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ABSTRACT Rolling bearings are critical in industrial mining machinery. Due to strong Gaussian noise,
frequent random shocks, and disordered loads in industrial settings, it is usually difficult to detect weak
fault symptoms in vibration signals from a bearing. To detect incipient bearing faults, this paper proposes
a new multi-domain kernel extreme learning machine (MKELM) based on variational modal decom-
position (VMD) and a cyclic correntropy function. A normalized approximation algorithm for a cyclic
correntropy function (NACCF) was first built to suppress the impulsive background noise. This approach is
suitable for machine learning. To eliminate the Gaussian noise effectively, genetic mutation particle swarm
optimization (GMPSO) with cyclic information entropy (CIE) was used to optimize the VMD parameters.
The CIE was created as a fitness function in GMPSO to search for the best hyperparameters. It can be
used to select effective intrinsic mode functions (IMFs) to reconstruct denoised signals. Then, statistical
functions based on NACCF were used to extract the cyclic frequency-domain characteristics of the denoised
signal, and the singular values of the IMFs were obtained as time-domain features of the signal. Finally,
the multi-dimensional features from the two domains were input into MKELM to classify the health of the
bearing. Experimental studies were carried out to investigate the proposed method in bearing fault detection
and identification. The results demonstrated the effectiveness of the proposed method in motor-bearing
failure detection and its robustness to noise when analyzing bearing vibration signals under different working
loads.

INDEX TERMS Cyclic correntropy, GMPSO, KELM, motor bearing, VMD.

I. INTRODUCTION
Induction motors are widely used in modern industrial fac-
tories, including manufacturing and petrochemical plants.
Motors are typically operated under variable conditions,
such as variable rotating speed and overload or overspeed
states. These operations may lead to failure, which can
result in performance degradation and even unexpected
downtime, thereby causing financial losses or safety issues.

The associate editor coordinating the review of this manuscript and

approving it for publication was Prakasam Periasamy .

According to [1], bearing-related failures account for over
40% of all motor failures. Therefore, there is a necessity to
detect and identify bearing faults and potential faults as early
as possible to ensure high production efficiency in industrial
processes [2].

Intelligent failure detection of a motor bearing involves
signal preprocessing, feature extraction, and fault identi-
fication. Signal preprocessing is used to eliminate noise.
Some common methods are wavelet transforms [3], empir-
ical mode decomposition (EMD) [4], local mean decompo-
sition [5], and variational modal decomposition (VMD) [6].
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An intelligent bearing failure detection method was proposed
based on localmean decomposition, singular-value decompo-
sition (SVD), and an extreme learning machine (ELM) [7].
Although local mean decomposition can make up for the
shortcomings of EMD, both use recursive mode decompo-
sition with cumulative errors. In 2013, Dragomiretskiy and
Zosso [8] introduced the VMD algorithm and a variational
model to determine the frequency center and bandwidth of
each component, which can avoid the cumulative error and
endpoint effect. The inhibition of modal confusion has high
decomposition efficiency. Two VMD parameters are com-
monly optimized. For instance, Zhang et al. proposed a VMD
parameter optimization method based on the grasshopper
algorithm [9].

In 2019, Zhang and Yan proposed a motor diagnosis model
using feature extraction for a wind rolling bearing based on
VMDwith particle swarm optimization [10]. Despite its wide
application, this approach has two problems. First, particle
swarm optimization can easily become trapped in a local
optimum when solving a complex multimodal problem [11].
A hybrid particle swarm optimization algorithm with genetic
mutation (GMPSO) was proposed with crossovers and muta-
tions in the legacy algorithm to jump out of the local opti-
mum [12]. Second, the choice of fitness function also affects
the optimization [13]. Entropy measures the disorder in a
system and is used to describe the state of the system [14].
In this paper, entropy is calculated with the cyclic corren-
tropy function (CCF). Cyclic information entropy (CIE) is
proposed as the fitness function. Therefore, this paper pro-
poses a CIE-based GMPSO algorithm to optimize the VMD
parameters, which are mutated by a genetic algorithm.

Feature extraction is the key to intelligent failure detec-
tion. In fact, different characteristics of a vibration signal are
reflected in the time, frequency, and wavelet domains [15],
although they are from the same source. Moreover, multiple
domain features can be extracted from a smaller sample to
give more complete information and more accurate predic-
tions [16]. Wang et al. [17] developed a diagnosis method
based on statistical features extracted from the time and
frequency domains and integrated from vibration signals.
Cerrada et al. proposed amulti-stage feature selectionmethod
for failure detection of gearboxes, using features from the
time and frequency domains [18].

The most commonly used statistical features include those
from the time domain, fast Fourier transform frequency
domain, time–frequency domain, and wavelet domain [19].
Nevertheless, cyclic statistical features have rarely been men-
tioned or studied. Like other rotating machinery, the vibra-
tion signal from a bearing has an obvious periodic stability
due to its special working mode and is called a cyclosta-
tionary signal. Thus, cyclostationary analysis is widely used
for bearing failure detection. Algorithms such as the cyclic
autocorrelation function (CAF) [15], spectral correlation den-
sity [20], and cyclic bispectrum [21] can demodulate the
fault information in bearing signals effectively. However,
the classical cyclostationary algorithm mentioned above, like

conventional algorithms such as envelope spectrum and spec-
tral kurtosis-based fast kurtogram, are signal analysis meth-
ods based on an assumption of Gaussian noise. Thus, its
performance declines rapidly, or it even fails, when exposed
to impulse noise [22].

In 2017, Fontes et al. [23] introduced correlation
entropy [24] from information theory into cyclic station-
ary analysis. They defined the CCF as a generalization of
the CAF. It is a new mathematical tool for higher-order
cyclostationary analysis. The corresponding cyclic corren-
tropy spectrum obtained by a fast Fourier transformation
of the CCF is a generalization of the spectral correlation
density. Due to the use of a Gaussian kernel function in
CCF, impulse noise can be suppressed effectively [25]. That
is, when a pulse type with a large value appears in the
signal, the Gaussian kernel function approaches zero. Based
on this, in 2019, Zhao et al. [22] first proposed using cyclic
correntropy spectrum analysis for bearing failure detection.
The approach is effective when the spectrum of the fault
information is submerged in the impulse noise. Although
CCF can effectively extract information despite the back-
ground of pulse noise, it is rarely used for cluster regression
for the following reasons. First, the choice of the kernel
function parameter zeta seriously affects the amplitude and
performance of CCF. Second, three-dimensional CCF with
information redundancy requires a large number of calcula-
tions. These factors are detrimental to machine training and
learning.

Deep learning and classical machine learning are popular
intelligent failure detection techniques. Deep learning com-
bines low-level features to formmore abstract characteristics.
Its performance is excellent [26]. To achieve high perfor-
mance in deep learning, typically, a large amount of data is
required to train the optimized model. Comparatively, under
certain constraints, small samples can also achieve excellent
performance. Classical machine learning is more suitable for
the failure detection of mining machinery. Common machine
learning algorithms include artificial neural networks, sup-
port vector machines [27], ELM, kernel extreme learning
machine (KELM) [28], etc. The KELM algorithm has been
widely used because it has few parameters, a fast response,
high precision, and good generalization.

Fault detection and identification for motor bearings are
particularly difficult in actual working conditions for three
reasons: 1) the signal is acquired indirectly and has strong
noise, 2) there are impulsive noise caused by random shocks,
and 3) there are large load changes and frequent switching.
To mitigate the first of these, to the best of our knowledge,
this is the first use of a CIE-based GMPSO algorithm to
optimize the VMD parameters to improve the efficiency of
VMD. We used a sensitive intrinsic mode function (IMF)
to reconstruct the denoising signal according to the CIE
and to eliminate the interference component effectively. For
the second point, based on the CAF and CCF, the normalized
approximation algorithm for CCF (NACCF) was developed,
which can demodulate a signal effectively from a background
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of strong impulse noise. For the third point, because of
the monotonic relation between the rotation frequency and
the load of a three-phase asynchronous motor, the real-time
rotation frequency was an input variable when constructing
functions to extract cyclic frequency-domain features from
NACCF. This can avoid detection failure caused by a load
transformation. Finally, to improve the detection accuracy
and stability, the time-domain features obtained from the sin-
gular values of IMF and the cyclic frequency-domain features
obtained from NACCF are fused and input into KELM to
form a multi-domain classifier.

The main contributions of this paper are summarized as
follows:

1. NACCF is proposed. It is not only simpler and controls
the threshold range, but it also retains the performance against
impulsive noise of CCF and the flexibility in the selection of
the kernel width.

2. The CIE is proposed. It has a monotonic relation with
the correlation coefficient (COR) for key IMFs. GMPSOwith
the CIE as the fitness function is used to optimize the VMD
parameters, with satisfactory denoising results.

3. Functions with real-time input rotation frequency are
constructed to extract NACCF features, which can effectively
avoid the failure of feature classification caused by a load
transformation.

4. The multi-domain KELM (MKELM) based on singular
values of the VMD component matrix and cyclic statistics
achieved good results in bearing failure detection with strong
Gaussian noise, frequent load conversion, and impulsive
noise interference.

The rest of this paper is arranged as follows. In Section II,
NACCF, which is applicable to second-order cyclostationary
signals, is developed and verified using a high-moment CCF.
Section III proposes the GMPSO parameter optimization
method using CIE as the fitness function. In Section IV,
the MKELM intelligent failure detection method is pro-
posed based on NACCF and VMD-SVD. In Section V, fault
signals from a driving end bearing and a rotating motor
bearing are used to verify the effectiveness of the method
proposed in this paper. The conclusion is given in the final
section.

II. NACCF
In this section, we first introduce the second-order CAF and
high-moment CCF and then develop the normalized approx-
imate algorithm in NACCF, which has both CAF mediation
and CCF impulsive noise resistance. Finally, the performance
of NACCF is verified using a simulated normal-bearing sig-
nal and faulty-bearing signals.

A. CYCLIC AUTOCORRELATION AND CYCLIC
CORRENTROPY
The CAF proposed by Gardner and Spooner [29] is
well suited for demodulating mechanical signals and can
extract fault features effectively. From a Fourier series
expansion of the time-varying autocorrelation function

R(t, τ ) = E[x(t)x(t + τ )] of the cyclostationary signal x(t),
we get:

R(t, τ ) =
∑

α
Rx(α, τ ) exp(j2παt),

where α is the cyclic frequency, τ is the time delay, and
coefficient Rx(α, τ ) is the CAF of signal x(t) [20], satisfying:

Rx(t)(α, τ ) =
1
T

∫ T/2

−T/2
Rx(t, τ ) exp(−j2παt)dt

= 〈Rx(t, τ ) exp(−j2παt)〉

= 〈x(t)x(t + τ ) exp(−j2παt)〉 , (1)

where 〈·〉 = 1/T
∫ T/2
−T/2 (·)dt is the time average operator and

T is the time set.
As a generalized correlation function, the correlation

entropy is widely used in nonlinear detection [23] for any
random process {xt , t ∈ T }. It is defined as:

Vx(t, τ ) = E[Gσ (x(t)− x(t + τ )]
Gσ (·) = 1/[(2π)1/2σ ] · exp[−(·)2/2σ 2])

}
, (2)

where Gσ (·) is the kernel function, σ > 0 is the kernel length
parameter, and E[·] is the expectation.
Vx(t, τ ) can be represented by a Fourier series:

Vx(t, τ ) =
∑

α
Vx(α, τ ) exp(j2παt), (3)

where Vx(α, τ ) is the CCF [24] of the signal x(t):

Vx(α, τ ) = 〈Vx(t, τ ) exp(−j2παt)〉 . (4)

The Taylor series can be expanded to give:

Vx(α, τ ) =
1

[(2π)1/2σ ]

〈∑∞

n=0

(−1)n

(2nn!σ 2n)
�

〉
, (5)

where � =
[
(x(t)− x(t + τ ))2 + 2jσ 22παt

]n
.

The CCF contains information regarding the second- and
higher-order cyclostationary moments. It extends the classic
CAF to the analysis of signals contaminated by non-Gaussian
noise, such as impulsive noise.

B. DERIVATION OF THE ALGORITHM PROPOSED IN THIS
PAPER
From (3) and (4), we get:

Vx(α, τ ) = 〈Vx(t, τ ) exp(−j2παt)〉

= 〈E[Gσ (x(t)− x(t + τ )) exp(−j2παt)〉 . (6)

Substituting the kernel function into (6) gives:

Vx(α, τ ) =
1

√
2πσ

×

〈
exp

(
−
(x(t)− x(t + τ ))2

2σ 2

)
exp(−j2παt)

〉
.

(7)

Using a Taylor series only for

exp
(
−
(x(t)− x(t + τ ))2

2σ 2

)
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Gives:

Vx(α, τ )

= A
〈∑∞

n=0

[−x(t)− x(t + τ ))2]n

(2nn!σ 2n)
B
〉

= A

{
〈B〉 −

〈
(x(t)− x(t + τ ))2 B

〉
2σ 2 + ξx(α, τ )

}

= A

{
〈B〉 −

〈(
x2(t)− 2x(t)x(t + τ )+ x2(t + τ )

)
B
〉

2σ 2

+ ξx(α, τ )} , (8)

where A = 1/
√
2πσ,B = exp(−j2παt), and

ξx(t)(α, τ ) =
〈∑∞

n=2

[−(x(t)− x(t + τ ))2]n

(2nn!σ 2n)
B
〉
. (9)

According to the definition of the CAF:

Rx(t)(α, τ ) = 〈x(t)x(t + τ ) exp(−j2παt)〉 . (10)

When τ = 0, Rx(t)(α, 0) =
〈
x2(t) exp(−j2παt)

〉
.

Equation (8) can be expressed as:

Vx(t)(α, τ ) = A
{
Lx(t)(α, τ )+ ξx(t)(α, τ )

}
,

Lx(t)(α, τ ) = 〈B〉

−

(
Rx(t)(α, 0)− 2Rx(t)(α, τ )+ Rx(t+τ )(α, 0)

)
2σ 2 .

(11)

Lx(t)(α, τ ) mainly contains CAF-related information about
the second moment. For sufficiently large values of σ , the tra-
ditional second-order statistics are preserved, thus minimiz-
ing the influence of term ξx(t)(α, τ ) [24]. ξx(t)(α, τ ) contains
all higher moments (n ≥ 2) and depends on the coefficient
(−1)n/

[(
21/2σ

)2n
n!
]
. We can see that as the nuclear length

parameter σ grows, the amplitude of the decay of ξx(t)(α, τ )
is much greater than that of Lx(t)(α, τ ).
This paper selects the optimal parameter according to the

Silverman rule, one of the most widely used kernel estima-
tion methods, to ensure the effective demodulation of the
CCF [22]:

σ = 0.9MN−1/5, (12)

where N is the signal length and M is the minimum of the
empirical standard deviation of the signal. When the impul-
sive noise is not included in the signal or the strength is
not strong, Lx(t)(α, τ ), which contains the second moment,
can effectively demodulate the frequency component. Con-
versely, if the included impulsive noise is strong, the signal
empirical standard deviation (M ) becomes larger. It can be
seen from (8) and (9) that if σ > 1/21/2, then |Lx(t)(α, τ ) �
ξx(t)(α, τ )|, so:

Vx(t)(α, τ )

≈ A
{
〈B〉 −

Rx(t)(α, 0)− 2Rx(t)(α, τ )+ Rx(t+τ )(α, 0)
2σ 2

}
.

(13)

To reduce the amount of calculation, we take the slice at
τ = 1/fs , where fs is the sampling frequency:

Vx(t)(α,
1
fs
)

≈ A

〈B〉 − Rx(t)(α, 0)− 2Rx(t)(α, 1
fs
)+ Rx(t+ 1

fs
)(α, 0)

2σ 2

 .
(14)

After normalization, the formula for the NACCF is
obtained:

VNx(t)(α) =
Vx(t)

(
α, 1

fs

)
− Vmin

x(t)

(
α, 1

fs

)
Vmax
x(t)

(
α, 1

fs

)
− Vmin

x(t)

(
α, 1

fs

) . (15)

When the CCF is calculated, its amplitude depends sig-
nificantly on σ . After normalization, the amplitude of
the NACCF is almost unaffected by the kernel function
parameters σ .

C. VERIFICATION OF THE PERFORMANCE OF THE
ALGORITHM PROPOSED IN THIS PAPER
In this section, simulation signals (example 1) and bearing
signals (example 2) are used to illustrate the performance of
NACCF.

Example 1 aims to show that NACCF is still effective in
the presence of impulse noise. A bearing vibration signal
is a cyclically stable signal similar to an amplitude mod-
ulated (AM) signal [30]. An AM signal is x(t) = (1 +
b cos(2π ftt)) cos(2π fzt+θ ). Substituting this into (14) gives:

Vx(α, 1/fs)

=



A+ C
{
1+

b2

2
− cos(2π

fz
fs
)
[
1+

C2

2
cos(2π

ft
fs
)
]}

×α = 0;

Cb
[
D
2
− cos(2π fz/fs) cos(2π ft/fs)

]
α = ±ft ;

Cb2
[
D
2
− cos(2π fz/fs)

]
α = ±2ft ;

Ce±j2θ
[
(2+ b2)D

8
−
1
2
−
b2

4
cos(2π fz/fs)

]
α=±2fz;

Cbe±j2θ
[
D
4
−

1
2
cos(2π ft/fs)

]
α = ±(2fz ± ft );

Cb2e±j2θ
(
D
16
−

1
8

)
α = ±(2fz ± 2ft );

(16)

where C = −1/2
√
2πσ 3 and D = 1+ ej2πατ .

Let b = 1.5, ft = 20, fz = 90, θ = π/6, x1(t) =
x(t)+ 2× wgn(t), and x2(t) = x(t)+ gua(t)+ alpha0.03(t),
where gua(t) is the Gaussian noise and alpha0.03(t) is the
alpha stable distribution signal (β = 0, λ = 0.03, and
α0 = 1) for simulating the impulsive noise. Fig.1 is a time-
domain diagram, CAF slice diagram (τ = 0), and NACCF
slice diagram (τ = 1/f ) of these three signals x(t)x1(t) and
x2(t), respectively.
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FIGURE 1. CAF and NACCF demodulation of different signals.

It can be seen from Fig. 1 that the NACCF distribution for
the signal x(t) is similar to that for CAF and is consistent
with (15). Thus, like CCF, NACCF can suppress impulse
noise, it can demodulate themodulation frequency and carrier
frequency in the signal, and it can also cope with interference
from Gaussian noise as well as CAF can.

Bearing signals are cyclostationary like AM signals. If a
bearing fails, it will produce a corresponding characteristic
fault frequency (fc), which is not only used as the modulation
frequency to modulate the system frequency, but also as
the carrier frequency, which is modulated by the rotation
frequency [22]. Therefore, in theory, the peak at the low
frequency of NACCF will appear at: 1) the characteristic
fault frequency (fc) and its multiples (nfc ), 2) the converted
frequency (fr ) and its multiples (nfr ), and 3) also on both sides
of multiples of the characteristic fault frequency offset by the
same multiple of the rotation frequency (nfc± nfr ). As n gets
larger, the amplitude gets smaller.

Example 2 used drive-end bearing fault data in
deep-groove ball-bearing signals (ball-bearing model
6205-2RS JEM SKF) from the website of Case Western
Reserve University Bearing Data Center [31]. The purpose of
this example was to demonstrate that NACCF could be used
in machine learning. The amplitudes in the NACCF spectrum
for the same fault signals are stable even under different
loads and different impulse noise backgrounds, whereas the
NACCF spectrum for different fault signals shows obvious

differences. Fault features that are convenient for clustering
regression can be identified in the NACCF spectrum.

The sample includes an inner-ring fault signal and an outer-
ring fault signal. The sampling frequency was 12 000 Hz, and
the motor speed depended on the load.

The research objects of this paper are single-row angular
contact ball bearings. The characteristic fault frequency of
this kind of bearing is calculated as follows.

The working rotation frequency is

fr = ν/60. (17)

The characteristic roll fault frequency is

frp = D
[
1− (d cosβ/D)2

]
fr/2d . (18)

The characteristic inner-ring fault frequency is

fci = Z [1+ d cosβ/D] fr/2. (19)

Finally, the characteristic outer-ring fault frequency is

fco = Z [1− d cosβ/D] fr/2 (20)

where v is the motor speed, d is the diameter of the scroll, D
is the nodal diameter, Z is the number of rolls, and β is the
angle of contact. Here, d = 8 mm,D = 44 mm, Z = 9,
and β = 0◦. Table 1 was calculated using (17)–(20) for the
characteristic bearing frequency.
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FIGURE 2. Different degrees of failure.

NACCF demodulation was performed on signals for bear-
ing mode loads of 0, 1, 2, and 3 hp (units of horsepower),
as shown in Fig. 2. The sample length of each signal was
2048.

Figure 2(a) shows the NACCF spectrum for a mild
inner-ring fault signal under different loads. The x-axis is the
load, the y-axis is the cycle frequency, and the z-axis is the
NACCF amplitude. When the load is 0 hp, a peak appears

TABLE 1. Characteristic frequencies of bearings under different loads.

at or near the characteristic frequency of the inner-ring fault
(f j=0ci = 162, 2f j=0ci = 324, and f j=0ci ± f j=0r = 162 ±
30). Similarly, when the loads are 1, 2, or 3 hp, there are
peaks at the characteristic frequency corresponding to the
load (f jci, 2f

j
ci, f

j
ci ± f jr , j = 1, 2, or 3). Moreover, the ampli-

tude of the peak of the corresponding characteristic fault
frequency under different loads is stable. The peak range
of the inner-ring fault signal in the figure is 0.62 ± 0.05 at
the characteristic inner-ring frequency, and for the outer-ring
fault signal, it is 0.75 ± 0.05 at the characteristic outer-ring
frequency. Thus, regardless of the load that the bearing is
under, for the same failure mode signal, NACCF will provide
similar failure information.

These test data contain signals for: 1) the same degree
of failure but different faulty parts (Fig. 2(a) and 2(b)),
2) the same faulty part but for different degrees of failure
(Fig. 2(a) and 2(c)), and 3) the same faulty part and the
same degree of fault but different degrees of impact load
(Fig. 2(a) and 2(d)). The characteristics of the NACCF spectra
in Fig. 2(a), 2(b), and 2(c) are obvious and have their own
unique and stable laws, indicating that NACCF spectra can
be used to distinguish between different faulty parts and
different degrees of fault. Furthermore, there is almost no dif-
ference between the information in Fig. 2(a) and 2(d), which
further shows that NACCF has stable and good impulsive
noise resistance.

In general, the simulated AM signal and bearing fault data
show that NACCF demodulation can indicate the location
of a fault and degree of damage of the bearing. It can cope
with Gaussian noise and has good impulsive noise resistance
and stability. Moreover, the NACCF amplitude for a fault
frequency under the same mode is stable, and the NACCF
for a fault frequency under different modes shows obvious
differences. Therefore, NACCF is suitable as a new feature
domain for feature extraction and intelligent detection of
bearing failures.

III. VMD WITH OPTIMIZED PARAMETERS
NACCF has good demodulation performance, but it may
still fail under actual working conditions with high-intensity
noise. Thus, it is necessary to preprocess the signal to reduce
the noise. This section first briefly introduces the concept,
advantages, and parameters of VMD. It describes the prob-
lem, then introduces the GMPSO parameter optimization
algorithm and defines CIE. The functionwas constructed, and
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a simulation was run to assess its performance. CIE-GMPSO
is proposed to optimize adaptively the VMD parameters.
Finally, VMDwas used to decompose signals. Sensitive com-
ponents were selected according to CIE to get the denoising
signals.

A. VMD
VMD is essentially a variational problem construction and
solution process. VMD uses a decomposed IMF component
as an AM-FM signal. If we assume that the original signal
can be decomposed into IMF components, an expression for
the kth IMF component (k ∈ {1, 2, . . . ,K }) is [28]

uk (t) = Ak (t) cos[φk (t)], (21)

where Ak (t) is the instantaneous amplitude of uk (t), the phase
φk (t) is a non-decreasing function, and dφk (t)/dt = ωk (t) is
the instantaneous frequency. Ak (t) and ωk (t) change slowly
as φk (t) changes.
The VMD algorithm gets rid of the cyclic screening and

stripping signal processing of the EMD algorithm. It trans-
fers the signal decomposition to the variational framework
and realizes signal adaptation by searching for the opti-
mal solution of the constrained VMD. The frequency center
and bandwidth of each IMF component are continuously
updated in each process in VMD. Finally, the adaptive divi-
sion of the signal band can be completed according to the
frequency-domain characteristics of the actual signal, and
several narrowband IMF components can be obtained. If we
assume that the original signal has been decomposed into Kv
IMF components, the corresponding constrained variational
model expression is

min
{uk },{ωk }

{∑
k

∥∥∥∂t [(δ(t)+ j
π t

)
uk (t)

]
e−jωk t

∥∥∥2
2

}
s.t.

∑
k
uk (t) = x(t)

 , (22)

where {ωk} is the center frequency corresponding to the IMF
component, δ(t) + j/π t is the unilateral spectrum of uk (t),
and x(t) is the original signal. To obtain the optimal solution
of the above constrained variational problem, a quadratic
penalty factor αv and Lagrange operator λv(t) are introduced
to transform the problem into the following unconstrained
variational problem:

L ({uk} , {ωk} , λv)

= αv
∑

k
‖∂t [(δ(t)+ j/π t) uk (t)] exp(−jωk t)‖22

+

〈
λv(t), x(t)−

∑
k
uk (t)

〉
+

∥∥∥x(t)−∑
k
uk (t)

∥∥∥2
2
.

(23)

The saddle point of the extended Lagrange expression is
calculated via the alternating direction method of the multi-
plier algorithm. In detail, the steps are as follows:

1) Initialize {uk} , {ωk} , λv, and n = 0.
2) Execution cycle: n = n+ 1.
3) For all ω ≥ 0, update {uk} , {ωk} , and λv.

4) Repeat steps (2) through (3) until the iteration stop
condition is satisfied.

5) Stop the iterations and obtain the IMF components.
The choice of the second penalty factor αv and number

of components Kv affects the decomposition [28], and the
parameter selection is irregular. To select the optimal param-
eter combination, the VMD method can be used to extract
the rich features in the signal. This paper uses GMPSO to
optimize the parameters.

B. GMPSO BASED ON CIE
This section defines CIE-GMPSO. In aD-dimensional search
space, the population X is composed of m particles: X =
[x1, x2, . . . , xm]. The position of each particle in the search
space can be represented by a D-dimensional vector: xi =
[xi1, xi2, . . . , xiD]. D is the number of parameters to be opti-
mized. The speed of the ith particle vi = [vi1, vi2, . . . , viD].
The local extremum of the particle is pi = [pi1, pi2, . . . , piD].
The global extreme of this generation of the population is
G1 = [g1, g2, . . . , gD], and the suboptimal value is G2 =

[g′1, g
′

2, . . . , g
′
D]. The maximum optimal retention algebra of

an individual is maxAge, and the probability of a mutation
is q. To prevent particles from falling into a local optimum,
it is necessary to record the optimal retention algebra of
individual particles during each iteration. Individual local
extreme values and global extreme values are used to update
the position and velocity of the next generation:

vn+1i = ωvni + c1η(pi − x
n
i )+ c2η(G− x

n
i ), (24)

xn+1i = xni + v
n+1
i , (25)

where ω is the inertial weight, η is a random number in
[0,1], and c1 and c2 are learning factors for the local search
ability and the global search ability, respectively. The number
of iterations n is consistent with the above definition. The
inertial weight in the current iteration is determined with the
linear decreasing weight method [32]:

ω = ωmax − (ωmax − ωmin)
n

nmax
, (26)

whereωmax andωmin are the maximum and minimum inertial
weights, respectively, n is the current iteration, and nmax is the
defined maximum number of iterations. When the individual
optimal algebra reaches maxAge, a genetic mutation updates
the particle’s position and velocity so that it jumps out of
the local optimum. Each time a particle moves to a new
position, its fitness value is calculated, and when it reaches
the optimal value, the program terminates and outputs the
optimal parameter.

When applying GMPSO, it is necessary to select an eval-
uation criterion for VMD as the fitness function. Generally
speaking, the higher the similarity between the component
and the original signal without noise, the higher the value,
the better the VMD. However, under actual working con-
ditions, pure fault signals without noise are not available,
and the COR between noisy signal components and noiseless
signals cannot be obtained, so we need to find a function that

VOLUME 8, 2020 197717



X. Wang et al.: Multi-Domain ELM for Bearing Failure Detection

can replace the similarity as the fitness function. Information
entropy measures the amount of information in a signal and
the uniformity of the probability distribution [14]. The more
ordered the signal, the lower the information entropy. Guiji
and Xiaolong [33] based the envelope entropy (EE) on infor-
mation entropy. The envelope signal obtained after signal
demodulation is processed into a sequence of probability
distributions pj, and the EEs Ep of zero mean signals x(j)
(j = 1, 2, . . . ,N ):

pj = a(j)/
∑N

j=1 a(j)

EP = −
∑fs

f=1 Pf log(10)Pf

}
(27)

where pj is the normalized form of a(j), which is the envelope
signal obtained after the signal x(j) is demodulated by a
Hilbert transform. The EE reflects the sparse characteristics
of the original signal. The EE is calculated for all IMFs
obtained by VMD. The IMF with the smallest entropy is
the best component with rich fault feature information in the
classified groups. In this case, the EE is suitable as a fitness
function.

When the signal is in the background of impulsive noise,
the EE becomes unstable or even invalid. In this paper,
the CIE is proposed based on information entropy and
NACCF. Compared with the EE, the CIE effectively reflects
the sparse characteristics of the signal under interference
from impulsive noise. After the NACCF signal is demodu-
lated, the data are processed into a probability distribution
sequence Pf (f = 1, 2, . . . , fs), where fs is the sampling
frequency of the signal x(j) (j = 1, 2, . . . ,N ). The CIE (Eccf )
of x(j) is defined as:

Eccf =
[Ep]∑N
j=1 |x(j)|

,

EP = −
∑fs

f=1 Pf log(10)Pf ,

Pf =
|V (f )|∑fs
f=1 |V (f )|

,

V (f ) = v1/fsx(j) (f )−
1
fs

∑fs
f=1 v

1/fs
x(j) (f )


(28)

where v1/fsx(t) (f ) is the NACCF of the signal after the Hilbert

transform and V (f ) is the de-averaged v1/fsx(t) (f ). Using Pf
reduces the influence of the different amplitudes of the IMF
components in the NACCF. EP is calculated with the formula
for information entropy. Eccf takes into account the energy
contribution of the IMF in the time domain and reflects the
cyclic stability of the original signal.Within a certain range of
accuracy, the lower the entropy, the more cyclically ordered
the signal.

C. SIMULATION EFFECT OF VMD BASED ON CIE-GMPSO
As an example, consider the signal for a mild outer-ring fault
numbered 130 in the drive-end bearing fault data provided
by Case Western Reserve University [31]. This signal is
denoted as sig1(t). The noise content of this signal is low,
so here, sig1(t) is regarded as the original signal without

noise. To simulate a strong impulsive noise background,
we set:

sig2(t) = sig1(t)+ 2gau(t)+ alpha0.01(t),

where gua(t) is Gaussian noise and alpha0.01(t) is an
alpha-stable distribution (β = 0, λ = 0.01, and α0 =
1). In processing sig2(t) with VMD to get IMFi (i =
1, 2, . . . ,Kv), we assume the range of Kv is 3–12, and
αv = 2000. The CIEs and EEs of IMFs decomposed
from sig2(t) were calculated as well as the COR between
the IMFs and the original signal sig1(t). Some of the data
are shown in Table 2. The COR reflects the correlation
between the noisy signal IMF and the original signal without
additional noise. The IMF corresponding to the maximum
COR has the least noise and is regarded as the best com-
ponent. In theory, the smaller the CIE, the larger the cor-
responding COR. In reality, the COR cannot be calculated,
so the IMF corresponding to the smallest CIE is the best
component.

It can be seen from Table 2 that within a certain error
range, the CIE and COR decrease monotonously, which is
basically consistent with the theory, whereas the EE becomes
invalid due to the impulsive noise so that it does not accurately
reflect the best component. The optimal component IMF 4 is
for Kv = 4. The COR between this component and the
original signal is 0.560. The corresponding CIE is 0.787,
which is the lowest CIE in the table. We select the two IMF
reconstructions with the smallest CIE as the denoised sig3.
The COR for sig1 and the original signal is 0.352, and the
COR for sig3 and the original signal after noise reduction
increased to 0.597. The NACCF of the original signal sig1,
the noise-including signal sig2, and the denoised sig3 are
shown in Fig. 3.

The NACCF of the original outer-ring fault signal in Fig. 3
clearly shows that the signal is one to four times the char-
acteristic frequency fo of the outer-ring fault. After adding
Gaussian and alpha-stable impulsive noise, NACCF for sig2
has some robustness against Gauss noise and impulsive noise.
It can be seen that there is an obvious peak at fo. At the
double and triple frequencies (2fo and 3fo), the informa-
tion is still submerged by noise. After the noisy signal is
decomposed by parameter-optimized VMD, the two com-
ponents with the smallest CIE are selected to reconstruct
the denoising signal sig3. The NACCF spectrum of sig3 is
similar to the original signal NACCF, and information is
clearly visible at one to four times the characteristic fre-
quency (fo, 2fo, 3fo, and 4fo) of the outer-ring fault. The effect
of VMD noise elimination effect based on CIE-GMPSO is
obvious.

After repeated verification, the results of the analysis can
be summarized as follows. Both the CIE and the COR indi-
cate the optimal IMF. The CIE and COR for different K
values within a certain error range have a monotonic relation:
the smaller the CIE is for a component, the higher the corre-
lation with the original signal. Therefore, the CIE can be used
effectively as the fitness function in GMPSO to evaluate the
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TABLE 2. CIE and COR of IMFs with different K values.

FIGURE 3. Comparison of NACCF demodulation before and after signal
denoising.

decomposition of VMD. It can also be used as ae component
sensitivity coefficient to select components for reconstructing
denoising signals. A flow chart for GMPSO based on CIE is
shown in Fig. 4.

IV. THE METHOD PROPOSED IN THIS PAPER
Multi-domain feature extraction is helpful for improving the
accuracy and stability of classification [16]. This section
introduces the proposed MKELM based on NACCF and
GMPSO-VMD. First, the feature extraction function is
constructed according to the low-frequency demodulation
characteristics of NACCF in a bearing signal to extract
time-frequency features. Then, the VMD component of the
time-domain features are extracted by SVD and the same
features are normalized and integrated into the input to the
nuclear limit learning machine.

FIGURE 4. Flow chart for optimization of VMD parameters using
CIE-GMPSO.

A. FEATURE EXTRACTION WITH NACCF
According to the low-frequency characteristics from NACCF
for the rotation frequency and the four characteristic
frequencies (as mentioned in Section II.C) and consid-
ering the monotonic relation between load and rota-
tional speed, the structural characteristic functions are as
follows.

For features 1–5,

C(j) =
∑fj+1

α=fj−1
V 1/fs (α)+

∑fj+fr+1

α=fj+fr−1
V 1/fs (α)

+

∑fj−fr+1

α=fj−fr−1
V 1/fs (α)+

∑2fj+1

α=2fj−1
V 1/fs (α),

(j = 1, 2, 3, 4, 5) (29)

where V 1/fs (α) is the NACCF of the signal, and fj (j =
1, 2, 3, 4, 5) are the characteristic inner-ring frequency,
the characteristic outer-ring frequency, the characteristic
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ball- bearing frequency, the characteristic cage frequency,
and the rotation frequency, respectively. The frequencies are
calculated according to the rotational speed to reduce the
influence of load changes.

Feature 6 is the peak of the low frequency of the NACCF.
Feature 7 is the cycle frequency corresponding to the peak
of the low frequency of the NACCF. These are expressed as
follows:

[value,index] = max
α∈(0,3finner )

(VNx(t)(α))

C(6) = value, C(7) = index (30)

where finner is the characteristic inner-ring
frequency.

Feature 8 is the CIE of the signal. The formula is expressed
as in [27].

B. FEATURE EXTRACTION WITH VMD AND SVD
According to matrix theory, the singular value is an inher-
ent feature of a matrix, and it has good stability. That
is, if a matrix element changes a little, the singular value
of the matrix changes only a little, so it is often used to
extract signal features [34]. In this paper, the VMD with
optimized parameters can decompose the signal into Kv
IMFs adaptively according to the frequency-domain char-
acteristics of the actual signals. The Kv IMFs are formed
into an initial feature vector matrix, and this matrix under-
goes SVD. The Kv values of different signals after opti-
mization are different. The minimum value is (Kv)min,
and the first (Kv)min singular values of each matrix are
normalized and taken as the time-domain features of the
signal.

Some commonly used intelligent failure detection algo-
rithms encompass back-propagation neural networks, sup-
port vector machines, ELMs, and so on. KELM [35] is an
improved ELM proposed by Huang. It combines the ker-
nel function in the support vector machine with an ELM.
The learning rate, measurement, and generalization ability
of KELM have been greatly improved. In this paper, KELM
is used to classify and regress the above NACCF features
and VMD singular values to obtain a multi-domain failure
detection model.

The steps in the failure detection method proposed in this
paper are as follows:

Step 1: Use GMPSO to find the best parameter for
VMD.

Step 2: Decompose the signal with VMD and get the
singular value of the matrix formed by the IMFs.

Step 3: Reconstruct the first two components with the
smallest CIEs to obtain the denoised signal and extract the
NACCF feature from the denoised signal.

Step 4: The normalized VMD-SV feature vector and
NACCF form a multi-domain feature input to KELM for
learning and failure detection.

The flow chart is shown in Fig. 5.

FIGURE 5. KELM based on VMD and NACCF.

TABLE 3. Parameter settings of the feature extraction methods.

V. FAILURE DETECTION APPLICATIONS
Three cases are used to validate the effectiveness of the pro-
posed method, and the following four methods are compared
with the method proposed in this paper:

1) EMD-SE KELM is KELM based on sample entropy
from an EMD [36].

2) TD-KELM is a KELM using classic time-domain (TD)
statistics [37].

3) VMD-SV KELM is a KELM based on singular values
after decomposition by traditional VMD [38].

4) NACCF-KELM is a KELM based on features extracted
by NACCF.

Details of the parameters for all the feature extraction meth-
ods are listed in Table 3.
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FIGURE 6. Rolling bearing test rig for case 1.

A. CASE STUDY 1
The fault data used to verify the proposed method is a drive-
end bearing signal from the website of Case Western Reserve
University BearingData Center [31]. The experimental signal
noise was small, so this section adds different degrees of
Gaussian noise and impulsive noise to the original signal to
analyze the anti- Gaussian noise and anti- impulsive noise
performance of this method.

The bearing model is a drive-end bearing (6205-2RS
JEM SKF). As shown in Fig. 6, the test bed consists of a
2-hp motor (left), a torque transducer and encoder (center),
a dynamometer (right), and control electronics (not shown).
The sampling frequency was 12 000 Hz.

In this case, five fault patterns under different working
conditions were simulated:

Pattern 1: Normal bearing
Pattern 2: Mild inner-ring fault with fault diameters of

0.18 mm
Pattern 3: Severe inner-ring fault with fault diameters of

0.53 mm
Pattern 4: Mild double-ball fault with fault diameters of

0.18 mm
Pattern 5: Mild outer-ring fault with fault diameters of

0.18 mm
Each pattern has four working conditions, corresponding

to a motor load of 0 to 3 hp. The corresponding relation
between motor speed and load is shown in Table 1. We used
15 signals for each working condition, which means there
were 60 signals per pattern. The sample length of each signal
is 2048. The characteristic frequencies of the bearings in
this case under different loads are shown in Table 1. The
NACCF spectra for the same fault signals under different
loads are shown in Fig. 2. The figure shows that regardless
of the load borne by the bearing, the NACCF amplitude at
the characteristic fault frequencies for a failure pattern signal
are similar. Inputting the load as a parameter into (28)–(30)
gives stable cyclic frequency domain features.

So first, according to the rotational speed in Table 1 and the
process shown in Fig. 5, the characteristics of all the original
signal samples in these five patterns were calculated.

Since this experiment does not include a cage fault signal,
the characteristic C4 at the frequency of cage failure does

FIGURE 7. Feature distributions of original signal samples. Based on
(a) NACCF and (b) VMD-SV.

not need to be calculated. The remaining seven NACCF
characteristics are shown in Fig. 7(a). Along the abscissa,
1 to 7 indicate C1, C2, C5, C6, C7, C8, and C3, respectively.
In Fig. 7(b), along the abscissa, 1 to 3 represent the first three
singular values of the VMD matrix (S1, S2, and S3).

To study the impulsive noise resistance of the proposed
method, we added strong impulsive noise noise (alpha-stable
distribution noise with β = 0, λ = 0.015, and α0 =
1) to the five pattern samples. We then found the feature
values of all the samples for these five patterns. The dis-
tributions of the NACCF and VMD-SV features are shown
in Fig. 8.

Figure 8(a) demonstrates that NACCF-based feature
extraction can distinguish different pattern features under
strong impulsive noise. In contrast, the features in Fig. 8(b)
for the five modes extracted with VMD-SV are seriously
confused with the impulsive noise background. Compared
with the faulty bearing signal, the cyclic characteristic of
the normal-bearing signal is the weakest. In this example,
pattern 4 is a weak double-ball fault and its cyclic spectrum
is more complicated and irregular than that of a single-ball
fault. It is more easily confused with the normal bearing
pattern (pattern 1) and the cyclic characteristics have a large
dispersion, as shown in Fig. 8.

By using in KELM the NACCF features, VMD-SV fea-
tures, and the combined multi-domain features (the method
in this paper) shown in Fig. 8, we formed three classifiers:
NACCF-KELM, VMD-SV KELM, and VMD-NACCF-
KELM. We used 500 test samples (100 for each pattern) for
diagnosis. The detection accuracies of the three methods are
79.6%, 62.2%, and 87.8%, respectively. The classification
confusion matrix of the method in this paper is shown in
Table 4.

The accuracies of patterns 1 to 5 are 89%, 87%, 92%,
76%, and 95%. Pattern 4 is a mild double-ball fault. Its cycle
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FIGURE 8. Feature distributions of signal samples with a background of
shock noise. Based on (a) NACCF and (b) VMD-SV.

TABLE 4. Confusion matrix for the method in this paper (Accuracy =

87.8%).

characteristics are relatively weak, as shown in Fig. 7(a). So,
it is most affected by impulsive noise interference and has
the lowest detection accuracy. Overall, with a background of
impulsive noise, VMD-SV-KELM almost fails and the pro-
posed NACCF feature has obvious advantages in impulsive
noise resistance.

To analyze further the impulsive noise resistance difference
between this method and the other methods, we added an
alpha-stable distribution signal with α = 1 and λ = 0.005,
λ = 0.01, and λ = 0.015 in sequence. A comparison of
the results of the diagnostic accuracy for this method and the
other methods as an average of 10 tests is shown in Fig. 9.

As shown in Fig. 9, when the impulse noise was 0, there
is no difference in the failure detection accuracy of the other
four methods, all reaching an accuracy of more than 99%,
except EMD-SE-KELM. With an increase of the impulse
noise, the accuracies of the methods with NACCF features
(NACCF-KELM and the proposed method) are significantly
higher than other methods. Thus, the proposed method can
suppress impulsive noise.

Moreover, to verify the anti-interference ability of this
method, Gaussian noise generated by 0.3gau(t), 0.6gau(t),

FIGURE 9. Detection accuracy of different methods under impulse noise.

FIGURE 10. Detection accuracy of different methods under Gaussian
noise.

and 0.9gau(t) was added in sequence. A comparison of the
results of the detection accuracy of this method and the other
methods is shown in Fig. 10.

In Fig. 10, as the interference from Gaussian noise
increases, it can be clearly seen that the anti-Gaussian
noise ability of VMD-SV with a single domain feature is
better than the NACCF frequency domain feature. Under
Gaussian noise with a factor of 0.9 times, VMD-SV and
NACCF with MKELM have the highest detection accu-
racies, whereas KELM based on traditional time-domain
statistics and EMD-SE features have the lowest detection
accuracies.

This case shows that NACCF features and VMD-SV
features have good shock resistance and anti-Gaussian
noise capabilities. The MKELM classifier with values from
NACCF or singular features from GMPSO-VMD as feature
quantities achieved good classification results. The proposed
method is more stable and has better anti-noise performance.

B. CASE STUDY 2
Case 2 is an experiment using data for a bearing damaged
by an electric current in the shaft under a background of
white noise interference. The analyzed signal contains infor-
mation about the damage site and different damage methods.
Case 2 shows the different advantages of the MD-SV and
NACCF features proposed in this paper and their comple-
mentary ability to detect defects. Thus, multi-domain joint
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FIGURE 11. Test rig of current damage of bearing. 1 motor, 2 insulated
coupling, 3 spindle, 4 support bearing seat, 5 carbon brush, 6 test bearing
seat, 7 vibration acceleration sensor, 8 insulated bearing, 9 base,
10 adjustable dc switching power supply, and 11 conductive bolt.

learning can improve detection accuracy and stability.
In addition, this case shows that the method proposed in
this paper can be generalized to bearing failure detection for
different damage mechanisms.

The test rig for simulating damage to a bearing caused
by an electric current in the shaft is shown in Fig. 11. The
insulated bearings are ceramic. They are installed at both ends
of the supporting bearing seat. The bearings block the current
and support the spindle. The insulated coupling and insulated
bearings together protect the motor. The carbon brushes are
fixed on an insulated stand to prevent the entire experimental
bench from being charged.

When the voltage applied to a bearing is greater
than the threshold voltage of the lubricating oil film,
the oil film breaks down, resulting in a current along the
shaft. There will then be spark discharges on the inner
and outer raceways, causing electrical corrosion to the
bearing.

The signal acquisition system was the Pulse data acqui-
sition system produced by B&K. The test bearing was a
deep-groove ball bearing, model 6205EKA. The parameters
were as follows. The bearing inner diameter was 25 mm,
the outer diameter was 52 mm, the rolling element diameter
was 7.925 mm, the pitch circle diameter was 39 mm, and the
number of rolling elements n = 9. The rotation frequency
was 20 Hz and the sampling frequency 16 384 Hz. By sub-
stituting the above parameters into the theoretical equations,
we found that the characteristic frequency of an outer-ring
fault is 72 Hz, of an inner-ring fault is 108 Hz, and of a rolling
element fault is 47 Hz.

In this case, all patterns were tested under the same condi-
tions: motor load was 500 N and motor speed was 1200 r/m.
The five fault patterns are as follows:

1) Severe outer-ring shaft-current damage (The shaft was
corroded by the current for 100 hours.)

2) Flaking fault of bearing on outer ring
3) Mild inner-ring shaft-current damage (The shaft was

corroded by the current for 50 hours.)
4) Flaking fault of bearing on inner ring
5) Normal bearing
The four faults are shown in Fig. 12.
The inner and outer raceways of a normal bearing are

smooth. After being damaged by a shaft current, the loss of
material is evenly distributed along the raceway, as shown

FIGURE 12. Some simulated faults in bearings. (a) Severe outer-ring
shaft-current damage. (b) Flaking fault of bearing on outer ring. (c) Mild
inner-ring shaft-current damage. (d) Flaking fault of bearing on inner ring.

FIGURE 13. NACCF spectra of five signals.

in Fig. 12(a) and 12(c). The loss can even look like a wash-
board, as shown in Fig. 12(a). Bearings with flaking faults
often have a single obvious dent due to the long-term alternat-
ing load and impact force, as shown in Fig. 12(b) and 12(d).

We used 250 samples for each run, and each pattern had
50 samples, of which the first 40 were used as a training
set and the remaining 10 signals were used as a test set.
Each sample length was 4096. The experimental data include
bearing fault signals due to different damage mechanisms at
the same location, which are difficult to diagnose. The spectra
from the NACCF demodulation of the signals for these five
patterns are shown in Fig. 13.
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FIGURE 14. Classification results of NACCF-KELM.

NACCF uses the CCF, which is a generalization of the
CAF [23]. It retains the demodulation performance of CAF,
as long as the outer ring fails, regardless of the damage
mechanism. The corresponding characteristic outer-ring fault
frequency fo(72 Hz) appears in the low-frequency NACCF
information, as shown in Fig. 13(a) and 13(b). Similarly,
the NACCF spectra of all inner-ring fault signals have infor-
mation at the characteristic frequency fi (108 Hz) of an
inner-ring fault, as shown in Fig. 13(c) and 13(d). This
demonstrates once again that NACCF can diagnose well the
location of a fault.

Secondly, for a fault at the same location, different dam-
age mechanisms have completely different characteristics.
Shaft-current damage shows as multiple-point faults, while
flaking faults are generally single-point faults, as shown in
Fig. 12. The NACCF spectrum can well reflect this char-
acteristic. In Fig. 13, the low-frequency NACCF informa-
tion for a flaking fault has a peak only at the characteristic
fault frequency, either fo(72 Hz) in Fig. 13(b) or fi(108 Hz)
in Fig. 13(d). A NACCF spectrum of shaft-current damage
signals (Fig. 13(a) and 13(c)) has more peaks due to the
multiple faults. These can occur at double the characteristic
fault frequency of the signal, at its side frequencies, at the
rotation frequency, and even at triple the characteristic fault
frequency and its side frequencies. Figure 13(a) and 13(b) are
both NACCF spectra of outer-ring fault signals. The differ-
ence is that Fig. 13(a) not only has a peak at the outer-ring
fault frequency fo (72 Hz), it also has peaks at the rotation
frequency fr (20 Hz), at double the rotation frequency 2fr
(40 Hz), at the side frequencies of an outer-ring fault fo ± fr
(72 ± 20 Hz), at double the characteristic frequency of the
outer ring 2fo (144 Hz), at its side frequencies 2fo± fr (144±
20Hz), at triple the characteristic frequency of the outer ring
3fo (216 Hz), and at its side frequencies 3fo± fr (216±20Hz).
In the same way, the NACCF spectrum in Fig. 13(a) of the
signal for inner-ring shaft-current damage also shows more
peak frequencies than Fig. 13(d), although it is a mild fault
with smaller peak amplitudes.

To evaluate fully the different advantages of the
GMPSO-VMD-SV and NACCF features, we followed the

FIGURE 15. Classification results of GMPSO-VMD-SV KELM.

FIGURE 16. Classification results of the proposed method.

steps described in Section IV to obtain the NACCF fea-
tures and GMPSO-VMD singular values for the sam-
ples. We inputted the two sets of data into KELM to
form NACCF-KELM and GMPSO-VMD-SV KELM. The
NACCF features and GMPSO-VMD singular values were
fused to form the multi-domain extreme learning machine
(VMD-NACCF-MKELM) proposed in this paper. Then these
three classifiers were used to diagnose faults in the samples.
In this case, 40 training samples and 10 prediction samples
were used. The diagnostic results for the three methods are
shown in Figs. 14, 15, and 16, respectively.

We used different samples to test the repeatability. The
confusion matrices of the results of 10 tests (500 test samples
in total) of the three methods are shown in Tables 5, 6, and 7,
respectively. The misjudgment number for NACCF-KELM
was 79, and its accuracy was 84.2% [= (500 – 79) /
500], which is slightly lower than the accuracy of GMPSO-
VMD-SV KELM (87.4%). This means that in an environ-
ment with only white noise interference, compared with the
CIE-based GMPSO-VMD-SV KELM, NACCF-KELM does
not have an advantage. The confusion matrices of the two
methods (Tables 5 and 6) are not the same. The highest detec-
tion rate by NACCF-KELM was for pattern 2 (96%), and the
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TABLE 5. Confusion Matrix of NACCF-KELM (Accuracy = 84.2%).

TABLE 6. Confusion Matrix of GMPSO-VMD-SV KELM (Accuracy = 87.4%).

TABLE 7. Confusion Matrix of method proposed in this paper (Accuracy =

95.0%).

TABLE 8. Number of confused patterns for three methods.

lowest for patterns 3 and 5 (77% and 75%, respectively). The
highest detection rate for GMPSO-VMD-SV KELM was for
pattern 5 (97%), and the lowest for patterns 1 and 3 (79% and
82%, respectively).

Based on the data behind Tables 5, 6, and 7, we obtained
the number of confused patterns for the three methods shown
in Table 8.

Note that pattern 3 is for a multi-point mild inner-ring
shaft-current damage and its characteristic NACCF peak is
relatively small. It is easily confused with a normal bearing
(as shown in Fig. 13). Table 8 shows that NACCF-KELM

FIGURE 17. Results of 10 tests for the five methods.

is most likely to confuse patterns 3 and 5. There were
15 instances when real pattern 3 was misjudged as pattern 5,
and 13 when real pattern 5 was misjudged as pattern 3. The
percentage of these misjudgments was 35.44% (= 28 / 79).
Patterns 1 and 5 are also prone to confusion. Of the total, there
were 20.25% (= 16 / 79).

The most confusing patterns for GMPSO-VMD-SV
KELM were 3 and 1. There were 27 confusions, 42.86% of
the total. Patterns 3 and 4 were the next most likely to be con-
fused, with 13 or 20.63% of the total. This also proves that the
features of different domains can reflect different information
in the signal. NACCF features can distinguish outer-ring
and inner-ring faults as well as shaft-current damage. These
features make up for the deficiencies of using VMD singular
values, which can better distinguish between mild inner-ring
shaft-current damage and normal bearings, which are diffi-
cult to distinguish with NACCF features. Multiple domain
features can be extracted from a smaller sample to give more
complete information and more accurate predictions.

For the five methods listed in Table 3, we calculated the
detection accuracy for the 10 test sets. The resulting box plots
are shown in Fig. 17. By applying the MKELM proposed in
this paper, the accuracy for the test set improved to 95.0%.

Thus, in the absence of impulsive noise interference,
NACCF features are not more advantageous than VMD sin-
gular values, but the fusion of the two methods makes the
detection results more accurate and more stable.

C. CASE STUDY 3
Case 3 studies motor bearing faults with both ordinary Gaus-
sian white noise and irregular impulsive noise. This example
shows that the method in this paper can maintain high detec-
tion accuracy inmixed interference inworking conditions and
has practical applicability.

The experimental equipment provided by Taiyuan Univer-
sity of Technology, China, includes a motor (Y160M2-8), a
piezoelectric acceleration sensor coupler (KISTLER5134), a
16-channel signal collector (DEWEtron), a magnetic powder
brake, a gearbox, and a loading mechanism. The test rig and
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TABLE 9. Means of 10 feature vectors.

FIGURE 18. Photograph (top) of rolling bearing test rig and a schematic
diagram (bottom) for case 3.

TABLE 10. Confusion matrix of method proposed in this paper
(Accuracy = 89.2%).

a schematic diagram are shown in Fig. 18. In this case, the
test object was the rolling bearing inside the running motor.
The sampling frequency was 5000 Hz. The vibrations of the
bearing cannot be directly measured, but they are transmit-
ted directly to the sensor installed on the end cover. Thus,
the interference in this case is more complicated than in
case 1. The rolling bearing (model 6309) was in the motor.
The loader was used to simulate a frequently changing load.
A random pulse was added to the collected signal to simulate
a shock signal. The inner ring of the motor bearing and the
motor shaft have an interference fit. During the experiments,
the outer ring was fixed and the spindle speed was measured
with an eddy current displacement sensor.

In this case, five failure patterns were simulated under
different working conditions: 1) normal bearing, 2) inner-
ring failure, 3) ball failure, 4) ball and inner-ring failure, and

FIGURE 19. Detection results of the proposed method.

FIGURE 20. Results of 10 tests for five methods.

5) outer-ring failure. For each pattern, there were 50 samples,
of which the first 40 were used as the training set and the
remaining 10 signals were used as the test set. After the
sample signal was decomposed by VMD, the two IMFs with
the smallest CIE were selected to reconstruct the denoising
signal, and the eight features of the NACCF were obtained
from the sample signal after denoising. The first five statis-
tics with the same dimension were normalized and the last
three were normalized separately to get the matched features
(C1–C3 and C5–C8). This case does not include a cage fault
signal, so the characteristic C4 at the frequency of a cage fail-
ure does not need to be calculated. Then, SVDwas performed
on the matrix composed of the component IMFs in the VMD
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signal. The most important of the first three singular values
were normalized to give the time-domain features S1–S3. The
averages of the 10 features from the NACCF frequency and
time domains are shown in Table 9.

Under impulsive noise interference, due to the impulsive
noise resistance of CCF, the cyclic features extracted from
the NACCF spectrum are more obvious than those extracted
from other traditional fields, as shown in Table 9.

We used 10 test sets (500 samples in total) for diagnosis.
The classification confusion matrix of the method proposed
in this paper is shown in Table 10. The highest accuracy rate
is for the outer-ring failure (pattern 5), followed by inner-ring
failure (pattern 2). Ball and inner-ring failure (pattern 4) has
the lowest accuracy rate. This pattern is easily confused with
inner-ring failure (pattern 2), ball failure (pattern 3), and a
normal bearing (pattern 1).

For the five methods listed in Table 3, we calculated the
detection accuracy of the 10 test sets, as shown in Fig. 20.
It can be seen that, with interference, the method proposed
in this paper is more accurate and more stable than the other
methods.

VI. CONCLUSION
A failure detection method for motor bearings based on
VMD and NACCF is introduced in this paper. The pro-
posed method not only can effectively cope with Gaussian
noise but also impulse noise. The NACCF is a simplified
algorithm suitable for machine learning that evolved from
the CCF. The Silverman rule is used to select the optimal
kernel size. The method retains the effective mechanism for
eliminating impulse noise in the CCF kernel function. The
CIE is proposed based on information entropy and NACCF
low-frequency demodulation features. The CIE can effec-
tively reflect the cyclostationarity of a signal. In the VMDof a
second-order cyclostationary signal, the CIE has a monotonic
relation with the CORwithin a certain accuracy range. There-
fore, the selection requirements of the fitness function are
met. AGMPSO based on CIE as the fitness function was used
to optimize the VMD parameters. After the VMD, salient
IMFs were selected to obtain a denoising signal based on the
CIE. The simulation results show that the proposed method
can achieve adaptive parameter optimization and effectively
remove Gaussian noise. Finally, feature functions were con-
structed to extract the second-order cyclic frequency-domain
features with NACCF and for frequency conversion. More-
over, our approach combines VMD-SV time-domain features
into MKELM. The frequency conversion used in the function
eliminates the interference to failure detection caused by
different working conditions. The simulation and tests on
motor bearings in working conditions demonstrate that the
proposed method is more precise at dealing with noise and
more robust for different working loads.

Our subsequent research will mainly focus on combining
NACCF with deep learning methods, using deep algorithms
such as denoising self-encoding to extract features from the
cyclic frequency domain automatically. In addition, since the

algorithm proposed in this paper can process second-order
cyclostationary signals, it should be useful for failure detec-
tion for other types of rotating machinery, such as gears and
propellers. Thus, this work may help in the development of
deep network classifiers with good generalizability.
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