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ABSTRACT This paper studies privacy-preserving weighted federated learning within the secret sharing
framework, where individual private data is split into random shares which are distributed among a set of
pre-defined computing servers. The contribution of this paper mainly comprises the following four-fold:
• In the first fold, the relationship between federated learning (FL) and multi-party computation (MPC)
as well as that of secure federated learning (SFL) and secure multi-party computation (SMPC) is
investigated. We show that FL is a subset of MPC from the m-ary functionality point of view.
Furthermore, if the underlying FL instance privately computes the defined m-ary functionality in the
simulation-based framework, then the simulation-based FL solution is an instance of SMPC.

• In the second fold, a new notion which we call weighted federated learning (wFL) is introduced and
formalized. Then an oracle-aided SMPC for computing wFL is presented and analysed by decoupling
the security of FL from that of MPC. Our decoupling formulation of wFL benefits FL developers
selecting their best security practices from the state-of-the-art security tools.

• In the third-fold, a concrete implementation of wFL leveraging the random splitting technique in the
framework of the 3-party computation is presented and analysed. The security of our implementation
is guaranteed by the security composition theorem within the secret share framework.

• In the fourth-fold, a complement to MASCOT is introduced and formalized in the framework of
SPDZ, where a novel solution to the Beaver triple generator is constructed from the standard El Gamal
encryption. Our solution is formalized as a three-party computation and a generation of the Beaver
triple requires roughly 5 invocations of the El Gamal encryptions. We are able to show that the proposed
implementation is secure against honest-but-curious adversary assuming that the underlying El Gamal
encryption is semantically secure.

INDEX TERMS Beaver-triple, El Gamal encryption, privacy-preserving, secure multi-party computation,
secret share, weighted federated learning.

I. INTRODUCTION
The concept of federated learning (FL) first introduced by
McMahan et al. is a decoupling of model training from the
need for direct access to the raw training data [1]. The defini-
tion of FL is in the evolution and a variation of FL definitions
have been proposed (say, [2]–[4]). The datasets defined in
the FL framework can be categorized as horizontal, vertical
and hybrid types. Roughly speaking, in the horizontal FL,
the feature spaces of datasets among different organizations
(data owners) are same but not overlapped over the sample
spaces [5]; in the vertical FL, the sample spaces of datasets
among different organizations are same but not overlapped
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over the feature spaces [6], [7]; in the hybrid FL, both fea-
ture spaces and sample spaces of different organizations are
overlapped [8], [9]. We refer to the reader [10]–[14] and the
references therein for more details.

A. THE MOTIVATION PROBLEM
Going through the FederatedAveraging algorithm introduced
in [1] that works over horizontal datasets, we know that
each client k locally computes nk data samples for the local
model wkt+1 at the (t + 1)-round. The parameters nk and
wkt+1 are then sent to the global FL server who in turn,
computes the weighted average of the resulting model wt+1
←

∑K
k=1

nk
n w

k
t+1 where K is the number of clients and n =

n1 + · · · + nK .
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1) WHAT ARE NOT ADDRESSED IN THIS PAPER
As discussed in [3], to incentivize individual data provider
to participant an FL procedure, a reward will be allocated
among the data providers based on the quality and quantity
of their provided data. Hence nk could be an incentive variant
described in the FederatedAveraging algorithm. Generally, nk
can be evaluated by a trusted third party (say, a data quality
and quantity evaluation service provider) or by the data owner
himself/herself. Since nk is a sensitive value, while nk is
verifiable,1 it should be well protected. Since the research
of incentive mechanism is a complex task, a comprehensive
review of the incentive mechanism is out of the scope of this
paper.

In this paper, we simply assume that nk is evaluated by
a trusted data quality and quantity service provider so that
we can focus on our exploration of the relationship between
FL and MPC as well as that of SFL and SMPC. Leveraging
the explored results, we will introduce and formalize a new
notion which we call weighted federated learning (wFL), and
then provide implementations of wFL and prove the security
of our implementations within the oracle-aided framework.
Finally, we substitute the oracle that is aided to compute the
wFLwith a concrete Beaver triple generator in the framework
of SPDZ [15]–[19].

2) WHAT ARE FOCUSED IN THIS PAPER
In this paper, a new notion which we call weighted federated
learning (wFL) is introduced and formalized, where both nk
and wkt+1 are encrypted. By [nk ] (resp. [w

k
t+1]), we denote an

encryption of nk (resp. wkt+1). We remark that the selection
of the underlying encryption scheme is flexible. It can be a
secret sharing scheme based encryption or a partially (fully)
homomorphic encryption that should be the suitable for the
underlying use case. AwFL addresses the following problem:
given K encrypted (weight, model) pairs ([nk ], [wkt+1]) (k =
1, . . ., K ), the global FL server wishes to compute an updated
model wt+1 ←

∑K
k=1

[nk ]
n [wkt+1], where K is the number of

clients and n= [n1]+ · · ·+ [nK ]. As stated in the footnote 1,
the encrypted nk will be served as a witness for the global
FL server allocating the specified reward (for simplicity,
we assume that the global FL server equally allocates the
current round reward to the qualified data providers).

Since the theory of SMPC is well developed in cryp-
tography [22]–[24], the understanding of the relationship
between FL and MPC and that of secure FL and SMPC could
largely benefit us to understand how SMPC mechanism can
be applied to FL and SFL. To the best of our knowledge,
this problem has not been addressed and thus leaves us the
following interesting research problem:
Question 1: what is the relationship between FL and MPC

as well as that of SFL and SMPC?

1For example, the global FL server could be convinced that [nk ] ≥ τ by
executing a zero-knowledge proof procedure [20], [21], where [nk ] is an
encryption of nk , and τ is the pre-defined threshold by the global FL server.

Leveraging the explored result (please refer to Section 2 for
more details), we know that the state-of-the-art SMPC tech-
niques such as the ring-based zero-splitting [29]–[31] and
the SPDZ [15]–[19] can be applied to preserve the wFL
data privacy. However, the evolution of security and privacy
tools for securing FL systems increases the difficulty for
researchers to evaluate the security of the underlying solu-
tions. For example, in Sharemind, the multiplication operator
based on the Du and Atallah’s method [28] was replaced by
the zero-splitting mechanism. Is the privacy of Sharemind
working in the Du and Atallah model preserved in the zero-
splitting mechanism? This leaves the following interesting
research problem:
Question 2: how to decouple the security of a federated

learning system from the underlying security and privacy
tools that could largely benefit FL engineers selecting the best
security tools for their practices?

The attractive feature of a ring-based zero-splitting based
SMPC solution [29]–[31] is its efficiency. The scalability
however, is problematic since it is designed for 3-party com-
putation from the scratch. Note that the meaning of the ring-
based zero-splitting and the secret sharing of private data,
where individual private data is split into random shares
which are distributed among a set of pre-defined computing
servers, are same. As such as we do not distinguish the two
notions and use them in interchange throughout the paper.
Also please note that the secret sharing scheme is differ-
ent from that of the Shamir threshold system [27], where
the notion of security sharing emphasizes the random data
splitting procedure while the threshold secret sharing system
emphasizes on the recoverability of the shared data. There
are many ways to resolve the scalability of the zero-splitting
based MPC, for example:
• if the committee selection technique presented in [25],
[26] is applied, then the committee selection policy
should be integrated with Sharemind;

• if the Shamir threshold system [27] is applied to
achieve the scalability, then the strategy for decreasing
the degree of the resulting multiplicative polynomials
should be integrated with Sharemind;

• if the SPDZ solution is applied, then the strategy for effi-
ciently generating Beaver-triple is certainly welcome.

While Sharemind approach is efficient, the scalability is
problematic. On the other hand, while SPDZ provides the
high scalability, the efficiency of the cryptographic solution to
generate Beaver triple is a challenging task. Each of the zero-
splitting or SPDZ based solution has its own pros and cons.
In this paper, we will follow the SPDZ solution to attain the
security of wFL.

To the best of our knowledge, the most efficient solution
working in the SPDZ framework is MASCOT where the
notion of oblivious transfers extension (OT-extension) has
been applied successfully [32]. MASCOT by its nature needs
to invoke a number of field size related oblivious trans-
fers (OTs). Namely, the number of invoked OTs is the size
of the underlying finite field F where a secret sharing of
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multiplication xy= a+b ∈ F is performed, x ∈ F is a private
input of Alice and y ∈ F is a private input Bob; the output of
Alice is a ∈ F and the output of Bob is b ∈ F . To attain an
acceptable security, MASCOT assumes that the size of field
is 128-bit and hence 128 OTs will be invoked. We emphasize
that the number of OTs used to generate the Beaver triple
is fixed which equals to the size of underlying field even
in case that only one Beaver triple is generated. Assuming
that the computation complexity of each OT evocation is
roughly same as that of an EL Gamal encryption,2 and also
assuming that there exists a solution such that λ invocations
of El Gamal encryptions are used to generate a Beaver triple,
then the proposed solution should be more efficient com-
pared with MASCOT if less than 128/λ multiplications are
required in an application (a Beaver-triple is used to assist
a multiplication in the SPDZ framework and we expect more
multiplications can be computed beyond the threshold 128/λ,
see Section 5 for more details). The proposed solution should
be useful when the number of multiplications is small. Since
the existence of such a solution is not addressed byMASCOT
(in essence, it is a complement toMASCOT), we thus provide
an interesting research problem below:
Question 3: how to construct an efficiet yet secure Beaver

triple generator which invokes a constant number of the El
Gamal encryptions only?

B. OUR CONTRIBUTION
Regarding the first question, we are able to show that:

• FL is a subset ofMPC from them-ary functionality point
of view;

• If FL attains the security in the simulation-based frame-
work, then the resulting SFL is a subset of SMPC. Since
there are other known techniques such as the homo-
morphic encryption (HE) and the differential privacy
(DP) to attain the privacy of federated learning proce-
dures [6], [9] and we are not clear whether SFL is a
subset of HE or DPwithin the correspondent framework,
we thus leave these interesting problems to the research
community.

Regarding the second question, our contribution is
three-fold:

• in the first fold, a new notion which we call weighted
federated learning (wFL) is introduced and formalized.
The wFL concept formalized in this paper differs from
FL introduced in the McMahan et al.’s pioneer work [1]
− both addition and multiplication operations are exe-
cuted over the cipher space in the wFLmodel while these
operations are executed over the plaintext space in the
FL model.

• in the second fold, an oracle-aided MPC solution for
computing wFL that is formalized by decoupling the

2The assumption is based on the following the justification: if an OT is
implemented by the Diffie-Hellman key exchange protocol [33], the com-
putation of an El Gamal encryption [34] is roughly same as that of an OT
invocation which is defined over the same field Z∗p .

security of FL from that of underlyingMPC. Our decou-
pling formulation may benefit machine learning devel-
opers selecting their best security practices from the
state-of-the-art security tool sets;

• in the third fold, a concrete solution to the wFL is
presented and analysed. The security of our implemen-
tation is guaranteed by the security composition theorem
assuming that the underlying multiplication protocol is
secure against honest-but-curious adversaries.

Regarding the third question, our contribution is two-fold:
• in the first fold, an efficient Beaver triple generator is
proposed and analysed in the context of the El Gamal
encryption scheme defined over Z∗p . We follow the func-
tionality of Beaver triple formalized as a three-party
computation that is presented in [32]. At a high level,
we allow Charlie generates a random value c which is
encrypted under a combination of Alice and Charlie’s
public keys; The cipher is sent to Bob who in turn
computes a randomized encryption of c/b. The cipher is
then sent to Charlie who partially decrypts the received
cipher and then randomizes the resulting cipher; The
randomized cipher is then sent to Alice so that Alice
can decrypt the randomized cipher to get value a which
is c/b. As such, we are able to construct an efficient
Beaver multiplication triple generator from the standard
El Gamal encryption which invokes the constant number
of encryptions (we refer to the reader Section 4 for more
details).

• in the second fold, we are able to show that our solution
to wFL is light-weight since only the standard El Gamal
encryption is involved in our construction.We claim that
our solution to wFL is highly scalable since our solution
is based on the SPDZ framework which is highly scal-
able by the design; we also claim that our solution to
wFL is efficiency since a generation of the Beaver triple
only requires a constant number of invocations of the El
Gamal encryption (roughly, 5 El Gamal encryptions are
invoked to generated a Beaver triple). Hence the solution
to wFL presented in this paper is not trivial at all.

C. THE ROAD-MAP
The rest of this paper is organized as follows: In section 2,
the relationship between MPC and FL, and that of SMPC
and SFL are investigated; The notion of wFL is formalized,
implemented and analysed in Section 3. A complement of
MASCOT is implemented and analysed in Section 4. We test
the efficiency of our implementation in Section 5 and con-
clude our work in Section 6.

II. THE RELATIONSHIP BETWEEN MPC AND FL,
AND SMPC AND SFL
In this section, we will discuss the relationship betweenMPC
and FL as well as that of SMPC and SFL.

A. m-ARY FUNCTIONALITY, MPC AND SMPC
Recently, a new approach called SPDZ has been pro-
posed [15]–[19]. The scalability of SPDZ framework benefits

VOLUME 8, 2020 198277



H. Zhu et al.: Privacy-Preserving wFL Within the Secret Sharing Framework

SPDZ are widely deployed in the FL community [3]. It is
thus helpful to investigate the relationship between FL and
MPC as well as SFL and SMPC. To convenient readers to
understand the results, we briefly describe the notations and
notions of m-ary functionality, MPC and SMPC below and
refer to the reader [22]–[24] for more details.

1) m-ARY FUNCTIONALITY
An m-ary functionality, denoted by f : ({0, 1}∗)m →
({0, 1}∗)m, is a random process mapping string sequences of
the form x = (x1, · · · , xm) into sequences of random variables,
f1(x), · · · , fm(x) such that, for every i, the ith party Pi who
initially holds an input xi, wishes to obtain the ith element in
f (x1, . . . , xm) which is denoted by fi(x1, . . . , xm).

2) MULTI-PARTY COMPUTATION
Amulti-party computation (MPC) problem is casted by spec-
ifying an implementation of the defined m-ary functionality.
Namely, an MPC protocol is a procedure computing the
defined m-ary functionality. We emphasize that the notion
of MPC does NOT guarantee the proposed MPC protocol
securely computing the defined m-ary functionality through-
out this paper. It is possible where no security is introduced
in the MPC protocol at all.

3) SECURE MULTI-PARTY COMPUTATION
Amulti-party computation securely computes anm-ary func-
tionality (i.e., secure multi-party computation, SMPC) if the
following simulation-based security definition is satisfied.

Let [m] = {1, · · · , m}. For I ∈ {i1, . . . , it } ⊆ [m], we let
fI (x1, . . . , xm) denote the subsequence fi1 (x1, . . . , xm), · · · ,
fit (x1, . . . , xm). Let 5 be an m-party protocol for computing
f . The view of the i-th party during an execution of5 on x:=
(x1, . . . , xm) is denoted by View5i (x). For I = {i1, . . . , it },
we let View5I (x):= (I , View5i1 (x), · · · , View

5
it
(x)).

• In case f is a deterministic m-ary functionality, we say
5 privately computes f if there exists a probabilis-
tic polynomial-time algorithm denoted S, such that for
every I ⊆ [m], it holds that S(I , (xi1 , . . . , xit ), fI (x)) is
computationally indistinguishable with View5I (x).

• In general case, S(I , (xi1 , . . . , xit ), fI (x), f (x)) is compu-
tationally indistinguishable with View5I ((x), f (x)).

4) ORACLE-AIDED MULTI-PARTY COMPUTATION
An oracle-aided protocol is a protocol augmented by a pair
of oracle types, per each party. An oracle-call step is defined
as follows: a party writes an oracle request on its own oracle
tape and then sends it to the other parties; in response, each
of the other parties writes its query on its own oracle tape and
responds to the first party with an oracle call message; at this
point the oracle is invoked and the oracle answer is written by
the oracle on the ready-only oracle tape of each party.

An oracle-aided protocol is said to privately reduce g to f if
it securely computes g when using the oracle-functionality f .
In such a case, we say that g is securely reducible to f .

TABLE 1. Federated learning procedure.

B. FEDERATED LEARNING PROCESS
The notion of FL presented in this section is due to [3]. In their
definition, a federated learning server (FLS) orchestrates the
training process, by repeating the following steps until train-
ing is stopped (see TABLE 1 for more details).

C. THE RELATIONSHIP
Theorem 1: 1) FL is a subset of MPC from the m-ary

functionality point of view; and 2) if FL attains the security
in the simulation-based framework, then SFL is a subset of
SMPC.

Proof: For each iteration j defined in the FL procedure,
we are able to define an m-ary functionality fj for the current
round. We know that the FL functionality fFL can be defined
as a composition of the round functionalities fn◦fn−1◦· · ·◦f1,
where fj is the m-ary functionality for the iteration j. As such,
for each iteration j, if there exists an m-party protocol pri-
vately computing fj, then by applying the SMPC composition
theorem [22]–[24], we are able to show there is an m-party
protocol privately computing fFL .

The rest of the proof is to show that for each iteration,
an m-ary functionality is defined accordingly. The details of
the m-ary functionality are depicted in TABLE 2. One can
verify that TABLE 2 defines the m-ary functionality derived
from the FL procedure. Following the definitions ofMPC and
SMPC, the Theorem 1 is proved.

III. THE WEIGHTED FEDERATED LEARNING: SYNTAX
AND SECURITY DEFINITION
In this section, we will provide a formal definition for
weighted federated learning and then define the security
of wFL within the oracle-aided multi-party computation
framework.

A. SYNTAX OF WEIGHTED FEDERATED LEARNING
Definition 1: A weighted federated learning (wFL) con-

sists of a group of clients (c1, . . . , cm), a global federated
learning server and a group of MPC servers P1 · · · ,Pn. Each
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TABLE 2. An m-ary functionality derived from an iteration of the FL
procedure.

client ci holds a pair of weight and feature (xi, yi) ∈ Z∗p × Z
∗
p

(p is a prime number) which is additively shared among
the MPC servers where Pj holds (xi,j, yi,j) such that xi =
xi,1 + · · · + xi,n and yi = yi,1 + · · · + yi,n. By [xi] (resp.
[yi]), we denote the random secret shares (xi,1, . . . , xi,n) (resp.
(yi,1, . . . , yi,n)) of [xi] (resp. [yi]) among Pj (j = 1, . . . , n).
The global federated learning server defines a random pro-
cessing whose input is ([x1], [y1]), · · · , ([xn], [yn]) and output
is

∑K
k=1[xi]× [yi].

We remark that the separation between the clients andMPC
servers is necessary since there could be such a case: for
example, the first client is lack of ability to process the MPC
task and hence its computation task will be outsourced to
MPC servers.

B. SECURITY DEFINITION OF WEIGHTED
FEDERATED LEARNING
The security of wFL protocol is formalized in the context
of an oracle-aided SMPC which in essence, is a decoupling
of machine learning algorithm from the need for MPC that
may benefit machine learning developers to select their best
security practices from the state-of-the-art security tool sets.
Definition 2: An multiplication-oracle aided wFL is

privacy-preserving if wFL is privately reducible to the multi-
plication functionality.

Notice that the addition oracle is not needed to attain the
defined privacy-preserving reduction since the underlying
data sharing scheme is an additively secret sharing.

C. THE IMPLEMENTATION AND SECURITY PROOF
In this section, a concrete solution to the wFL based on
the additive data sharing with the help of the zero-splitting
technique defined over the three-server setting is presented
and analysed. The security of our implementation is derived
from the security composition theorem assuming that the
underlying multiplication algorithm is secure against honest-
but-curious adversaries.

D. THE IMPLEMENTATION
Following the state-of-the-art Sharemind framework [29],
[30], we define following steps for our implementation: data

splitting, resharing, addition and multiplication. Each of the
steps is depicted in details below:

1) THE DATA SPLITTING
Suppose a wFL client Alice holds private data x and y
locally. W.l.o.g., we assume that there are three MPC servers
managed and maintained by independent computing ser-
vice providers (say, FL auditor (P1 plays the role of MPC
server 1), FL insurance company P2 plays the role of MPC
server 2) and FL client association (P3 plays the role of
MPC server 3)). We assume that there is a secure (private
and authenticated) channel between client Alice and each of
MPC service providers. This assumption is standard and can
be easily implemented under the standard PKI assumption.
For simplicity, we assume that x, y ∈ Z∗p , where p is a suitable
large prime number (e.g., |p| = 512). The splitting procedure
is defined below
• Alice selects x1, x2 ∈ Z∗p uniformly at random, and then
sends x1 to P1, x2 to P2;

• Alice computes x3 = x − x2 − x1 mod p and sends x3
to P3.

The splitting of the data x is defined by [x] = (x1, x2, x3)
(as usual, a random split of data is called a secret share of
that data). Similarly, a secret share of y is defined by [y] =
(y1, y2, y3), where Pi holds yi (i = 1,2,3).

2) THE RESHARING
A refreshing procedure is invoked before a multiplication
operation is executed. The refreshing procedure is defined
among P1 (with input x1), P2 (with input x2 ) and P3 (with
input x3):
• P1 selects r1 ∈ Z∗p uniformly at random and sends r1 to
P2 via a pre-defined secure channel;

• Similarly, P2 (resp. P3) selects r2 ∈ Z∗p (resp. r3 ∈U Z∗p )
uniformly at random and sends r2 (resp. r3) to P3 (resp.
P1) via a pre-defined secure channel;

• P1 locally computes σ1 = r1 - r3 mod p and x ′1 = x1 +
σ1 mod p; P2 locally computes σ2 = r2 - r1 mod p and
x ′2 = x2 + σ2 mod p; P3 locally computes σ3 = r3 - r2
mod p and x ′3 = x3 + σ3 mod p.

A refresh of [x] is denoted by [x]′ = (x ′1, x
′

2, x
′

3) such that
x ′1 + x

′

2 + x
′

3 mod p = x1 + x2 + x3 mod p.

3) THE ADDITION
Suppose Pi holds shares of xi and yi. Pi locally computes zi =
xi + yi mod p and then sends zi to the wFL global server who
computes z1+z2+z3 mod p and thus gets the value of addition
x + y mod p.

4) THE MULTIPLICATION
On input (xi, yi), each of participants Pi can jointly run the
resharing protocol to get (x ′i , y

′
i) (i = 1, 2, 3). The role

of resharing protocol plays a one-time padding of shares.
Pi then sends its shares (x ′i , y

′
i) to Pi mod 3+1. Finally, P1

computes z1 = (x ′1y
′

1 + x ′1y
′

3 + x ′3y
′

1) mod p; P2 computes
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z2 = (x ′2y
′

2+x
′

2y
′

1+x
′

1y
′

2) mod p and P3 computes z3 = x ′3y
′

3+

x ′3y
′

2+ x
′

2y
′

3 mod p. One can verify that z1+ z2+ z3 mod p=
[x][y] mod p.

5) PUTTING THINGS TOGETHER
Notice that (nk,1, wk,1) is a secret share held by P1, (nk,2,
wk,2) is a share held by P2 and P3 holds (nk,3, wk,3) for
k = 1, . . . ,K for the secret shares of the weight and
feature [n] = ([n1], . . . , [nK ]) and [w] = ([w1], . . . , [wK ]),
where [nk ] = (nk,1, nk,2, nk,3) and [wk ] = (wk,1, wk,2,
wk,3). Applying the addition and multiplication operations
described above, we are able to solve the wFL problem.

E. THE PROOF OF SECURITY
Theorem 2: Let gwFL be a weighted Federated Learn-

ing functionality defined in the three-server framework. Let
5gwFL|fmult be an oracle-aided protocol that privately reduces
gwFL to fmult and5fmult be a protocol privately computes fmult.
Suppose gwFL is privately reducible to fmult and that there
exists a protocol for privately computing fmult, then there
exists a protocol for privately computing gwFL.

Proof: We construct a protocol 5 for computing gwFL.
That is, we replace each invocation of the oracle fmult by
an execution of protocol 5fmult . Note that in the semi-honest
model, the steps executed 5gwFL|fmult inside 5 are indepen-
dent the actual execution of 5fmult and depend only on the
output of 5fmult .
For each i = 1, 2, 3, let SgwFL|fmult

i and Sfmult
i be the corre-

sponding simulators for the view of party Pi. We construct a
simulator Si for the view of party Pi in 5. That is, we first
run SgwFL|fmult

i and obtain the simulated view of party Pi in
5gwFL|fmult . This simulated view includes queries made by
Pi and the corresponding answers from the oracle. Invoking
Sfmult
i on each of partial query-answer (qi, ai), we fill in the

view of party Pi for each of these interaction of S
fmult
i . The rest

of the proof is to show that Si indeed generates a distribution
that is indistinguishable from the view of Pi in an actual
execution of 5.

Let Hi be a hybrid distribution represents the view of Pi
in an execution of 5gwFL|fmult that is augmented by the corre-
sponding invocation of Sfmult

i . That is, for each query-answer
pair (qi, ai), we augment its view with Sfmult

i . It follows that
Hi represents the execution of protocol5 with the exception
that5fmult is replaced by simulated transcripts. We will show
that
• the distribution between Hi and 5 are computationally
indistinguishable: notice that the distributions of Hi and
5 differ5fmult and Sfmult

i which is computationally indis-
tinguishable assuming that 5fmult securely computes
fmult.

• the distribution between Hi and Si are computationally
indistinguishable: notice that the distributions between
(5gwFL|fmult , Sfmult

i ) is computationally indistinguishable
from (SigwFL|fmult , Sfmult

i ). The distribution (SigwFL|fmult ,
Sfmult
i ) defines Si. That means Hi and Si are computa-

tionally indistinguishable.

TABLE 3. Beaver triple functionality.

Corollary1: Assuming that the underlying multiplica-
tion algorithm presented in [29], [30] is secure against honest-
but-curious adversary, our implementation is secure against
the same adversarial type.

IV. A COMPLEMENT TO MASCOT
MASCOT provides an efficient solution to generate a large
number (say, millions) of Beaver triples [32] in the frame-
work of SPDZ [15], [16]. To deploy the MASCOT, a base
oblivious transfer (OT) is invoked a number of times (say,
128-invocation called) and then an OT-extension procedure
is applied to generate one-time symmetric encryption keys
to mask the correlated input pairs. The number of base OTs
invoked depend on the bit-length of the underlying field.With
the help of the footnote 2, we assume that the computation
complexity of an invocation of base OT is roughly same as
that of an EL Gamal encryption. Since our solution roughly
requires 5 ElGamal encryptions to be invoked for generating
a Beaver triple, it follows that if the number of the Beaver
triples to be generated are no more than b128/5c (= 25),
then our solution is more efficient compared with the best
known solution MASCOT [32]. That is, our solution can be
viewed as a complement to MASCOT where a small number
of multiplications are required.

A. BEAVER MULTIPLICATION TRIPLE GENERATOR BASED
ON EL GAMAL ENCRYPTION
In this section, an efficient, light-weight, highly scalable
secret-share based MPC within the SPDZ framework is pre-
sented and analysed.

1) BEAVER TRIPLE FUNCTIONALITY
We write [x] to mean that each party Pi holds a random,
additive sharing xi of x such that x = x1 + · · · + xn, where
i = 1, . . . , n. The values are stored in the dictionary Val
defined in the functionality FTriple [32]. Please refer to the
table 3 for more details.

2) THE DESCRIPTION
Let p be a large safe prime number, p = 2q +1, p and q are
prime numbers. Let G ⊆ Z∗p be a cyclic group of order q and
g be a generator of G. Let hi = gxi mod p, where xi ∈R [1, q]
is randomly generated by the Beaver multiplication triple
generatorGi (i = 1, 2, 3). The idea behind of our construction
is that we allow G1 to generate c, G2 to generate b and G3 to
generate a such that c = ab mod p. Please refer to the table 4
for the details.
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TABLE 4. An implementation of Beaver triple generator.

Theorem 3: Assuming that the underlying El Gamal
encryption is semantically secure, the proposed Beaver triple
generator is secure against honest-but-curious adversary.

Proof: We consider the following three cases:
• Case 1: G1 gets corrupted. Simulator S1 receives secret
parameter k and G1’s output c and then:
1.1) S1 chooses a randomness r1 for G1, and runs
G1(r1, 1k ) to generate (x1, (g, h1)) such that h1 = gx1 ;
1.2) S1 invokes G2 and G3 to generate (x2, (g, h2)) and
(x3, (g, h3)) such that h2 = gx2 and h3 = gx3 . S1 gets
(g, h2) and (g, h3);
1.3) S1 computes c1 exactly as that described in the real
protocol and then sends it to G2;
1.4) S1 generates an encryption c2 of a random string in
Z∗p with public keys (g, h = h1 h3);
1.5) Upon receiving c2 from G2, S1 computes c3 exactly
as that described in the real protocol and then sends it
to G3.
Notice that the only difference between the simulation
and the real protocol is the Step 1.4. Namely, c2 is an
encryption of a random string in Z∗p in the simulation
while c2 is an encryption of c/b in the real proto-
col. Since the underlying El Gamal encryption scheme
is semantically secure, it follows that the view of the
corrupted party G1 is computationally indistinguishable
from that the simulation described above.

• Case 2: G2 gets corrupted. Simulator S2 receives secret
parameter k and G2’s output c and then:
2.1) S2 chooses a randomness r2 for G2, and runs
G2(r1, 1k ) to generate (x2(g, h2)) such that h2 = gx2 ;
2.2) S2 invokes G1 and G3 to generate (x1, (g, h1)) and
(x3, (g, h3)) such that h1 = gx1 and h3 = gx3 . S2 gets
(g, h1) and (g, h3);
2.3) S2 generates a random encryption c1 with public
keys (g, h = h1 h3); and then generates c2 exactly as
that described in the real protocol.
The simulation of the rest steps can be skipped since the
adversary is NOT involved in the rest of the procedures.
Notice that the only difference between the simulation
described above and the real protocol is the generation

of c1 where c1 is an encryption of a random string in
Z∗p defined by simulator. Since the underlying El Gamal
encryption scheme is semantically secure, it follows
that the view of the corrupted party G2 is computation-
ally indistinguishable from that the simulation described
above.

• Case 3: G3 gets corrupted. Simulator S3 receives secret
parameter k and G3’s output c and then
3.1) S3 chooses a randomness r3 for G3, and runs
G3(r1, 1k ) to generate (x3(g, h3)) such that h3 = gx3 ;
3.2) S3 invokes G1 and G2 to generate (x1, (g, h1)) and
(x2, (g, h2)) such that h1 = gx1 and h2 = gx3 . S3 gets
(g, h1) and (g, h2);
3.3) S3 generates an encryption c3 of a ∈ Z∗p with the
help of the public keys (g, h3);
The simulation starts at the generation of c3 step defined
in the real protocol. SinceG3 gets output a, the simulator
can simply define c3 as an encryption of a. The adversary
does not involved in the steps before c3 is sent out.
It follows that the view of the corrupted party G3 is
identical with that the simulation described above.

Combining the cases above, we know that the protocol
is secure against honest-but-curious adversary assuming that
the underlying El Gamal encryption scheme is semantically
secure.

3) A LIGHT-WEIGHT AND HIGHLY SCALABLE
SOLUTION FOR wFL
Throughout this section, we assume that there are three
Beaver Triple generators G1, G2 and G3 and n-MPC par-
ticipants P1, . . . ,Pn, where G1 (resp., G2 and G3) holds a
private value c (resp., b and a) such that c = ab mod p.
In this solution, we make an explicit assumption that Gi /∈
{P1, . . . ,Pn} and there is a secure (private and authenticated)
channel betweenGi andPj which in turn, can be implemented
under the standard PKI assumption.

Let G1 be the first Beaver triple generator (say Charlie as
above) with private input c ∈ Z∗p . The splitting procedure is
defined below

• G1 selects c2, . . . , cn ∈ Z∗p uniformly at random, and
then sends c2 to P2, · · · , cn to Pn via private channels
shared between G1 and Pj, j = 1, . . . , n;

• G1 computes c1 = c - c2 - · · · - cn mod p and sends c1
to P1.

A splitting of the private value c is defined by [c] =
(c1, . . . , cn) (as usual, a random split of data is called a
secret share of that data. The process can be viwed as a
keyless encryption). Based on the data splitting procedure,
one can define [b],[a] accordingly, where G2 (resp., G1)
secretly shares b (resp., a) to all participants. We assume
that as long as the secret sharing procedure ends, Gi erases
his/her the generated randomness. For example, Charlie(G1)
will delete all internal randomness (c, c1, . . . , cn) as well as
the generated index. The same erasure procedure applies to
Bob (G2) and Alice (G3). Notice that this erasure assumption
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can be eliminated if an additively homomorphic encryption
is applied to implement the secret sharing procedure in the
context of Protocol reshare defined in [15].

The addition: Suppose Pi holds secret shares xi and yi
of the secret values x and y. Pi locally computes zi = xi +
yi mod p and then sends zi to the wFL global server who
computes z1 + · · · + zn mod p by invoking a resharing
procedure defined below and then gets the value of addition
x + y mod p.

The resharing: Usually, a refreshing procedure is called
before an additive output is opened. The refreshing procedure
is defined among P1,. . ., Pn. By xi ∈ Zp, we denote Pi’s
private input:
• P1 selects r1 ∈ Z∗p uniformly at random and sends r1 to
P2 via a pre-defined secure channel;

• Similarly, P2 selects r2 ∈ Z∗p uniformly at random and
sends r2 to P3 via a pre-defined secure channel;

• The similar procedure goes on and finallyPn selects rn ∈
Z∗p uniformly at random and sends rn to P1 via a pre-
defined secure channel.

• each party Pi locally computes σ1 = r1 - rn and σi =
ri - ri−1 for i = 2, . . . , n and then computes x ′i = xi +
σi mod p for i = 1, . . . , n.

A resharing of [x] is denoted by [x]′ = (x ′1, . . . , x
′
n). One can

verify that x ′1 + · · · + x
′
n mod p = x1 + · · · + xn mod p.

The multiplication: Assuming that Pi holds the private
share xi and yi and n parties P1, . . . ,Pn wish to compute [xy]
collaboratively given [x] and [y]. Borrowing the notation from
SPDZ, by ρ, we denote an opening of [x] − [a] and by ε,
an opening of [y]−[b]. Given ρ and ε, each party can compute
his secret share of [xy] = (ρ + [a]) (ε + [b]) = [c] + ε[a] +
ρ[b] + ρε locally.

V. EXPERIMENTS
In this section, we provide experiment results of SFL within
the secret share framework. The Python 3.8.1 works in the
Window 10 with processors: Intel(R) Core(TM) i7-8665U
CPU 1.90GHz 2.11GHz; installed memory (RAM) 16.0GB
(15.8 usable); and system type: 64-bit operating system,
x64-based processor. The python crypto library called pyhf
built by the first author that is used to test the efficiency
of the design comprises the following four modules: data
splitting, multiplication, relationship between the number of
MPC servers and time costs on multiplications and Beaver
triple generator constructed from 3-party computation based
on the El Gamal cryptosystem. The details of each module
are dipcted below.

A. THE EFFICIENCY OF DATA SPLITTING
Let p = 2q+ 1 be a 512-bit safe prime number (p is fixed in
the following experiments). We test 1 million and 10 millions
data which are randomly selected in Zp and split into three
parties, where each party plays the role of an MPC server.

data size 1 million 10 million
time 4.9s 51s

We also test the efficiency of 1 million data split among
different numbers of parties (MPC servers).

MPC-server size 3 4 10 20
time 4.8s 6.23s 16.8s 34.3s

That is, the efficiency of data splitting is related with the
number of the parties (MPC servers).

B. THE EFFICIENCY OF MULTIPLICATION OVER Zp

We test 1 million of multiplications a × b mod p along
within Sharemind and SPDZ framework, where a and b are
randomly selected in Zp.

framework multiplication size time
Z∗p 1 million 6.4s

Sharemind 1 million 49s
SPDZ 1 million 68s

where Beaver triples are generated by a trusted third party and
distributed among 3-MPC servers.

C. RELATIONSHIP BETWEEN THE NUMBER OF MPC
SERVERS AND TIME COSTS ON MULTIPLICATIONS
We test the relationship between number of MPC servers and
the time costs on multiplications in the framework of SPDZ,
where Beaver triples are generated by a trusted third party and
distributed among k-MPC servers, k = 3, 6, 12.

number of MPC servers time
3 68s
6 127s
12 236s

D. THE EFFICIENCY OF BEAVER TRIPLE GENERATOR
In the previous experiments, we assume that Beaver triples
are generated by a trusted third party and distributed among
3-MPC servers. In this experiment, we eliminate this assump-
tion and test the efficiency of our El Gmaml based solution.

number of Beaver triples time
10,000 27s
100,000 276s
1 million 2667s

Our previous theoretical results show that if the number of
multiplications are less than 25, then our solution is better
than MASCOT. The expriment results above also show that
our El Gamal based solution may be suitable for a small
number of multiplications up to 10, 000. Although the Beaver
triple is generated off-line in the SPDZ framework, the time
costs for 1 milliom multiplications is nearly 4.5 hours that
should not be acceptable. As such, there is a big room for
efficieny improvement to compete against MASCOT. At the
current stage, we can only claim that our result should be
viwed as a complement to MASCOT.

198282 VOLUME 8, 2020



H. Zhu et al.: Privacy-Preserving wFL Within the Secret Sharing Framework

E. SUMMARY OF OUR SIMPLE EXPERIMENT
Our experiment shows that the time costs on multiplications
depend on the number of MPC servers and the protocol
used to define Beaver triple generator. Our El Gamal encryp-
tion based Beaver triple generator is suitable for the sce-
nario where a small number of multiplications are required.
As such, we successfully provide a complement toMASCOT.

VI. CONCLUSION
In this paper, the relationship betweenMPC and FL as well as
that of SMPC and SFL has been investigated. A new notion
which we call weighted federated learning problem has been
then introduced and formalized in the context of MPC. The
security of wFL is defined within the oracle-aided MPC
framework andwe are able to show that our implementation is
secure against honest-but-curious adversary. Finally, we have
proposed an efficient implementation of Beaver triple gener-
ator based on the El Gamal encryption scheme. Our solution
is best suitable for the case where a small number of multi-
plications are required and hence a complement to MASCOT
has been successfully implemented.
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