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ABSTRACT In this article, by introducing artificial anisotropic (AA) parameters in the four-step hybrid
implicit-explicit finite-difference time domain (HIE-FDTD) method, an AA four-step HIE-FDTDmethod is
proposed, which can reduce the numerical dispersion error and improve the computational accuracy. Firstly,
the Maxwell’s matrix equation is decomposed into four sub-matrix equations by using the split-step scheme,
and artificial anisotropy parameters are introduced, then the proposed AA four-step HIE-FDTD is obtained.
Furthermore, the stability analysis of the AA four-step HIE-FDTDmethod shows that the stability condition
of the proposedmethod is closed to the original four-step HIE-FDTDmethod. Next, the numerical dispersion
characteristics of the proposed method are analyzed and compared with other HIE-FDTD methods. The
results show that the numerical dispersion error of the proposed method is significantly reduced compared
with the four-step HIE-FDTDmethod. Finally, the performance of the proposed method is further verified by
the numerical simulation. Numerical results show that the proposed method has lower numerical dispersion
error and higher computational accuracy than that of the four-step HIE-FDTD method.

INDEX TERMS Finite-difference time domain (FDTD), hybrid implicit-explicit (HIE), artificial anisotropy
(AA), numerical dispersion.

I. INTRODUCTION
The finite-difference time-domain (FDTD) method [1] is one
of the most widely used electromagnetic numerical calcula-
tion methods, but the Courant-Friedrichs-Lewy (CFL) stabil-
ity condition [2] limits the computational efficiency of the
method in the miniaturized and complicated electromagnetic
field problems.

In order to remove the limitation of the CFL stability
condition, the alternating-direction implicit (ADI) FDTD
method [3], [4] has been proposed. The ADI-FDTD method
uses the implicit method to solve iteratively, so that the time
step value of the method is no longer controlled by the spatial
grid size, then larger time steps can be used to improve the
computational efficiency. Following the ADI-FDTDmethod,
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some other unconditionally stability methods have been pre-
sented, such as the Crank-Nicolson (CN) FDTD method [5],
the split-step (SS) FDTD method [6]–[8], the locally-one-
dimensional (LOD) FDTD method [9]–[11].

In addition, considering the electromagnetic field problems
associated with fine structures in one or two directions,
conditionally stable FDTD methods, such as the hybrid
explicit-implicit FDTD (HIE-FDTD) method [12], [13] and
the weakly conditionally stable FDTD (WCS-FDTD)
method [14] have also been presented. In order to further
increase the value of the time step of the HIE-FDTD method,
a new 2D HIE-FDTD method has been proposed [15], [16],
and the maximum time step is taken as 21x/c, compared
with the original 2D HIE-FDTD method (1x/c), the time
step is increased significantly. Then, Wang et al. proposed a
new 3D one-step leapfrog HIE-FDTD method in [17] with
a CFL stability condition of 1t < 1x/c & 1t < 1z/c
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(suppose the fine grid only in the y-direction), and it’s the
time step value can be increased compared with the original
3D HIE-FDTD method (1t ≤ 1/(c

√
1/1x2 + 1/1z2)).

In addition, Wang et al. proposed a weaker 3D HIE-FDTD
method in [18], which increases the maximum value of the
time step to twice as the original HIE-FDTD algorithm (1t ≤
2/(c

√
1/1x2 + 1/1z2)). Furthermore, we presented a four-

step HIE-FDTDmethod with weaker CFL stability condition
(1t ≤ 21x/c and 1t ≤ 21z/c) in [19].

However, whether unconditionally stable FDTD meth-
ods or conditionally stable FDTD methods, the numeri-
cal dispersion error increases as the increase of time step
size. In order to reduce the numerical dispersion error,
by introducing an artificial anisotropic (AA) method, a low
computational cost correction method for FDTD method is
proposed [20]. Recently, this optimization method has been
applied to theADI-FDTDmethod [21], [22], theWCS-FDTD
method [23] and the HIE-FDTD methods [24]–[26].

In this article, based on the four-step HIE-FDTD
method [19], combined with the an artificial anisotropic
(AA) method, a novel AA four-step HIE-FDTD method with
lower numerical dispersion error is proposed. In Section II,
the formulation of the AA four-step HIE-FDTD method
is given. the Maxwell’s matrix equation is decomposed
into four sub-matrix equations by using the split-step
scheme, and AA parameters are introduced simultaneously.
In Section III, the numerical stability of the AA four-
step HIE-FDTD method is analyzed. In Section IV, the
numerical dispersion characteristics of the proposed method
are analyzed, and compared with the traditional FDTD
method, the ADI-FDTD method, the HIE-FDTD method,
the one-step leapfrog HIE-FDTD method and the four-step
HIE-FDTD method. Finally, in Section V, to testify the
efficiency and accuracy of the AA four-step HIE-FDTD
method, numerical simulation results of the cavities are
given.

II. FOMULATION
In a linear, isotropic, lossless and non-dispersive medium,
by introducing the artificial anisotropy parameters diag{εx ,
εy, εz} and diag{µx , µy, µz}, the 3-D Maxwell’s matrix can

be written as
∂Eu
∂t
= [R] Eu (1)

where Eu =
[
Ex ,Ey,Ez,Hx ,Hy,Hz

]T , and
ε and µ are the electric permittivity and the magnetic perme-
ability, respectively. To simplify the calculation, here εα =
µα(α = x, y, z).

In this article, the fine structure is taken in the y direction as
an example. By using the implicit form for the y direction and
explicit form for the x and z directions, thereby decomposing
the matrix [R] into four sub-matrices of [M ]/2, [N ]/2, [M ]/2,
and [N ]/2, and

[M ] =



0 0 0 0 0
∂

εεy∂y

0 0 0 0 0 −
∂

εεx∂x
0 0 0 0

∂

εεx∂x
0

0
∂

µµz∂z
0 0 0 0

−
∂

µµz∂z
0 0 0 0 0

∂

µµy∂y
0 0 0 0 0



[N ] =



0 0 0 0 −
∂

εεz∂z
0

0 0 0
∂

εεz∂z
0 0

0 0 0 −
∂

εεy∂y
0 0

0 0 −
∂

µµy∂y
0 0 0

0 0
∂

µµx∂x
0 0 0

0 −
∂

µµx∂x
0 0 0 0


Then, (1) can be written as

∂Eu
∂t
=

[M ]
2
Eu+

[N ]
2
Eu+

[M ]
2
Eu+

[N ]
2
Eu (2)

Furthermore, (2) is decomposed into four submatrix equa-
tions using the split-step scheme, which is shown as follows

sub-step 1:
(
[I ]−

1t
4

[M ]
)
Eun+1/4

=

(
[I ]+

1t
4

[N ]
)
Eun (3a)

[R] =



0 0 0 0 −
1
ε

∂

∂z
1
εz

1
ε

∂

∂y
1
εy

0 0 0
1
ε

∂

∂z
1
εz

0 −
1
ε

∂

∂x
1
εx

0 0 0 −
1
ε

∂

∂y
1
εy

1
ε

∂

∂x
1
εx

0

0 −
1
µ

∂

∂z
1
µz

1
µ

∂

∂y
1
µy

0 0 0

1
µ

∂

∂z
1
µz

0 −
1
µ

∂

∂x
1
µx

0 0 0

−
1
µ

∂

∂y
1
µy

1
µ

∂

∂x
1
µx

0 0 0 0
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sub-step 2:
(
[I ]−

1t
4

[N ]
)
Eun+2/4

=

(
[I ]+

1t
4

[M ]
)
Eun+1/4 (3b)

sub-step 3:
(
[I ]−

1t
4

[M ]
)
Eun+3/4

=

(
[I ]+

1t
4

[N ]
)
Eun+2/4 (3c)

sub-step 4:
(
[I ]−

1t
4

[N ]
)
Eun+1

=

(
[I ]+

1t
4

[M ]
)
Eun+3/4 (3d)

In sub-step 1, by performing the central difference approx-
imation on the time derivative and the spatial derivative in
(3a), and the calculation formulas can be obtained as follows

Ex |
n+1/4
i+1/2,j,k −

1t
4εεy1y

(
Hz|

n+1/4
i+1/2,j+1/2,k − Hz|

n+1/4
i+1/2,j−1/2,k

)
= Ex |ni+1/2,j,k −

1t
4εεz1z

(
Hy|ni+1/2,j,k+1/2

− Hy|ni+1/2,j,k−1/2
)

(4a)

Ey|
n+1/4
i,j+1/2,k +

1t
4εεx1x

(
Hz|

n+1/4
i+1/2,j+1/2,k − Hz|

n+1/4
i−1/2,j+1/2,k

)
= Ey|ni,j+1/2,k +

1t
4εεz1z

(
Hx |ni,j+1/2,k+1/2

− Hx |ni,j+1/2,k−1/2
)

(4b)

Ez|
n+1/4
i,j,k+1/2 −

1t
4εεx1x

(
Hy|

n+1/4
i+1/2,j,k+1/2 − Hy|

n+1/4
i−1/2,j,k+1/2

)
= Ez|ni,j,k+1/2 −

1t
4εεy1y

(
Hx |ni,j+1/2,k+1/2

− Hx |ni,j−1/2,k+1/2
)

(4c)

Hx |
n+1/4
i,j+1/2,k+1/2 −

1t
4µµz1z

(
Ey|

n+1/4
i,j+1/2,k+1 − Ey|

n+1/4
i,j+1/2,k

)
= Hx |ni,j+1/2,k+1/2 −

1t
4µµy1y

(
Ez|ni,j+1,k+1/2

− Ez|ni,j,k+1/2
)

(4d)

Hy|
n+1/4
i+1/2,j,k+1/2 +

1t
4µµz1z

(
Ex |

n+1/4
i+1/2,j,k+1 − Ex |

n+1/4
i+1/2,j,k

)
= Hy|ni+1/2,j,k+1/2 +

1t
4µµx1x

(
Ez|ni+1,j,k+1/2

− Ez|ni,j,k+1/2
)

(4e)

Hz|
n+1/4
i+1/2,j+1/2,k −

1t
4µµy1y

(
Ex |

n+1/4
i+1/2,j+1,k − Ex |

n+1/4
i+1/2,j,k

)
= Hz|ni+1/2,j+1/2,k −

1t
4µµx1x

(
Ey|ni+1,j+1/2,k

− Ey|ni,j+1/2,k
)

(4f)

By observing the formulas (4a) and (4f), the elec-
tric field component Ex |

n+1/4
i+1/2,j,kand the magnetic field

componentHz|
n+1/4
i+1/2,j+1/2,k are coupled to each other, and (4f)

is substituted into (4a) to obtain the triangular matrix equation
about Ex |

n+1/4
i+1/2,j,k as follows(

1+
1t2

8ε2y1y2

)
Ex |

n+1/4
i+1/2,j,k −

1t2

16ε2y1y2

×

(
Ex |

n+1/4
i+1/2,j+1,k + Ex |

n+1/4
i+1/2,j−1,k

)
= Ex |ni+1/2,j,k+

1t
4εy1y

(
Hz|ni+1/2,j+1/2,k−Hz|

n
i+1/2,j−1/2,k

)
−

1t2

16εxεy1x1y

(
Ey|ni+1,j+1/2,k − Ey|

n
i+1,j−1/2,k

− Ey|ni,j+1/2,k + Ey|
n
i,j−1/2,k

)
−

1t
4εz1z

(
Hy|ni+1/2,j,k+1/2 − Hy|

n
i+1/2,j,k−1/2

)
(5)

By solving the triangular matrix equation (5), the electric
field component Ex |

n+1/4
i+1/2,j,k can be solved, and the remaining

field components can be solved by the explicit iteration. The
solutions of sub-step 2, 3, and 4 is similar to sub-step 1, which
are not shown here.

III. NUMERICAL STABILITY ANALYSIS
The Fourier method is used to analyze the numerical stability
of the AA four-step HIE-FDTD method. The expression of
the AA four-step HIE-FDTD algorithm in a complete time
step is shown as follows

Un+1
= [32] [31] [32] [31]Un

= [3]Un (6)

where [3] is the growth matrix of the entire time step, [31]
and [32] are the growth matrices of each sub-step. The
expressions of [31] and [32] are as follows

[31]

=



4
A′y

lx ly
A′y

0 0 −
2jlz
A′y

2jlz
A′y

lx ly
A′y

1−
l2x
A′y

0
jlz
2

−
jlx lylz
2A′y

−
2jlx
A′y

lx lz
A′y

l2x lylz
4A′y

1−
l2x
4
−
jly
2
−
jlx l2z
2A′y
+
jlx
2

jlx lylz
2A′y

jlx lylz
2A′y

jlz
2
−
jl2x lz
2A′y

−
jly
2

1−
l2z
4

lx lyl2z
4A′y

lx lz
A′y

−
2jlz
A′y

−
jlx lylz
2A′y

jlx
2

0 1−
l2z
A′y

lylz
A′y

2jly
A′y

−
2jlx
A′y

0 0
lylz
A′y

4
A′y


[32]

=



1−
l2z
4

lx lyl2z
4A′y

lx lz
A′y

−
jlx lylz
2A′y

jl2x lz
2A′y
−
jlz
2

jly
2

0 1−
l2z
A′y

lylz
A′y

2jlz
A′y

jlx lylz
2A′y

−
jlx
2

0
lylz
A′y

4
A′y

−
2jly
A′y

2jlx
A′y

0

0
2jlz
A′y

−
2jly
A′y

4
A′y

lx ly
A′y

0

−
jlz
2

jlx lylz
2A′y

2jlx
A′y

lx ly
A′y

1−
l2x
A′y

0

jly
2

jlx l2z
2A′y
−
jlx
2
−
jlx lylz
2A′y

lx lz
A′y

l2x lylz
4A′y

1−
l2x
4
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where b = 1t/2ε, d = 1t/2µ, ∂/∂α = jPα =
−2j sin(kα1α/2)/1α, r2α = bdP2α , lα = rα/εα , α =
x, y, z,A′y = bdP2y/ε

2
y + 1.

To ensure that the algorithm remains stable during the iter-
ative process, the modulus of the eigenvalues of the growth
matrix must be less than or equal to 1, and the six eigenvalues
of the matrix [3] are calculated as follows

λ1 = λ2 = 1 (7a)

λ3 = λ4 = λ
∗

5 = λ
∗

6 =
C + j

√
4E2 − C2

2E
(7b)

where

C = ε4xε
4
yε

4
z


(
r2x
ε2x
− 4

)(
r2z
ε2z
− 4

)(
r2x
ε2x

(
r2z
ε2z
− 4

)

−4

(
r2y
ε2y
+
r2z
ε2z

))
+ 2

(
r2y
ε2y
+ 4

)2

,

E = ε4xε
4
yε

4
z

(
r2y
ε2x
+ 4

)2

When |λ3| = |λ4| = |λ5| = |λ6| ≤ 1, the AA four-step
HIE-FDTD method will be stable. Then, 4E2-C2

≥ 0 must
be satisfied, and

4E2
− C = ε4xε

4
yε

4
zT1T2T3 (8)

where T1 =
(
r2z
ε2z
− 4

)
, T2 =

(
r2x
ε2x
− 4

)
, T3 =

[
4T4 −

r2x
ε2x
T1
]
,

T4 =
(
r2y
ε2y
+

r2z
ε2z

)
.

Obviously, T4 ≥ 0 is always true. Assuming that T1 and T2
are both positive or negative, there are two cases. In case 1,
if both T1 and T2 are positive, then T3 ≥ 0 cannot be
guaranteed, and 4E2-C2

≥ 0 also cannot be guaranteed.
In case 2, if both T1 and T2 are negative, then T3 ≥ 0, and
it can be guaranteed to ensure that 4E2-C2

≥ 0. Therefore,
case 2 satisfies the stable condition. In otherwords, when both
T1 and T2 are negative, the AA four-step HIE-FDTD method
is stable. Then, the stability condition of the AA four-step
HIE-FDTD method can be obtained as

1t ≤
2εx1x
c

& 1t ≤
2εz1z
c

(9)

Similarly, the stability condition of the four-step HIE-
FDTD method can be obtained as 1t ≤ 21x/c &
1t ≤ 21z/c in [19]. Since the values of the artificial
anisotropy parameters are close to 1, the stability con-
dition of the proposed method is almost equal to that
of the four-step HIE-FDTD method. Compared with the
stability conditions of the HIE-FDTD method (1t ≤
1/(c

√
1/1x2 + 1/1z2)), the leapfrog HIE-FDTD method

(1t < 1x/c & 1t < 1z/c) and the weaken HIE-FDTD
method (1t ≤ 2/(c

√
1/1x2 + 1/1z2)), the stability condi-

tion of the proposedAA four-step HIE-FDTDmethod ismore
weaker.

IV. NUMERICAL DISPERSION ANALYSIS
The dispersion relation expression of the AA four-step
HIE-FDTD method can be obtained as

cos (ω1t)

=
C
2E

=

(
r2x
ε2x
− 4

)(
r2z
ε2z
− 4

)
r2x
ε2x

(
r2z
ε2z
− 4

)
−4

(
r2y
ε2y
+

r2z
ε2z

)
+ 2

(
r2y
ε2y
+ 4

)2

2
(
r2y
ε2y
+ 4

)2

(10)

Then, the artificial anisotropy parameters can be obtained
by the dispersion relation expression. The effect of the artifi-
cial anisotropy parameters is to make the normalized numeri-
cal phase velocity A = vp/c approach to 1. First, assuming
A = 1, the initial values of the parameters, ε0x , ε

0
y and ε0z

can be obtained by the dispersion relation of (10). Second,
the initial values ε0x , ε

0
y and ε0z are substituted into (10), and

the maximum value Amax can be obtained by scanning θ
and ϕ in the range of (0, 90◦). Finally, the corrected value
A is obtained by using the modified formula A = 1 −
(|Amax − 1|)/2. The final optimization parameters εx , εy
and εz are calculated by the corrected value A substituting
into (10).
Next, the numerical dispersion characteristics of the pro-

posed method both in the uniform grid system and non-
uniform grid system are analyzed respectively. The influences
of different parameters on the numerical dispersion character-
istics of the algorithm are also analyzed.
Figs. 1 and 2 are numerical dispersion characteristics anal-

ysis of the proposed AA four-step HIE-FDTD method in the
uniform grid system. Here, 1x = 1y = 1z = λ/37.1,
and the number of cells per wavelength (CPW) is 37.1, and
CFL numbers (CFLN) is defined as 1t/1t0, where 1t0 =

1
/(

c
√
1
/
1x2 + 1

/
1y2+1

/
1z2

)
, and 1t1t is the time

step size adopted by different FDTD methods, and the CFLN
is 1.1547. The normalized numerical phase velocity error
(NNPVE) is defined as |1 − vp/c| × 100%. The optimized
parameters of the proposed method can be calculated as εx =
εz = 0.9992 and εy = 0.9988.
Fig. 1 shows the comparison of Maximum NNPVE ver-

sus propagation angle θ of the six methods. Fig. 2 presents
the NNPVE with θ and ϕ for the FDTD method, the four-
step HIE-FDTD method and the AA four-step HIE-FDTD
method. As reflected in Figs. 1 and 2, some results can be
found. (1) For the value of θ ranging from 0 to 180◦, the max-
imum NNPVE of the AA four-step HIE-FDTD algorithm
is lower than those of the other four methods except the
traditional FDTD method; (2) For the six methods, the max-
imum NNPVE reaches the maximum value when θ is 90◦.
The maximum NNPVE of the four-step HIE-FDTD method
is 0.1458%, and the maximum value of the AA four-step
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FIGURE 1. Maximum NNPVE versus θ of the six methods with CPW =

37.1 and CFLN = 1.1547 in the uniform grid system.

FIGURE 2. NNPVE versus θ and ϕ of the three methods with CPW =

37.1 and CFLN = 1.1547 in the uniform grid system.

FIGURE 3. Maximum NNPVE versus θ of the six methods with CPW =

37.1 and CFLN = 3.4647 in the nonuniform grid system.

HIE-FDTD method is only 0.02486%, achieving significant
optimization. (3) When CFLN = 1.1547, the AA four-step
HIE-FDTD method remains stable, thus, the weak stability
condition has been proven.

Figs. 3 and 4 are the numerical dispersion characteristics
analysis of the proposed method in the nonuniform grid sys-
tem. The grid system having a fine structure in the y-direction
is assumed here, 1x = 1z = 51y = λ/37.1, that is,
CPW = 37.1, and CFLN = 3.4647. The AA parameters of
the proposed method can be obtained as εx = εz = 0.9992
and εy = 0.9999.
Fig. 3 discusses Maximum NNPVE versus θ of the six

methods. Fig. 4 shows the comparison of the NNPVE versus
θ and ϕ for the FDTD method, the four-step HIE-FDTD
method before and after optimization. The following conclu-
sions can be obtained from Figs. 3 and 4. (1) When CFLN =
3.4647, the AA four-step HIE-FDTD method is stable and
has a lower NNPVE value, indicating that the proposed

FIGURE 4. NNPVE versus θ and ϕ of the three methods with CPW =

37.1 and CFLN = 3.4647 in the nonuniform grid system.

FIGURE 5. The maximum NNPVE of the AA four-step HIE-FDTD method
versus θ with different (a) CPW; (b) grid sizes.

method is weak conditionally stable in the nonuniform grid
system. (2) Among the six FDTD methods, the maximum
NNPVE value of the AA four-step HIE-FDTD method is
smallest, even lower than that of the traditional FDTD
algorithm.

Fig. 5 analyzes the effect of different indicators on the
dispersion characteristics of the AA four-step HIE-FDTD
method. Fig. 5(a) is a comparison of the maximum NNPVE
when CPW = 10, 15, 20 and 25, respectively, and CFLN =
10 in the 5 times nonuniform grid system (1x = 51y = 1z).
As can be seen from Fig. 5(a), when CPW = 10, the max-
imum NNPVE of the proposed method is the largest, and
the maximum NNPVE value is 0.5292% at θ = 45◦; when
CPW = 15, the maximum NNPVE value of the proposed
method is 0.2363%, which is lower than that of CPW =
10; when CPW = 25, the maximum NNPVE of the pro-
posed method is the smallest, which is only 0.08528% at
θ = 45◦. In Fig. 5(b), CFLN = 2, CPW = 15, and the
four curves represent the maximum NNPVE of the AA
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TABLE 1. A comparison of the results for uniform grids

four-step HIE-FDTD method versus θ when the grid size is
1x = 1z = (1, 2, 5, 10)1y. It can be seen from Fig. 5(b),
the maximum NNPVE of the proposed method decreases as
the increase of the nonuniformmultiple with θ in the range of
[36◦, 144◦]. Accordingly, it can be inferred that the finer the
spatial meshing, the smaller the numerical dispersion error of
the proposed method.

V. NUMERICAL RESULT
In this section, in order to verify the computational efficiency
and accuracy of the proposed method, a 3-D cavity with
the size of 9 mm × 6 mm × 15 mm is simulated. The
performances of the AA four-step HIE method and the four-
step HIE-FDTD method are compared, and the traditional
FDTDmethod is used as a reference. A sinusoidal modulated
Gaussian pulse source with the expression of exp[−(t− t0)2/
T 2] × sin[2π f0(t − t0)] is placed at the center of the cavity,
where T = 30 ps, t0 = 3 × T , and f0 = 20 GHz. The
observation point is located at 4.2 mm from the center point
along the x-axis. In the simulation, both uniform grid system
and five times nonuniform grid system are used. In addition,
the coarse grid and fine grid are used in the nonuniform grid
system.

Fig. 6 and Table 1 show the simulation results of the three
FDTD methods in a uniform grid system. The grid size is
1x = 1y = 1z = 0.3 mm, and corresponding number
of grids is 30 × 20 × 50. For the FDTD method, CFLN =
0.5, and the step number is 24000. The other two four-step
HIE-FDTD methods with CFLN = 3, the step number is
4000, and the total simulation time is selected to be 6.888 ns.
The optimization parameters of the AA four-step HIE-FDTD
method are set as εx = εz = 0.99701 and εy = 0.99970.
It can be seen from Fig. 6(a) that the simulation results of

the three FDTD methods are basically coincident and stable,
while the CFLN of the AA four-step HIE-FDTDmethod is 3,
this verifies the weak conditional stability of the proposed
method in a uniform grid system.

From Fig. 6(b) and Table 1, it can be seen that among
the three FDTD methods, the resonant frequency calculated
by the AA four-step HIE-FDTD method is closest to the
theoretical value, and the relative error is the smallest, only
0.015%, which is much smaller than that of the four-step
HIE-FDTD (the relative error of 0.245%) and the traditional
FDTD method (the relative error of 0.097%). It shows that

FIGURE 6. Simulation results in uniform grid system with CFLN = 0.5 for
the FDTD method and CFLN = 3 for the two HIE-FDTD methods. (a) Ex ;
(b) resonant frequency.

the AA four-step HIE-FDTD method has the high calcula-
tion accuracy, and it proves that the effect of optimization
on the AA four-step HIE-FDTD method is very obvious.
Furthermore, from Table 1, it is observed that the CPU time
of the AA four-step HIE-FDTD method is similar to that of
the four-step HIE-FDTD method, whereas the computational
accuracy of the proposed method is high than that of the four-
step HIE-FDTD method.

Fig. 7 shows the simulation results of the time-domain
electric field Ex and the resonant frequency using three meth-
ods in a nonuniform fine grid system. The grid size is 1x =
51y = 1z = 0.3 mm, and corresponding number of grids is
30× 100× 50. The FDTDmethod takes CFLN= 1, the step
number is 15000, and the other two four-step HIE-FDTD
methods take CFLN = 10, the step number is 1500, and the
total simulation time is 5.772 ns. The optimization parameters
of the AA four-step HIE-FDTD method are εx = εz =

0.99789, εy = 1.00007.
It can be seen from Fig. 7 that, the simulation results of

the three methods are basically coincident with each other,
which proves the weak conditional stability of the AA four-
step HIE-FDTD method in the nonuniform grid system.

Table 2 presents the comparison of the results for three
methods using a coarse grid and a fine grid in a nonuniform
grid system. The grid size of the fine grid is 1x = 51y =
1z = 0.3 mm, which is consistent with the grid in Fig. 7, and
in the coarse grid, the grid size is 1x = 51y = 1z = 0.6
mm, and the number of grids is 15 × 50 × 25. In addition,
the FDTD method takes CFLN = 1, and the step number
is 15000. The other two four-step HIE-FDTD methods take
CFLN = 10, the step number of the simulation is 1500, and
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TABLE 2. A comparison of the results for nonuniform grids

FIGURE 7. Simulation results in nonuniform grid system with CFLN = 1
for the FDTD method and CFLN = 10 for the two HIE-FDTD methods.
(a) Ex ; (b) resonant frequency.

the total simulation time is 5.772 ns. For the AA four-step
HIE-FDTD algorithm, the optimization parameters in the fine
grid and coarse grid are εx = εz = 0.99789, εy = 1.00007,
and εx = εz = 1.00026, εy = 0.99161, respectively.

For the fine grid, it can be observed from Table 2 that,
when CFLN= 10, the relative error of the resonant frequency
calculated by the four-step HIE-FDTD method is 0.2080%,
whereas that of the AA four-step HIE-FDTD method is only
0.0223%, which is the same as that of the FDTD method
with CFLN = 1. Therefore, compared with the four-step
HIE-FDTDmethod, the calculation accuracy of the proposed
method has been proven. Furthermore, the CPU time of
the FDTD, the four-step HIE-FDTD method and the AA

four-step HIE-FDTD method are 216 s,156 s,165 s, respec-
tively. In other words, with the same level of accuracy,
the CPU time of the AA four-step HIE-FDTD is reduced
51s compared with the FDTDmethod, and the computational
efficiency of the proposed method can be improved. For
the two four-step HIE-FDTD methods, it is obvious that the
influence of the instruction of the AA parameters for the CPU
time is not remarkable.

Further observation of Table 2 shows that the relative error
of the four-step HIE-FDTD method in the coarse grid is
more than that of result in the fine grid, whereas the rela-
tive error of the AA four-step HIE-FDTD method remains
small. The effect on the optimization for the AA four-step
HIE-FDTD method is further proved, and the AA four-
step HIE-FDTD method has higher computational accuracy.
Furthermore, the AA four-step HIE-FDTD method and the
FDTD method have the same level of accuracy, and the CPU
time are 14 s and 8 s, respectively. Therefore, the AA four-
step HIE-FDTD method is more efficient than the FDTD
method.

VI. CONCLUSION
In this article, by introducing artificial anisotropy parameters,
the AA four-step HIE-FDTD method has been proposed
to reduce the numerical dispersion error. Firstly, artifi-
cial anisotropy parameters are introduced in the four-step
HIE-FDTD method to obtain the basic formulation of the
AA four-step HIE-FDTD method. Secondly, the CFL sta-
bility condition of the proposed method is discussed, which
is basically consistent with that of the four-step HIE-FDTD
method. Thirdly, the numerical dispersion characteristics of
the proposed method are analyzed, and compared with other
methods for case of the CPW value, the CFLN value and
the nonuniform multiple. It is theoretically proved that the
presented method has a lower numerical dispersion error.
Finally, to verify the computational accuracy and efficiency
of the proposed method, numerical simulation results are also
performed. The simulation results show that, compared with
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the pre-optimization, the AA four-step HIE-FDTD method
has higher calculation accuracy, and compared with the tradi-
tional FDTD method, it has higher computational efficiency
with the same level of accuracy.
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