitic capacitances as depicted in Fig. 1b).
Biasing voltage can be removed by introducing linear trans-
formation of the coordinates, namely by using simple shift of
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FIGURE 1. Binary memory based on the coupled RTDs: a) fundamental
concept, b) equivalent circuit with high-frequency models of both RTDs, c)
rearrangement of real-valued components.

the state space origin. Consequently, both active PWL resis-
tors can be odd-symmetrical with respect to zero. Obviously,
such shape of nonlinearity represents significant simplifica-
tion of design process. Schematic provided in Fig. 1¢) demon-
strates simple lumped electronic circuit to be implemented in
the upcoming section of this paper. Note that all accumulation
elements are real-valued, i.e. denormalized to time constant
v = 10 pus and utilize impedance norm §& = 1000. Note
that both t and & can be chosen arbitrarily. Dynamics of this
memory is described by following set of ordinary differential
equations:

d .
CIEVI =i —fi(v1), (1a)
d )
Czavz =i — (), (1b)
d
LEZ'L = —v] — V3, (1c)
where scalar PWL functions are of the form:
il = Y ) (1_A") (2a)
vl < 22 S filw) = Vi, a
Ap Ry
Viar 1 Vi
Vi > AL — fivk) = R Vk A
1—Ar VK
. d T (2b)
Vi 1 Vi
Vi < AL - fip) = R Vk A
1—A, VE
- A (20)

where formulas for saturation voltages V¥, slope resis-

tors Ry and amplifications Ay will be defined later. Fixed
points are all real solutions of a nonlinear algebraic problem
dx/dt = 0. Number and location of equilibria depends only
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on the shape of AV curves of PWL resistors. Dynamical
system (1) can possess one, three or five fixed points. Their
locations are uniquely determined by solution for which
holds:

Vi = —v2, (3a)
i =fiv) = fa(=v2). (3b)
Obviously, we always have equilibrium located at state space
origin, i.e. X = (0, 0, O)T. In fact, PWL functions divide state
space into nine affine segments. Presence of the fixed point

in each segment is conditioned by existence of solution of
following equations:

V] = —V) = L Vl AN
TR Ri+ Ry —RiAy) '

1 2
> ALT’ A m] < ALZ’ (4a)
Vi = —V) = — —R2 Vl AV
: 2 Ri+ Ry —RiAy) :
Via Vi
< == A In| < 2, (4b)
Aq Ap
nE T Rk R ) e M
vl V2
< AL‘I" A vy > AL‘Z” (4¢)
Ry
V] = —Vp = <m> V_}%ZI A\ |V]|
vl V2
< AL“’ A< —AL'”, (4d)
1 2
RiV2, — RV}
V)] = —V) = — 15(11—25‘&[ A %
Ri+Ry
vl V2
> A“” A Vg > AL‘", (4e)
1 2
RiV2, + RV}
Vi = —Vy = — M A %
Ri+Ry
lt V2t
< =38 Ay > 3 4
Al V2 A (4f)
RiV2 + RV}
Vi = —Vvp = (—1 Sat+ 2 Sat) A V1
Ri + Ry
vl V2
> AL‘I" AV < —ALZI, (42)
RiV2, — RV}
Vi = —1y =< 1VYsat 2 sat) A vy
Ry +Ry
1 V2
< =S Ay < S (4h)
Ay As
Jacobi matrices for individual segments can be expressed as:
1—A4 0 1
R Cy LA Cil
Tomer = | 0 — = |
| RzCl’z (6))
- — 0
L L
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1—A; 1
R.C 0 C
1C1 1
1 1
Jquter — 0 . , Sb
mnner R2C2 C2 ( )
1 1
— - 0
L L
1 1
O -
R Cy LA Cil
o= o —=2 1, (5¢)
Ry C
1 1
—— —— 0
L L
1 1
O -
RiCy ) Cl‘l
outer
= 0 — 5d
outer R2C2 C2 ( )
1 1
—  —— 0
L L

Subscript and superscript associated with the square matrix J
mark segment of first and second PWL resistor, respectively.
Characteristic polynomial can be expressed as follows:

3 o] (%) 2 1 1 a1o2
AT — — Mt st —+t55 ) A~
RiCi Ry(C, CiL C)L RiR,Ci(Cy
R R
_ R+ Koy 0. (6

RiR,CCoL
where o = 1 in the outer segment and oy = 1 — A in the
inner segment of the k-th PWL resistor. Roots of polynomial
(6) can be evaluated using Cardan rules, both symbolically
and numerically form. Symbolic formulas are very compli-
cated and will not be provided. However, numerical evalua-
tion of roots of polynomial (6) is part of optimization routine
as it will be clarified in upcoming section.

Ill. NUMERICAL ANALYSIS

Numerical results presented in this paper were obtained using
three programs: Mathcad 15 mostly dedicated for graphical
visualization, Matlab 2018 for implementation of calculation
routines, and Orcad Pspice utilized for circuit simulations.
For numerical integration process, fourth order Runge-Kutta
method with the fixed time step was chosen.

8m
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FIGURE 2. Different projections of a typical strange attractor produced by
memory: v; vs v, plane (left), v; vs i; plane (middle), v, vs i; plane
(right). Sensitivity to small changes of initial conditions: initial (green)
and final (red) states after evolution time 100 s, small plot is zoomed
area v; € (~10, 10) mV, v, € (~10, 10) mV with 104 randomly generated
initial conditions with uniform distribution.

Figure 2 demonstrates a typical shape of the “maximally
complex,,strange attractor generated by the binary memory.
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FIGURE 3. Rainbow-scaled contour plot of kinetic energy distribution, v; vs v, plane projection of typical chaotic attractor (black) and return maps (white
dots) plotted for following list of Poincaré sections: iy =-7mA, iy =-6 mA, iy =-5mA, iy =-4mA, iy =-3mA, i =-2mA, iy =-1mA, and iy = 0 mA.

This plot also shows a high degree of unpredictability of
dynamical flow. Distribution of kinetic energy in state space
occupied by the typical double-scroll attractor generated by
memory is provided by means of Fig. 3. Here, low speed of
system evolution is marked by blue colour, average kinetic
energy is denoted by green areas, high and very high sys-
tem movement can be expected in yellow and red regions.
Note that only horizontal slices for the negative current i,
are provided. It is because origin-centred symmetry of the
vector field. This means that plots for the positive values
of current iy, looks analogically. Figure 4 provides plots of
LLE as two-dimensional functions of all combinations of
the parameters in the hexagonal space. This six-dimensional
hyperspace was dedicated for search-for-chaos routine where
fitness function was suitable combination of three basic prop-
erties of a state attractor, namely: 1) boundedness of the
attractor, 2) positive value of LLE, and 3) existence of three
unstable fixed points. Optimization itself is based on a non-
gradient evolutionary-inspired algorithm. Stability of equi-
librium points is tested via calculation of roots of (6). From
the viewpoint of chaos formation third criterion seems to be
irrelevant because many chaotic dynamical systems having
degenerated equilibrium structures [41]-[43], with variable
equilibrium [44] or even without equilibrium objects (points,
lines, curves) [45] have been already discovered. It has been
already proved that chaos is not restricted to unstable fixed
points, see [46], [47] for details. On the other hand, existence
of three fixed points represents situation that is close to the
operation as common binary memory.

Discovered strange attractors belong to the class of self-
excited, rendering a choice of initial conditions very simple:
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in the close neighbourhood of origin that is unstable for all
combinations of system parameters considered during search
procedure. Of course, Fig. 4 shows only a small fragment of
parameter’s hyperspace addressed by optimization procedure
used in this work. It is focused on area where robust chaos was
finally localized. Set of numerical values that leads to a very
dense double-folded strange attractor are: C; = 110nF, C; =
360 nF, L = 1 mH, V., =200 mV,A; = 1.2, R = 14 Q,
Vszat = 1V,A> = 3, Ry = 130 Q2. Eigenvalues associated with
fixed points in the outer regions of the vector field depends
primarily on the slopes of PWL resistors.

Used method for numerical calculation of LLE with Gram-
Smith orthogonalization excludes wrong misinterpretation of
the chaotic dynamics as numerical artefact or a long chaotic
transient. Variations of solution with respect to the resistance
R> is visualized by means of Fig. 5. In these plots, the initial
conditions were chosen symmetrically as xo = (0.01, 0, 0)T
and vector Xg = (-0.01, 0, 0)T for orange and blue trajectory
respectively. State orbits were integrated up to the final time
100 ms with fixed time step 1 us. Intersections of plotted
PWL functions mark v; coordinates of the fixed points. Note
that mentioned qualitative change of memory behavior starts
and ends with attraction fixed points. Between corner values
of the resistance Ry, that is 50 © and 600 €2, several different
limit cycles can be observed. Further increasing value of
resistor R, does not admit turning dynamical system into
chaotic regime. Also note that outer fixed points can be
located within either inner or outer segments of second PWL
function. For R, = 50 Q2 eigenvalues associated with these
equilibrium points are given by linearization matrix J/%¢" and

numerical eigenvalues are A1 = —3.488-10*+ j. 4.918.10%,
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FIGURE 4. Topographically scaled surface-contour plot of LLE as function of two circuit parameters taken from full set {A;, R;,

high-resolution plots with uniform parameter step 0.01.

A3 = ~6.351-10, i.e. a state orbit spirals toward outer fixed
points quickly. Therefore, what we have here, is a true binary
memory with two mirrored basins of attraction.

Table 1 shows symbolically transitions between state space
segments described above (situation a — first row). For chaos
evolution, outer fixed points should be located within inner
segment created by the second PWL resistor, i.e. where

eigenvalues are defined by J/¢". For resistance R, larger

197280

Az Ry, VZ).

1
|/sat'

than 70 2 state space geometry can be divided into nine
affine segments and described by transitions in situation b
(second line of Table 1). Obviously, chaotic orbit eventually
visits all regions of the state space. For upper boundary
R, = 600 2 eigenvalues calculated for the outer equilibrium
points are still defined by J”7¢" and one can obtain easily
Ao =-2.479-10°% j- 5.197-10* and A3 = —-6.351-10°, i.e.
state orbit tends toward outer fixed points following spiral
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FIGURE 5. Bifurcation sequence based on change of single resistance R, (slope of second PWL resistor): a) 50 €, b) 60 £, c) 80 2, d) 90 2,
e) 110 2, f) 130 2, g) 140 2, h) 150 ©, i) 170 £, j) 230 , k) 250 £, I) 280 2, m) 320 £, n) 410 £, and o) 600 L.

movement. In this case, transitions between segments could
be characterized by situation c (third line of Table 1).

Note that several different attractors coexist within dynam-
ics of binary memory. Figure 5n) shows four different
w-limit sets: two fixed points and two mirrored limit cycles.
Evolution of the latter cases is achieved by choosing ini-
tial conditions as xo = (0.1, O, O)T for brown colour and
vector xo = (-0.1, 0, 0)T for red trajectory. The same
limit cycles can be observed for the higher values of
resistor R».

As part of numerical investigation, basin of attraction for
chaotic and non-chaotic attractors was calculated. To do this,
systematic state space grid of volume 10V x 10 V x 10 mA
having density 100 mV x 100 mV x 1 mA of the initial
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conditions was constructed. Doing so, it has been verified
that robust strange attractor generated by sequent numerical
values of passive and active elements: C; = 110 nF, C, =
360 nF, L = 1 mH, Vslat =200mV,A; =12, R = 14 @,
VS2at =1V,A; =3, Ry = 130 , is a global attracting set.
However, question about existence of hidden attractors was
not answered. To find answer, more sophisticated calculation
of the initial states than generation of rough grid mentioned
above needs to be performed. In fact, a pair of the hidden
attractors can be expected due to the vector field symmetry.
Because familiarity of analysed memory system with Chua’s
oscillator it is very likely that hidden limit cycles coexist with
strange attractors, similarly as it was proved for this famous
chaotic oscillator in paper [48].
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TABLE 1. Transitions between state space segments.

situation description
a Estable @y pstavle Eynstable @y pstable «  Egtable @y pstable
{ N T '4 l
R3: { Eunst. @y Eunst. @y Etable  punstable gy punstable  punst. gy punst. gy pstable
T 2 ! N
E;mble @ Eimble = Elzlnstahle @ E,;rable P Eé“’ble @ E{Luble
b E;table o) Efmble . Elzmsmble [&3) Eimble P Eitable ® Eitable
1 N ! 4 1
R3: E;mble @ Eimble E12msmble @ Eimsmble Eémble @ Eimble
T 7 ! N T
E;mble @ Eimble N Elzgnstable 69 Eitable P Eitable @ Eimble
c Eimble D E{tuble - Elzmstable () Etlmstable = E;table D Eitable
l N ! 4 l
R3: E;mble @ E{table Egnstable @ E11ulsmble Eg[able @ E.;mble
2 ! N
E;table ® Eitable N Elzmstable ® Elllllstal)l@ — E;table ® E{mble
Iin Rewt ] lin
.I 1
Vinc — in_outer — _ RPWL
AD835 - g, . +V
m_in_outer +V ~ inp _max
~ — " break — R R
~o A V. AREAY
’ “ SETA1 R
II [y f1
I /' \
’ \
| \
’ \
_______________ —Vhbread, i+ Vbreak v
| —p-\/.
1 X — in
i o—f © © |
1 X2 g S
: E N I
| L g |
1 3 c
| o —_ \
IR i .
H ]
1 VsETat !
! [}
H \
b e & ___ 1 ~ ' RPWL
“Rin_inner = =
A1 = £VseTa1 (Rt Re)/ R +A2 = £VseTA2 I in_imer 4 _y Ri+Re |,
SETA1 R SETA2
FIGURE 6. Principal configuration of fully analogue electronically m

adjustable active PWL resistor.

IV. DESCRIPTION OF PWL BUILDING BLOCK

Chaotic oscillator to be implemented contains three passive
elements and two PWL resistors, as evident from Fig. 1c).
Circuit realization of PWL resistor with two VGAs AD835 is
depicted in Fig. 6 together with implementation of VGA
using one multiplier and differential stage. Theoretical shape
of AV characteristics is provided in Fig. 7. Design formulas
important for synthesis of the analogue chaotic system or,
more precisely speaking, for synthesis of PWL resistors, will
be derived in this section. Position of breakpoint voltages is
symmetrical with respect to origin, namely:

1 +V2
EVpreak = £V = st G
Rr1+R
A2 Y (%) Vseraz
Because for AD835 holds relation Vfa, = Vigp - VSETA2 WE
obtain immediately:
+V; :
EVireak = tnp;em:)_(R‘ . (8)
VsET A1 (M)
_ Rr1
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FIGURE 7. PWL AV characteristics of designed active resistor including
description math formulas.

Note that this formula does not depend on the voltage Vsgrao.
Slope of PWL AV curve in the inner segment, i.e. if Vj,, <
+Vireak» can be expressed as:

1 _ RewL
8&m_in_inner 1-A 1A2
RpwL

- )
1 — Vser_ai (1 + 1%) VSET A2

Rinﬁinner =

12

&)

In the outer segments, namely for Vi, > £Vprax where
slope of AV characteristics is positive, equivalent resistance
can be formulated as:
1
Rin_outer = = RpwL. (10)
8m_in_outer

Using these formulas and parameters defined above leading
to the so-called ‘“‘chaotification” of a binary memory sys-
tem, numerical values of both PWL resistors are provided
via Table 2. AV characteristics of both PWL resistors ready
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TABLE 2. Theoretical and practical numerical values associated with
implementation of both active PWL resistors.

PWL4 PWL2
Design target
Vireak [V] +0.167 +0.333
Gm_in_outer/ R_in_outer [MS / Q] +71.4 /14 +7.8/128
gm_in_inner / R _in_inner [MS / Q] -14.3/-70 -15.6 / —64
Calculated parameters

Vsetat_pwi [V] 0.76 0.39
Vsetaz_pwi [V] 0.14 0.71
Rpw [Q] (round up) 14 (15) 128 (120)

for implementation in the memory were experimentally con-
firmed via laboratory measurement.

20 Voreakt = £ 0.17 V

Gm_in1_outer =

L T14msS

i Y9m_in2_inner = 15.6mS
. Gm_in2_outer = 7.8 mS

\\
Gm_in1_inneri= 14.3 mS

Vireakz =+ 0.33 V

1.0  -05 0.0 0.5 1.0
Vin [V]

™

a)

100 -
Gm_in1,2

[mS] 80 i gm_|n1

60 -
40 -

[¢] 'm_in2

'20 LN AL S CRNEL NN R N SN PN NN B BN T
1.0 05 0.0 0.5 1.0
Vin [V]

b)

FIGURE 8. Measured AV curves of both designed PWL resistors:
a) interesting numerical values within required state space volume,
b) corresponding conductance slopes as functions of input voltage.

Results are graphically summarized by means of Fig. 8.
To preserve smooth, visually friendly shape of modelled
chaotic attractor, segments of AV curves of both PWL resis-
tors need to be straight lines without ripples or overshoots.
Linearity is represented by constant derivatives, the input
admittances of PWL blocks. To verify such feature, mea-
surement was done using small step of input voltage, success
visible in Fig. 8b).

V. REALIZATION, SIMULATION, AND EXPERIMENTS

Fully analogue circuit realization of binary memory cell is
provided in Fig. 1c) where two PWL resistors described
in Fig. 6 are utilized. Numerical values associated with AV
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FIGURE 9. Selected Orcad Pspice circuit simulation results associated
with chaotic regime of binary memory: a) generated signals in time
domain, b) corresponding plane projection.

characteristics of both PWL resistors are given within Tab. 2.
At the first stage, chaos in binary memory cell was confirmed
by Orcad Pspice circuit simulator, see Fig. 9 for few selected
results. Chaotic circuit was implemented using breadboard
and fed by symmetrical £5 V. This limited supply voltage
is allowed thanks to the small state space volume occupied
by desired strange attractor, check Fig. 2. Figure 10 illus-
trates one-dimensional bifurcation diagrams calculated with
respect to three key internal parameters of PWL resistors.
Chaotic waveforms vy and v, generated by the chaotic binary
memory are visualized by means of Fig. 11. Evidently,
chaotic motion is a combination (repetition) of two spiral
movements. This corresponds to two saddle-spiral types of
equilibrium points.

Of course, dynamical system (1) can be implemented as
the lumped circuit using alternative approach. For example,
voltage mode [49] as well as current mode [50] chaotic circuit
can be designed using analogue computer concept.

VI. RESULTS AND DISCUSSION
Firstly, this manuscript introduces elegant realization of low
voltage two-terminal device having the odd-symmetrical
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FIGURE 10. Calculated one-dimensional bifurcation diagrams and associated state attractors captured by oscilloscope:
variable A; € (0.8, 1.5) (upper plot), variable R, € (10, 700) £ (middle plot), variable A, e (2.55, 3.25) (lower plot).
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FIGURE 11. Generated chaotic waveforms in time domain visualized in two different time scales, captured
oscilloscope screenshots.

PWL AV characteristics. Slopes of AV curve can be adjusted
in wide range via external DC voltage source. Such universal
circuit component can be utilized not only in realization of
chaotic networks but design of analog nonlinear circuits in
general. Potential signal processing applications are limited
by finite supply voltage and frequency response of integrated
circuit AD835.

VIl. CONCLUSION

This paper provides circuitry realization of binary memory
that is fully adjustable via external electronic signals. This
external control can smoothly change fundamental nature
of memory: from stable states, through limit cycles, chaotic
oscillations back to a pair of the stable states. Therefore, con-
structed memory can work as binary. In addition, can generate
robust chaotic waveforms with significant entropy suitable
for practical applications. Existence of different solutions
including strange attractors is proved by numerical analysis
as well as experimental measurement. Very good harmony
between theoretical and practical results is obtained.
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