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ABSTRACT We consider a geometric optimization problem of distributedmulti-input multi-output (MIMO)
radar systems with widely separated radar nodes in this article. The aim is to maximize the radar surveillance
performance in a given area of interest by adjusting the node positions, while satisfying practical spatial
distance constraints among radar nodes. Typical constraints can be, for example, the maximum distance
constraints between nodes and fusion centers (FCs) due to limited communication and the minimum
distance constraints to ensure a better system spatial diversity. To achieve this goal, we first derive an
analytical expression for a weighted coverage ratio (WCR) metric to evaluate the system surveillance
performance. Then, using the WCR metric as the objective function, we formulate a spatial constrained
geometric optimization problem for three typical MIMO radar system architectures, each of which has a
unique expression of distance constraints. However, the formulated optimization problem is computationally
intractable for practical scenarios due to its high dimensionality, non-convexity and especially the complex
spatial constraints. To solve this problem, we propose an enhanced particle swarm optimization (PSO)
algorithm, and different from the standard PSO, the particles of the proposed enhanced PSO can properly
consider the distance constraints within themselves during swarm optimization process. Finally, various
numerical studies show that the proposed method can effectively maximize the surveillance performance
while satisfying the complex distance constraints.

INDEX TERMS Distributed MIMO radar, geometric optimization, distance constraints, radar surveillance
performance, particle swarm optimization.

I. INTRODUCTION
Motivated by the recent advances in multiple-input multiple-
output (MIMO) wireless communications [1], [2], MIMO
radars continue to arouse the attention of the international
radar community. Distributed MIMO radar systems com-
prise multiple, widely spaced transmitting and receiving
radar nodes and transmit multiple orthogonal waveforms [3],
[4]. Such radar systems can fully utilize spatial diversity
by observing a target simultaneously from different aspect
angles [3], [5], [6]. As shown in existing publications, due to
the spatial diversity provided by the widely dispersed radar
nodes [3], [4], [7], distributed MIMO radar systems offer a
number of unique benefits including better detection perfor-
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mance [8], [9], more degrees of freedom [10], [11], higher
spatial resolution [12], better spatial coverage [13], enhanced
parameter identifiability [14], and higher localization accu-
racy [15], [16].

However, the performance of distributed MIMO radar sys-
tems, to a large extent, relies on the node positions. To fully
utilize the spatial diversity, there have been various studies
on optimizing the system performance by adjusting the node
positions [16]–[22]. In general, researches on the optimiza-
tion of the placement of radar nodes can be divided into two
categories. The first group focuses on optimizing the system
performance in a given position [16], [17], while the second
group aims to optimize the performance in a specific area
[18]–[22].

In [16], [17], different system performance in a given
position is improved by adjusting the node positions. In [16],
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a convex optimization problem was formulated with respect
to minimizing the Cramér-Rao lower bound (CRLB) for
localization accuracy of one target, and it is shown that sym-
metric deployment of transmitting and receiving radar nodes
around the target is optimal. Optimal antenna placement
was analyzed in terms of minimizing the CRLB of velocity
estimation error for a given target in [17]. Similar to [16],
symmetrically placing the transmitting and receiving radar
nodes was concluded as the best choice.

Nevertheless, the general application of distributed MIMO
radar systems is to monitor a radar surveillance area (RSA),
rather than to detect a target located at a given position.
In addition, it is often necessary to refer to multi-target
scenarios in terms of locating or tracking targets. Taking
into account regional surveillance and multi-target situations,
from practical perspective, we prefer to optimize node posi-
tions to improve the system performance in the entire RSA,
rather than at the given position, as [18]–[22]. In [18], a radar
node deployment problem aiming at improving the system
detection performance in an entire surveillance area was
studied, and a sequentially exhaustive enumeration method
was proposed by discretizing the radar deployment area into
multiple small grids. But it is computationally intractable in
practical scenarios where a few radar nodes exist. To reduce
the computation load, a node placement algorithm based on
the particle swarm optimization (PSO) was proposed in [19],
aiming to maximum the system surveillance performance,
i.e., the detection performance in the entire RSA, with cover-
age ratio being the performance metric. In [20], an algorithm
for the joint placement of transmitters and receivers in pres-
ence of multiple targets was proposed, considering both the
system detection performance and localization performance.
The system interference performance in multiple regions was
considered in [21]. A multi-objective optimization problem
with respect to the node positions was formulated, and solved
by a solution based on multi-objective particle swarm opti-
mization (MOPSO).

However, all the aforementioned works ignore the distance
constraints that exist in distributed MIMO radar systems,
and these constraints are important in practical applications
[23]–[26]. The maximum distance constraint between receiv-
ing node and fusion center (FC) is an important issue to
be addressed, considering the transmission of the received
signal from receiving nodes to the FC. Specifically, for
distributed MIMO radar systems, the signal received at
the receiving nodes needs to be transmitted to the FC for
jointly processing, normally via wireless data links or opti-
cal fibers. For both the transmission mediums, the farther
transmission distances normally result in the higher trans-
mission costs. Moreover, when applying wireless data links
to long-distance signal transmission, it is also necessary
to consider the signal propagation interruption affected by
the earth curvature. Furthermore, if the transmission dis-
tance is too far, the system synchronization will be diffi-
cult to achieve and the data transmission capacity will be
deteriorated.

Meanwhile, ignoring the minimum distance constraint
among radar nodes can also cause a series of problems. For
instance, a closer node distance results in mutual interference
of signals more easily, and leads to energy supply problems
for some radar systems as well. Additionally, to fully uti-
lize spatial diversity and enhance anti-jamming potential and
robustness of radar systems, the distances among nodes also
need to be kept wide enough.

Therefore, we have to fully consider the distance constrains
among nodes and FCs when optimizing radar node place-
ment. In fact, similar constraints also have to be addressed
in path planning [28], [29], array optimization problem [30],
etc.

In this article, we establish an optimization problem of
radar node placement, and aim to enhance the system surveil-
lance performance by optimizing the node positions while
satisfying practical spatial distance constraints.

The main contributions of our paper are listed as follows:

1) Novel surveillance performance metric for the dis-
tributed MIMO radar : We analyze the radar detection
performance, and derive an analytical expression for
the detection probability for distributed MIMO radar
systems. Considering different levels of importance of
sub-areas in the RSA, by setting weights to sub-areas,
a weighted coverage ratio (WCR) constructed by the
detection probability is proposed as the surveillance per-
formance metric.

2) Radar node placement optimization problem with com-
plex constraints: We propose a node placement opti-
mization problem with generalized distance constraints,
and introduce three typical system architectures for cen-
tralized fusion, which differs from each other in the
expression of the maximum distance constraint. Addi-
tionally, to each system architecture, the specific expres-
sion of the maximum distance constraint is formulated.

3) Fast solution to the non-convex problem with com-
plex constraints: Our presented optimization problem
is high-dimensional, non-convex and nonlinear, and has
complex constraints. Moreover, it differs from the struc-
ture of the optimization problem established in previous
literature [16]–[21]. To solve such a problem efficiently,
based on the standard PSO, we make improvements
in the strategies of velocity update and the best posi-
tion update of particles, and propose an internal self-
constrained PSO (ISC-PSO) algorithm. In addition to
driving the update of particles to directions for larger
objective function values, the ISC-PSO algorithm also
drives the update of particles to directions where more
distance constraints could be satisfied.

Combining the proposed ISC-PSO algorithm and the
established optimization condition according to the practical
application scenario, we formulate a radar node placement
algorithm. This algorithm satisfies all the distance constraints
and meets requirements of the surveillance performance.
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FIGURE 1. Sketch of the distributed MIMO radar system.

The rest of this article is organized as follows. The signal
model is presented in section II. In section III, we formu-
late the optimal radar node placement problem. The WCR
metric and the specific distance constraints for three sys-
tem architectures are introduced. We propose a radar node
placement algorithm to solve the formulated optimization
problem in section IV. Section V presents simulation results
and Section VI summarizes our contributions.

II. SYSTEM AND SIGNAL MODEL
We consider a widely distributed MIMO radar system
equipped with M transmitting nodes and N receiving nodes,
and thus there are M × N transmit-receive (T-R) channels.
Denote D ⊂ R2×1 the radar deployment area (RDA), where
R is the real space. Let θ tm = [x tm, y

t
m]

T
∈ D and θ rn =

[xrn, y
r
n]

T
∈ D denote the 2DCartesian position coordinates of

the mth transmitter and the nth receiver, respectively, where
m = 1, . . . ,M and n = 1, . . . ,N , and (·)T is the transpose
operator. Let Rtm denote the distance between the mth trans-
mitter and the target and Rrn denote the distance between the
nth receiver and the target, and then

Rtm =
√
(x tm − x)2 + (ytm − y)2, (1)

Rrn =
√
(xrn − x)2 + (yrn − y)2, (2)

where [x, y]T is the initial position coordinates of the target.
The transmitters use orthogonal waveforms to probe a

common area of interest, and each receiver transmits the
obtained orthogonal baseband signal to the FC for jointly pro-
cessing. Then the FC collects the outputs from all receivers
and returns a decision about the presence or absence of the
target [4], [8]. The FC is selected from N receivers or is
served by an external information processing center which is
independent of the radar nodes, depending on the architecture
of the radar system. In this article, three representative system
architectures are considered, which will be introduced in
detail later. The sketch of the considered distributed MIMO
radar system is illustrated as Fig.1.

Consider one specific T-R channel consisting of the mth
transmitter and the nth receiver. Let sm(t) denote K pulses
sequentially transmitted by the mth transmitter at intervals of

pulse repetition interval (PRI) during a coherent processing
interval (CPI) [23], [31]–[33], [37]:

sm(t) =
K−1∑
k=0

am(k)ej2π fc(t−kT )p(t − kT ), (3)

where am(k) represents the amplitude of the kth pulse of
sm(t) and k = 0, . . . , K − 1, p(t) denotes the unit energy
baseband equivalent of the transmitted pulse, T and fc are
respectively the PRI and the carrier frequency. We assume
that the target moves towards the nth receiver with a radial
velocity vn, and the radar cross section (RCS) of the target
follows the Swerling 0 model [31]. The received signal at the
nth receiver at time t arising from signals transmitted by all
transmitters and scattered by the target is expressed as [16],
[31], [32], [34], [35]

r̃n(t)≈
M∑
m=1

sm(t−τm,n)lm,n(k)ejβm,n(k)ej2π fd,n(t−kT ), (4)

where fd,n = 2vnfc
/
c is the Doppler shift, and c represents

the speed of light. Denote τm,n the time delay of the signal
transmitted by themth transmitter, scattered by the target, and
received by the nth receiver, and τm,n is expressed as [34], [35]

τm,n ≈ τ
0
m,n − vnt/c, (5)

τ 0m,n = (Rtm + R
r
n)/c. (6)

The term lm,n(k)ejβm,n(k) in (4) is a complex parameter
accounting for both propagation effects and scattering by the
target [32], and the variation of lm,n(k) is given by [4], [16]

lm,n(k) ∝ 1/(RtmR
r
n)

2. (7)

During theK pulses within the CPI, we assume that the tar-
get does not move out the range bin. After down-modulating,
the baseband equivalent signal at the nth receiver reduces to

rn(t)≈
M∑
m=1

K−1∑
k=0

am(k)lm,n(k)ejβm,n(k)ej2π fd,n(t−kT )

×p(t − kT − τ 0m,n). (8)

Then the signals received at all theN receivers are sampled as
data and transmitted to the FC to be processed jointly. Passing
the data of all channels through a matched filter, the samples
of the channel transmitted by themth transmitter and received
at the nth receiver can be obtained. In particular, if a target
exists, and then a proper sample is selected according to the
cell under test with respect to the kth pulse [23], [27]. In the
signal-plus-noise hypothesis, the selected received sample
from the kth pulse is given by [31], [36]

ym,n(k) = am(k)lm,n(k)ejβm,n(k)ej2π fd,nkT+ξn(k),

= Am,n(k)ejβm,n(k)ej2π fd,nkT + ξn(k), (9)

whereAm,n(k) = am(k)lm,n(k) is the amplitude of the selected
received sample, and ξn(k) for k = 0, . . . , K − 1 are
independent identically distributed (i.i.d) circular complex
zero-mean Gaussian random variables.
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Remark 1: The phases of the received signals for differ-
ent channels are difficult to predict. Hence, data sampled
for different channels are usually jointly processed by non-
coherent processing instead of coherent processing [37], and
as a result, the phase information is lost. Therefore we focus
more on the amplitudes of the received samples.
Remark 2: From (1), (2), (7) and (9), we note that, for a

given target, amplitudes of the received samples from all T-
R channels are related to the positions of all radar nodes.
Since the amplitudes affect the subsequent signal processing,
with respect to different tasks (e.g. detection, surveillance,
localization, velocity estimation, etc.), the performance of the
distributed MIMO radar system significantly depends on the
system spatial layout [3], [16], [17], [31], [38]. To improve
the system performance, it is necessary to ensure the opti-
mal or suboptimal node placement scheme.

III. PROBLEM FORMULATION
Long-term surveillance in a given area is one of themost com-
mon applications of radar systems. In this section, we derive
a surveillance performance metric of the distributed MIMO
radar system, and then the optimal radar node placement
problem is established. Additionally, three representative sys-
tem architectures of distributed MIMO radars adopting cen-
tralized fusion are presented.

A. THE OBJECTIVE FUNCTION OF THE SURVEILLANCE
PERFORMANCE
The redeployment of radar nodes takes a certain amount of
time. Hence the optimized system performance under con-
sideration should be long-term effort. Herein, similar to [18],
[19], [39], we focus on the system surveillance performance,
and propose a WCR as the evaluation index. The calculation
of the WCR is presented later.

In order to evaluate the system performance, the RDA
and the RSA are both discretized into grids, and the system
performance at any point within a grid is approximated by
that at the center point of this grid. By the discretization of
the area, the positions of all the grid points in the RSA form
a matrix 9:

9 = [ψ1, . . . ,ψq, . . . ,ψQ], (10)

where the position of the qth grid point in the RSA is denoted
by ψq = [xgq , y

g
q]T ∈ R2×1, q = 1, . . . ,Q, and Q denotes the

total number of grids in the RSA.
The surveillance performance of the radar system depends

on the system detection performance at all grid points of the
RSA. Therefore, the system detection performance metric,
which is dependent on the detection probability of the target
and the probability of false alarm, needs to be derived first.

Consider the calculation of the detection probability of the
target located at [x, y]T = ψq. The K pulses from each T-R
channel are first coherently processed, and then the detection
problem can be formulated in terms of the following binary
hypothesis test with respect to the T-R channel consisting of

the mth transmitter and the nth receiver:
H1 : ym,n=

K−1∑
k=0

Am,n(k)ejβm,n(k)ej2π fd,nkT+ωn,

H0 : ym,n= ωn,
m = 1, . . . ,M , n = 1, . . . ,N ,

(11)

where ωn for n= 1, . . . , N are i.i.d complex zero-mean
Gaussian random variables, and it is reasonable to assume
that, for n= 1, . . . , N , ωn have the same variance σ 2 because
the same receiving nodes are equipped in the radar system.

Then the data after coherent processing from different
channels are incoherently processed, with the square-law
detector applied. Let z be the test statistic given by [31]

z =
M∑
m=1

N∑
n=1

∣∣ym,n∣∣2. (12)

where |·| represents the modulus of a complex number.
According to [31], [36], [38], [40], the probability of false
alarm, Pfa, and the probability of detection of the target at
ψq, Pd (ψq), can be respectively calculated as below:

Pfa = P{z ≥ γ |H0},

= exp
(
−
γ

σ 2

)M×N−1∑
i=0

1
i!

( γ
σ 2

)i
, (13)

Pd (ψq) = P{z ≥ γ |H1},

= QM×N


√√√√2

M∑
m=1

N∑
n=1

K∑
k=1

A2m,n(k)

σ 2 ,

√
2γ
σ 2

 ,
= QM×N


√√√√2

M∑
m=1

N∑
n=1

χm,n,q,

√
2γ
/
σ 2

 , (14)
χm,n,q = D0

σm,nRmax

σ0(Rtm,qRrn,q)
2 , (15)

where γ is the detection threshold, Qa(·,·) is the generalized
MarcumQ-function of order a [31], χm,n,q denotes the signal-
to-noise ratio (SNR) of the channel consisting of the mth
transmitter and the nth receiver with respect to the given
target at ψq after the coherent processing. Denote D0 the
detectability factor that satisfies the designed detection per-
formance of the radar node, and σm,n, σ0, Rmax, Rtm,q, R

r
n,q

denote the bistatic RCS of the target, the monostatic RCS of
the target, the maximum detectable distance of a single radar
node (i.e., the distance between the radar node and the target
when the output SNR is equal toD0, with themonostatic radar
of the same performance parameters adopted and K coherent
processed pulses transmitted in a CPI), the distance between
the position ψq and the mth transmitter, and the distance
between ψq and the nth receiver, respectively.
According to (13), (14) and (15), we can calculate the

probabilities of detection of the target considering all grids of
the RSAwhere the target appears possibly. Then, focusing the
system surveillance performance in the entire RSA, theWCR,
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denoted by 0, can be expressed as

0(2,9) = wTc(9)× 100% (16)

where

w =
[
w1, . . . ,wq, . . . ,wQ

]T/ Q∑
q=1

wq∈RQ×1,

c(9) = [c1(ψ1),. . . , cq(ψq),. . . , cQ(ψQ)]
T
∈RQ×1,

cq(ψq) =

{
1, Pd (ψq) ≥ Pdt ,
0, others.

(17)

In (16) and (17), 2 = [θ t1, . . . , θ
t
M , θ

r
1, . . . , θ

r
N ] ∈

R2×(M+N ) denotes the position matrix including all the radar
nodes, w is a normalized weight value vector, whose element
corresponds to a certain grid point and can be set according
to the importance of the grid, and Pdt represents the required
detection probability threshold.
Remark 3: Note that from (1), (2), (14), (15), (16) and

(17), theWCR is related to the node positions and the location
of the RSA. Once the RSA is determined, the WCR only
depends on the node positions, and then 0(2,9) can be
simplified as 0(2).
To ensure a satisfying surveillance performance of the

radar system, it is necessary to optimize the node positions.
As mentioned before, besides the surveillance performance,
the localization performance and the velocity estimation per-
formance, etc., are also related to the node positions [16],
[17], but these are not the focus of this article.

B. PROBLEM FORMULATION
In this article, we consider enhancing the surveillance perfor-
mance of the radar system via optimizing the node positions.
To distributed MIMO radar systems, the establishment of the
optimal node positions can be translated into an optimization
problem as

maximize
2

0(2),

s.t. θ tm ∈ D, θ rn ∈ D,
dmin ≤ d

(
θ tm, θ

t
i
)
,

dmin ≤ d
(
θ rn, θ

r
j

)
,

d
(
θ rn, θ

f
n,l

)
≤ dn-max,

m, i = 1, 2, . . . ,M , m 6= i,

n, j = 1, 2, . . . ,N , n 6= j,

l = 1, 2, . . . ,L, (18)

where θ fn,l = [xfn,l, y
f
n,l]

T
∈ D denotes the position of the

lth corresponding FC for the nth receiver (i.e., the lth FC
connected with the nth receiver), and L is the number of
the corresponding FCs for each receiver. Denote d(·,·) the
distance between any two radar nodes or between a node
and an FC, dmin is the minimum distance constraint between
radar nodes, and dn-max is the maximum distance constraint
between the nth receiver and the corresponding FCs. Denote

FIGURE 2. Sketch of the distributed MIMO radar system with the distance
constraints.

2f
n =

[
θ fn,1, . . . , θ

f
n,L

]
the position matrix including all the

corresponding FCs for the nth receiver, and the dimension of
2f
n depends on the architecture adopted by the radar system.

The scene of the distributed MIMO radar system with the
distance constraints is shown as Fig. 2.

We note that the constraints of the optimization problem
(18) are mainly related to the limitations of signal transmis-
sion from receiving nodes to the FC, and are independent of
the target detection. In other words, we cannot judge whether
the constraints are satisfied only by the value of the objective
function.
Remark 4: We note that the objective function and con-

straints of the optimization problem (18) are both related to
the high-dimensional optimization variable 2. A randomly
selected 2 without being optimized can hardly satisfy the
requirement for the surveillance performance or the distance
constraints. Therefore, the optimization of node placement
is an essential issue to be addressed to ensure better system
performance and satisfy practical constraints.

d
(
θ rn, θ

f
n,l

)
≤ dn-max,

n = 1, 2, . . . ,N , l = 1, 2, . . . ,L. (19)
In the optimization problem (18), (19) is the description

of generalized maximum distance constraint. To different
system architectures, the different methods of selecting FCs
connected with the receiver lead to different specific expres-
sions of (19). We will give detailed explanation below.

C. THE SPECIFIC EXPRESSIONS OF THE MAXIMUM
DISTANCE CONSTRAINTS FOR DIFFERENT SYSTEM
ARCHITECTURES
From the perspective of practical applications, we consider
the distributedMIMO radar system adopting different system
architectures for centralized fusion. Herein, three representa-
tive system architectures are studied [41], shown as Fig. 3.

1) CENTRAL NODE-TYPE ARCHITECTURE
To the central node-type architecture, simple receiving nodes
are equipped to obtain the electromagnetic information of
the target, but such receiving nodes do not have the ability
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of information relay and information fusion processing. The
radar system equips one or more external fixed FCs which
are independent of the radar nodes, and each receiving node
is connected to one certain FC. Such a system architecture is
simple in structure and low in cost, but has poor robustness.

As we mentioned before, different maximum distance con-
straints would be established in the optimization problem
considering different system architectures. To the central
node-type architecture, the specific expression of (19) can be
formulated as {

d
(
θ rn, θ

f
n,1

)
≤ dn-max,

n = 1, 2, . . . ,N .
(20)

2) NETTED ARCHITECTURE
To the netted architecture, complex receiving nodes are
equipped, and such nodes have the ability of information
relay and information fusion processing. In hostile environ-
ments, one of the receiving nodes is randomly selected as the
FC. Due to the particularity of the FC selection, there has to
be a communication link between any two receiving nodes.
Such a system architecture is complex and costly with high
robustness. After losing one or even more receiving nodes,
the others can still integrate information and implement joint
detection. To the netted architecture, the specific expression
of (19) can be formulated as{

d
(
θ rn, θ

r
j

)
≤ min

(
dn-max, dj-max

)
,

n, j = 1, 2, . . . ,N , n 6= j.
(21)

3) RINGED ARCHITECTURE
The ringed architecture is similar to the netted architecture,
adopting the same receiving nodes and the same selection
method of the FC. Different from the netted architec-
ture, for the ringed architecture, only communication links
between receiving nodes, which are with adjacent serial num-
bers or are corresponding to the minimum and the maxi-
mum serial numbers, are required. The ringed architecture
is a compromised structure between the central node-type
architecture and the netted architecture regarding robustness
and cost. To the ringed architecture, the specific expression
of (19) can be formulated as

d
(
θ rk , θ

r
k+1

)
≤ min

(
dk-max, d(k+1)-max

)
,

d
(
θ rN , θ

r
1

)
≤ min (d1-max, dN -max) ,

k = 1, . . . ,N − 1.

(22)

So far, the optimization problem is introduced completely.
The current problem is difficult to solve. First, it is a high-
dimensional, non-convex, and nonlinear problem to jointly
consider all node positions with no gradient information
available. Second, consistent with the node positions, the pro-
posed distance constraints are two-dimensional. In [30],
a one-dimensional minimum distance constraint is consid-
ered in the sparse linear array design problem, and the
optimization problem model is transformed to eliminate the

FIGURE 3. Sketch of three representative system architectures (The
direction of the arrow represents the direction of signal transmission).
(a). central node-type architecture; (b). netted architecture; (c). ringed
architecture.

constraint. However, this method has severe limitations and
cannot be used to solve optimization problems with con-
straints above one dimension or with maximum distance
constraints. Third, the maximum and the minimum distance
constraints are coupled. In most cases, the two kinds of
distance constraints are even contradictory, and this makes it
intractable to simultaneously satisfy both kinds of constraints.
Finally, intelligent optimization algorithms, such as the PSO
algorithm and genetic algorithm, are generally used to solve
such high-dimensional, non-convex, nonlinear optimization
problems. However, these algorithms normally treat positions
of all radar nodes as a whole to jointly optimize, without
considering the system distance constraints. To reduce the
computational burden and satisfy the distance constraints,
we propose a novel and widely applicable node placement
algorithm based on PSO in the next section.

IV. NODE PLACEMENT ALGORITHM BASED ON PSO
The PSO algorithm is meta-heuristic in nature. It starts from a
random solution, then searches the optimal solution through
iterations with evaluating the qualities of solutions by an
objective function [42], [43]. The PSO algorithm has been
applied to many research fields, and it can greatly reduce the
computational burden and allow us to get satisfying results
[19], [21], [44]. However, the standard PSO algorithm is
not suitable for solving optimization problems with complex
constraints. Thus, based on the standard PSO, we propose
a novel internal self-constrained PSO (ISC-PSO) algorithm
to solve the proposed optimization problem with distance
constraints. Next we describe the ISC-PSO algorithm.

Assuming that the swarm size is S (i.e., the number of par-
ticles is S), in the tth iteration, particle s, s = 1, . . . , S knows
information about its current position, velocity, particle indi-
vidual best position (its own best position it has visited so far)
and the global best position of all particles (the best position
all particles have visited so far), which are denoted by Xs(t),
Vs(t),Ys

s(t) and Y
g(t), respectively. For optimization problem
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of radar node placement, position of each particle represents
a node placement scheme, and each column of the particle
position is a coordinate of a certain node. Denote xts,m(t) ∈ D
and xrs,n(t) ∈ D the positions of the mth transmitter and
the n receiver, where m = 1, . . . ,M and n = 1, . . . ,N ,
then Xs(t) = [xts,1(t), . . . , x

t
s,M (t), xrs,1(t), . . . , x

r
s,N (t)]. The

position of the lth FC corresponding to the nth receiver is
denoted by xfs,n,l(t), where l = 1, . . . ,L.

To the particle s, initially, we randomly place all nodes in
the RDA to get the initial particle position, and we initialize
the particle velocity with a random velocity matrix. Then
the position, velocity, individual best position of the particle
and the global best position of all particles are updated in
each iteration. In the process of initialization and iterations,
the elements of particle positions are limited by the size of
the RDA and the distance constraints, and the elements of
particle velocities are limited by a fixed value Vmax, which is
commonly determined by the size of the RDA.

A. THE IMPROVED RULE OF VELOCITY UPDATE OF
PARTICLES
The standard PSO algorithm obtains information from the
global best position and the individual best position of the
particle s, respectively to establish the velocity components
of particle s [21], [42], [43], as

V g
s (t + 1) = c1r1(t)(Y g(t)− Xs(t)), (23)

V s
s (t + 1) = c2r2(t)(Ys

s(t)− Xs(t)), (24)

where ck , k = 1, 2 are usually set as acceleration constants,
rk (t), k = 1, 2 are independent random variables in the
range of [0,1]. The particle velocity is then updated to push
the particle position to directions where a better objective
function value could be obtained.

However, such a rule of velocity update ignores the
constraints within the particle. To consider the constraints,
herein, in addition to the velocity update rule adopted by the
standard PSO, we introduce the idea of virtual force [45], and
propose a novel conditional velocity update method in the
ISC-PSO algorithm. The proposed velocity update method
provides the particle with velocity components conditionally,
to compensate for the particle velocity when the the distance
constraints are not satisfied, thereby prompting the satisfac-
tion of the distance constraints among radar nodes and FCs.

Considering the mth transmitter, if the distance between
the mth and the ith (1 ≤ i ≤ M , i 6= m) transmitters is less
than dmin, i.e., d(xts,m(t), x

t
s,i(t)) < dmin, a velocity compo-

nent vts,m,i-min ∈ R2×1 for the mth transmitter is established
to increase the d(xts,m(t), x

t
s,i(t)) and satisfy the minimum

distance constraint. If d(xts,m(t), x
t
s,i(t)) ≥ dmin, vts,m,i-min

is assigned a two-dimensional zero vector, as (25). Different
from V g

s ∈ R2×(M+N ) and V s
s ∈ R2×(M+N ), the proposed

conditional components of particle velocity in ISC-PSO, are
only corresponding to one certain radar node instead of all the

nodes.

vts,m,i-min(t + 1)=

{
0, if d(xts,m(t), x

t
s,i(t)) ≥ dmin,

c3r3(t)(xts,m(t)− x
t
s,i(t)), otherwise.

(25)

A special case of d(xts,m(t), x
t
s,i(t)) < dmin occurs

when d(xts,m(t), x
t
s,i(t)) = 0, i.e., the mth and the ith

transmitters overlap, vts,m,i-ove is then established instead of
vts,m,i-min. If d(x

t
s,m(t), x

t
s,i(t)) 6= 0, vts,m,i-ove is assigned a

two-dimensional zero vector, as

vts,m,i-ove(t + 1)=

{
0, if d(xts,m(t), x

t
s,i(t)) 6= 0,

c4r4(t)e, otherwise,
(26)

where e is a two-dimensional unit vector to an arbitrary
direction, i.e., ‖e‖=1 with ‖·‖ the Euclidean vector norm.
Similarly, considering the nth receiver, if the distance

between the nth and the jth (1 ≤ j ≤ N , j 6= n)
receivers is less than dmin or the two receivers overlap,
i.e., d(xrs,n(t), x

r
s,j(t)) < dmin or d(xrs,n(t), x

r
s,j(t)) = 0,

vrs,n,j-min or vrs,n,j-ove are established respectively. Otherwise,
vrs,n,j-min and v

r
s,n,j-ove are assigned two-dimensional zero vec-

tors, as (27) and (28),

vrs,n,j-min(t + 1) =

{
0, if d(xrs,j(t), x

r
s,n(t)) ≥ dmin,

c3r3(t)(xrs,n(t)−x
r
s,j(t)), otherwise,

(27)

vrs,n,j-ove(t + 1) =

{
0, if d(xrs,j(t), x

r
s,n(t)) 6= 0,

c4r4(t)e, otherwise.
(28)

Different from the transmitters, if the distance between
the nth receiver and the lth corresponding FC is greater
than dn-max, i.e., d(xrs,n(t), x

f
s,n,l(t)) > dn-max, a velocity

component vrs,n,l-max for the nth receiver is established to
make the d(xrs,n(t), x

f
s,n,l(t)) decrease to satisfy the maximum

distance constraint. If d(xrs,n(t), x
f
s,n,l(t)) ≤ dn-max, vrs,n,l-max

is assigned a two-dimensional zero vector, as

vrs,n,l-max(t + 1)=

{
0, if d(xrs,n(t), X

f
s,n,l(t)) ≤ dn-max,

c5r5(t)(xfs,n,l(t)− x
r
s,n(t)), otherwise.

(29)

Figs. 4(a), (b), and (c) show the directions of vrs,n,j-min,
vrs,n,j-ove and vrs,n,l-max, respectively. Similar to the standard
PSO, in (25)-(29), rk (t), k = 3, 4, 5 are independent random
variables in the range of [0,1], and ck , k = 3, 4, 5 are set as
constants which control the range of velocity compensation
for particle elements, respectively corresponding to the three
unsatisfied distance constraints. The values of ck can be
determined according to the specific optimization problem,
mainly related to the types of unsatisfied distance constraints.
For instance, c3 corresponds to the unsatisfied minimum
distance constraint. For this case, d(xrs,n(t), x

r
s,j(t)) is small.

Recall (27), to obtain sufficient velocity compensation and
then satisfy the minimum distance constraint, the value of
c3 should be relatively larger. In contrast, the value of c5,
which corresponds to the unsatisfied maximum distance con-
straint, should be relatively smaller. Meanwhile, the values
of ck are also related to the system architecture. For example,
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FIGURE 4. Sketch of directions of the proposed particle velocity
components to satisfy the distance constraints. (a).vrs,n,j-min; (b).
vrs,n,j -ove; (c).vrs,n,l -max.

when a netted architecture is adopted with all the distance
constraints satisfied, the radar nodes get close because of
the strong constraints. Thus, c5 should be set small to pro-
vide subtle velocity compensation and prevent the algorithm
being difficulty in convergence. In a sense, similar with the
acceleration constants c1 and c2 used in the standard PSO, ck
herein are sort of empirical parameters [21], [42], [43], and
how to choose the appropriate ck to ensure fast and stable
convergence of the algorithm deserves further research.

Considering the influence of all radar nodes comprehen-
sively, for the mth transmitter, velocity components estab-
lished for the cases corresponding to (25), (26) can be
expressed as (30), (31), respectively,

vts,m-min(t + 1) =
M∑

i=1,i6=m

vts,m,i-min(t + 1), (30)

vts,m-ove(t + 1) =
M∑

i=1,i6=m

vts,m,i-ove(t + 1). (31)

For the nth receiver, besides the similar velocity compo-
nents as established above for the cases corresponding to (27),
(28), expressed as (32), (33), another velocity component
corresponding to (29) is established as (34),

vrs,n-min(t + 1) =
N∑

j=1,j6=n

vrs,n,j-min(t + 1), (32)

vrs,n-ove(t + 1) =
N∑

j=1,j6=n

vrs,n,j-ove(t + 1), (33)

vrs,n-max(t + 1) =
L∑
l=1

vrs,n,l-max(t + 1). (34)

Algorithm 1 Strategy of Velocity Update of Particles in ISC-
PSO for Node Placement Optimization Problem
Initialize Vs(1);
for t = 2, . . . ,T do

for s = 1, 2, . . . , S do
Calculate V g

s (t) and V s
s (t) according to (23) and

(24);
for m = 1, 2, . . . ,M do

Calculate vts,m-min and vts,m-ove according to
(25), (26), (30) and (31), respectively;

end for
for n = 1, 2, . . . ,N do

Calculate vrs,n-min, v
r
s,n-ove and v

r
s,n-max accord-

ing to (27), (28), (29), (32), (33) and (34), respectively;
end for

Calculate the final Vs(t) to update the position of the
sth particle with the calculated V g

s (t), V s
s (t), v

t
s,m-min(t),

vts,m-ove(t), v
r
s,n-min(t), v

r
s,n-ove(t) and v

r
s,n-max(t).

end for
end for

Now, we divide the integrated particle velocity update into
two steps, formulated as:

The first stage:

Vs(t + 1, 1) = µ(t)× Vs(t, 2)+ c1r1(t)× (Yg(t)−Xs(t))

+ c2r2(t)(Ys
s(t)− Xs(t)), (35)

and the second stage:

vts,m(t + 1, 2) = vts,m(t + 1, 1) (36)

+

M∑
i=1,i 6=m

c3r3(t)(xts,m(t)− x
t
s,i(t))

× u(dmin − d(xts,m(t),x
t
s,i(t)))

+

M∑
i=1,i6=m

c4r4(t)δ(d(xts,m(t), x
t
s,i(t))),

vrs,n(t + 1, 2) = vrs,n(t + 1, 1)

+

N∑
j=1,j6=n

c3r3(t)(xrs,n(t)− x
r
s,j(t))

× u(dmin − d(xrs,n(t), x
r
s,j(t)))

+

N∑
j=1,j6=n

c4r4(t)δ(d(xrs,n(t), x
r
s,j(t)))

+

L∑
l=1

c5r5(t)(xfs,n,l(t)− x
r
s,n(t))

× u(d(xrs,n(t), x
f
s,n,l(t))− dn-max), (37)

where µ(t) is the inertia weight which decreases with itera-
tions, usually set as µ(t) = 0.9 − 0.5 × (t/T ) with T the
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maximum iteration number of the algorithm [19], [43], and
vts,m(t+1, g), g = 1, 2 and vrs,n(t+1, g), g = 1, 2 denote the
updated velocity components of particle s at the gth stage in
the (t+1)th iteration, respectively corresponding to the mth
transmitter and the nth receiver.
In (36), (37), we define the function u as:

u(x) =

{
1, x > 0,
0, x ≤ 0,

(38)

and the function δ as:

δ(x) =

{
1, x = 0,
0, others.

(39)

After the particle velocity update, the position of the parti-
cle s is then updated as

Xs(t + 1) = Xs(t)+ Vs(t + 1, 2). (40)

Remark 5: It should be noted that, as we stated above,
the velocity update process of the particle is divided into two
stages. In the first stage, the information between particles
is utilized, mainly to promote the evolution of the particle
to directions where a better objective function value could
be obtained. In the second stage, the velocity update pro-
cess includes three parts, respectively corresponding to the
three unsatisfied distance constraints. The information within
the particle is utilized in this stage, mainly to promote the
evolution of the particle to directions where more distance
constraints could be satisfied.

B. THE IMPROVED STRATEGIES OF THE BEST POSITION
UPDATE OF PARTICLES
In addition to the improvements of the particle velocity
update, in the ISC-PSO algorithm, the best position update
rules with respect to the individual and the global best posi-
tions, are also improved to drive the evolution of particles to
directions where more distance constraints could be satisfied.

In contrast with the standard PSO algorithm, a constraint
indicator function count is introduced in the ISC-PSO algo-
rithm. To every node placement scheme, denoted by a particle
position X (t) (or Y (t)), the count (X (t)) (or count (Y (t))) is
used to show the number of the node pairs that do not satisfy
the distance constraints. In the process of the best position
update, the constraint indicator function plays the role of
selection and judgment.

The individual best position of particle s is updated as

Ys
s(t) =



Xs(t), t = 1,
Xs(t), t ≥ 2, {0(Xs(t))>0(Ys

s(t − 1))
&& count(Xs(t)) = 0} ‖{
count(Xs(t))<min

(
count(Ys

s(t
′))
)}
,

t ′ = 1, 2, . . . , t − 1,
Ys
s(t − 1), others.

(41)

where && and ‖ are respectively the logical AND and OR
operators. Similarly, the global best position of all particles is
updated as

Yg-select(t)

= argmax
Y s
s (t)

0(Y s
s (t)), 1 ≤ s ≤ S, (42)

Yg(t) =



Yg-select(t), t = 1,
Yg-select(t), t ≥ 2, {count(Yg-select(t)) = 0} ‖{
count(Yg-select(t)) < min

(
count(Yg(t ′))

)}
,

t ′ = 1, 2, . . . , t − 1,
Yg(t − 1), others.

(43)

The best of the node placement schemes represented by all
particles at the tth iteration is obtained as Y g(t). The algo-
rithm terminates after T iterations, and the final optimized
node placement scheme is obtained as Y g(T ).

Algorithm 2 Node Placement Algorithm Based on ISC-PSO
for s = 1, 2, . . . , S do

Initial Xs(1) by giving each node a random position and
Vs(1) with limitation of a fix Vmax;

Initial Y s
s (1);

end for
Calculate Y g(1);
for t = 2, . . . ,T do

for s = 1, 2, . . . , S do
Calculate count(Xs(t − 1)), count(Y s

s (t − 1));
Calculate 0(Xs(t − 1)), 0(Y s

s (t − 1));
Update the particle velocity and position, Vs(t) and

Xs(t), according to (35), (36), (37) and (40), respectively;
Update the particle individual best position, Y s

s (t),
according to (41);

end for
Calculate count(Y g(t − 1));
Update the global best position of all particles, Y g(t),

according to (42) and (43).
end for
Output Y g(T ) as the final node placement scheme.

C. COMPLEXITY ANALYSIS
In this article, we analyze the computational complexity of
the proposed ISC-PSO algorithm in terms of flops, with the
standard PSO algorithm being the benchmark. We define one
addition, subtraction, multiplication, division of two floating-
point numbers, comparison operation and logical operation
as a flop [46], and the computational complexities of vector
operations is calculated considering the vector dimensions.
Since we can get the result of the function u or δ through a
comparison operation, we define one calculation of the func-
tion u or δ as a flop, too. Assume TP and TI are the iteration
numbers when the PSO and the ISC-PSO respectively get
convergence. Then the computational complexity analysis for
both algorithms is given in TABLE 1 for comparison.
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TABLE 1. Computational complexity analysis for the PSO and the ISC-PSO.

In TABLE 1, computational complexities of all oper-
ations in each algorithm are given. We conclude that,
by omitting the lower-order terms, the computational com-
plexity of the standard PSO algorithm is O (TPS), while
the computational complexity of the ISC-PSO algorithm
is O

(
TI2S

)
. For the ISC-PSO algorithm, higher com-

putational complexity is inevitable, because the process-
ing of the complex distance constraints leads to a lot of
calculation.

The proposed ISC-PSO algorithm will converge to a sub-
optimal feasible solution, to which all the distance constraints
are satisfied. Several numerical simulations, which highlight
the applicability and effectiveness of the ISC-PSO algorithm,
are given in the next section.
Remark 6: It should be noted that, as mentioned before,

the PSO algorithm has a wide range of application. The
proposed ISC-PSO algorithm, which is based on the standard
PSO, can also be widely applicable to various optimization
problems with distance constraints, such as path planning,
array optimization, etc.

V. NUMERICAL RESULTS
As stated above, in order to verify the applicability and
effectiveness of the proposed ISC-PSO algorithm in different
application scenarios, we consider:

• different algorithms, including the ISC-PSO with the
standard PSO being the benchmark,

• different system architectures,
• different communication capabilities of receivers (i.e.,
different maximum distance constraints between differ-
ent receivers and the corresponding FCs), and

• different numbers of FCs (for the central node-type
architecture), and different radar node deployment sce-
narios (for the netted architecture).

For an intuitive analysis and meaningful conclusions, as a
specific case of distributed MIMO radar systems with M
transmitters and N receivers, radar systems with Ns dis-
persed nodes are studied in this section, and each node
is equipped with a single antenna which can transmit and
receive electromagnetic wave. The importance of all grid
points in the RSA is assumed to be the same, i.e., all
the elements of w have the same value, and then we
use the coverage ratio as the objective function instead
of the WCR.

FIGURE 5. Optimization results of the central node-type architecture with
a single FC (the values shown in the grids in (a), (b) represent the
probabilities of detection 1). (a). surveillance performance by the PSO;
(b). surveillance performance by the ISC-PSO; (c). count(Y g(t)); (d).
coverage ratio by the ISC-PSO.

A. THE SAME COMMUNICATION CAPABILITIES OF RADAR
NODES
We consider simulation scenarios where the communication
capabilities of radar nodes are the same, i.e., the maximum
distance constraints between the nodes and the corresponding
FCs are the same. To three architectures, simulation scenarios
are set as follows:
• the RSA is a square region of size 620 km× 620 km,
• the RDA is a square region of size 300 km× 300 km,
• the grid is also a square region of size 20 km × 20 km,
and

• the RDA is at the center of the RSA.
We use Ns = 10, Rmax = 100 km, σm,n = σ0 = 2 m2,
D0 = 12.5 dB, Pdt = 0.8, Pfa = 10−6, dmin = 40 km, and
dmax=150 km.
The standard PSO algorithm and the ISC-PSO algorithm

are the same in some operations, and all the parameters used
in the PSO, including c1, c2, S, T , Vmax, and the number of
Monte Carlo runs, are also used in the ISC-PSO. Therefore,
to compare the performance of both algorithms properly,
in all simulations, the parameters mentioned above are set
the same for both algorithms. For brevity, we just specify the
parameters of the ISC-PSO and omit the repeated explanation
of the parameters used by the PSO.

1) CENTRAL NODE-TYPE ARCHITECTURE
The parameters of ISC-PSO algorithm are as follows:
c1=c2=2, c3=3, c4=5, c5=0.8, S=400, T =2000, Vmax=12,
and five Monte Carlo runs were performed.

1In the similar simulation results with respect to the surveillance perfor-
mance below, the values shown in the grids also represent the probabilities
of detection.
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Fig. 5 shows the simulation results when the system
adopts the central node-type architecture with one FC. From
Fig. 5(c), we see that the iteration curve of the count (Y g(t))
by the ISC-PSO decreases to zero at around 130 iterations.
This shows that the initial random node placement scheme
cannot satisfy all distance constraints, while the optimization
process of the ISC-PSO lead to the satisfactory of more
distance constraints, and all distance constraints get satisfied
after about 130 iterations. In contrast, the iteration curve of
the count (Y g(t)) by the PSO remains at about 10 until the
end of the iteration. This indicates that about 10 node pairs
in the placement scheme obtained by the PSO do not satisfy
the distance constraints. From Fig. 5(d), we see that the sys-
tem surveillance performance has gone through two stages.
In the first stage, the performance normally decreases to push
more node pairs to satisfy the distance constraints. When
the count(Y g(t)) decreases to zero, i.e., all node pairs satisfy
the distance constraints, the second stage begins. In the sec-
ond stage, the performance improves with iterations and all
distance constraints are still satisfied. These two stages are
corresponding in Figs. 5(c) and (d). Meanwhile, Figs. 5(c)
and (d) show the results of satisfying the distance constraints
and improving the system performance, respectively, which
are the two goals that we focus on in this article.

In this simulation scenario, the FC is fixed at the center
of the RDA and the positions of 10 nodes are optimized.
However, in Fig. 5(a), there are only 6 nodes shown in the
RDA because there are 4 nodes sharing overlapping positions
with other nodes, and we can see that many node pairs do not
satisfy the distance constraints as the result of the PSO algo-
rithm. In contrast with the PSO, all node pairs can satisfy all
the distance constraints when using the ISC-PSO algorithm,
shown as Fig. 5(b). The above results prove that the system
performance can be enhanced with the distance constraints
satisfied by optimizing the node positions using the ISC-PSO
algorithm.

We also observe that the placement scheme obtained by
the ISC-PSO algorithm shows slightly weaker surveillance
performance than that obtained by the PSO algorithm. This is
reasonable due to the nature of the optimization problem, and
this phenomenon is the result of compromise between surveil-
lance mission and satisfaction of the distance constraints.
When the maximum distance constraint exists, the nodes tend
to be closer to the corresponding FCs, and this leads to the
concentration of electromagnetic energy. As a result, the outer
area cannot obtain enough electromagnetic energy to detect
the target effectively.

Consider multiple fixed FCs for the central node-type
architecture. We assume that the RDA is expanded to the
same size as the RSA. When there are 2 FCs and 8 radar
nodes, the nodes numbered 1, 2, 3, 4 are connected with the
FC numbered 1, the nodes numbered 5, 6, 7, 8 are connected
with the FC numbered 2. When there are 3 FCs and 9 radar
nodes, the nodes numbered 1, 2, 3 are connected with the
FC numbered 1, the nodes numbered 4, 5, 6 are connected
with the FC numbered 2, and the nodes numbered 7, 8,

FIGURE 6. Optimized surveillance performance of the central node-type
architecture with multiple FCs by the ISC-PSO. (a). two FCs; (b). three FCs.

FIGURE 7. Optimization results of the netted architecture. (a). surveillance
performance by the PSO; (b). surveillance performance by the ISC-PSO;
(c). count(Y g(t)); (d). coverage ratio by the ISC-PSO.

9 are connected with the FC numbered 3. The simulation
results are shown as Fig. 6, and it is shown that we can still
obtain a satisfying node placement scheme with the distance
constraints satisfied using the proposed ISC-PSO algorithm.

2) NETTED AND RINGED ARCHITECTURES
The parameters of the ISC-PSO algorithm for both architec-
tures are as follows: c1=c2=2, c3=3, c4=5, S=400, T =
2000, Vmax=12. We respectively chose c5=0.1 and c5=0.8
for the netted and the ringed architecture, and performed five
Monte Carlo runs. Figs. 7 and 8 show the simulation results
for the netted and the ringed architecture, respectively.

We observe that the results are nearly the same when the
radar system adopts the netted architecture or the ringed
architecture, as when the central node-type architecture is
adopted. The results show that the system surveillance per-
formance can be enhanced with the distance constraints sat-
isfied by optimizing the node positions using the ISC-PSO
algorithm, and the optimization process similarly undergoes
through two stages. We also find that, when the netted archi-
tecture is adopted, in the second stage of the optimization
process using the ISC-PSO algorithm, the increase of the
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FIGURE 8. Optimization results of the ringed architecture. (a). surveillance
performance by the PSO; (b). surveillance performance by the ISC-PSO;
(c). count(Y g(t)); (d). coverage ratio by the ISC-PSO.

FIGURE 9. Comparison result of the surveillance performance of the
radar systems adopting three architectures in the case of the same
communication capabilities of radar nodes.

coverage ratio is inapparent, as shown in Fig. 7(d). This is
due to the strict nature of the distance constraints with respect
to the netted architecture. To satisfy such strict distance con-
straints, more nodes come close to each other, and this leads
to the degradation of the system surveillance performance.

We also compare the optimized surveillance performance
of the radar systems adopting three different architectures
under the same simulation scenario and parameters, and the
result is shown in Fig. 9. We observe that the radar system
adopting the ringed architecture has the best surveillance
performance, while the surveillance performance of the radar
system adopting the netted architecture is the worst. Corre-
spondingly, the radar system adopting the netted architecture
is the most robust.

B. DIFFERENT COMMUNICATION CAPABILITIES OF
RADAR NODES
We consider scenarios where the communication capabili-
ties of radar nodes are different, i.e., the maximum distance

TABLE 2. Parameters of the ISC-PSO algorithm in the case of different
communication capabilities of radar nodes with different system
architectures.

FIGURE 10. Optimization results of the surveillance performance in the
case of different communication capabilities of radar nodes
(dmin = 40 km, dmax= [100,100,100,150,150,150]T km). (a). central
node-type architecture; (b). netted architecture; (c). ringed architecture.

constraints between nodes and the corresponding FCs are
different. Parameters for three architectures are set as follows:

• the RSA is a square region of size 620 km× 620 km,
• the RDA is a square region of size 300 km× 300 km,
• the grid is also a square region of size 20 km × 20 km,
and

• the RDA is at the center of the RSA.

We set Ns = 6, Rmax = 100 km, σm,n = σ0 = 2m2,
D0 = 12.5 dB, Pdt = 0.8, Pfa = 10−6, and dmin =

40 km. The maximum distance constraints between nodes
and the corresponding FCs are expressed by dmax, and
dmax= [100, 100, 100, 150, 150, 150]T km (The order of the
elements of dmax is consistent with the order of the radar
nodes). The parameters of the ISC-PSO algorithm for three
architectures are given in TABLE 2 and the simulation results
are shown in Fig. 10. From Fig. 10, we see that the nodes
spread as far as possible to obtain better surveillance perfor-
mancewith all the distance constraints still satisfied, although
the maximum distance constraints between nodes and the
corresponding FCs are different.
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FIGURE 11. Comparison result of the surveillance performance of the
radar systems adopting three architectures in the case of different
communication capabilities of radar nodes.

As we did in the above case, in the case of different
communication capabilities of radar nodes, we compare the
optimized surveillance performance of the radar systems
adopting three different architectures under the same sim-
ulation scenario and parameters. The result is shown as
Fig. 11. We are surprised to find that, different from the case
where the nodes have the same communication capabilities,
when dmax= [100, 100, 100, 150, 150, 150]T km, the surveil-
lance performance of the radar system adopting the netted
architecture is still the worst. However, the system adopting
the central node-type architecture has the best surveillance
performance instead of that adopting the ringed architec-
ture. Based on these results we conclude that, when the
communication capabilities of the radar nodes change, the
corresponding architecture that enables the system to achieve
the optimal surveillance performance may also change.
Therefore, the architecture selection of radar system is also
an important issue to be considered, and deserves further
investigation.

C. APPLICATION SCENARIOS
In this subsection, we consider two realistic and more chal-
lenging application scenarios where the RDA and the RSA
are non-overlapping, shown as Fig. 12. Such scenarios com-
monly appears in the applications of area-denial and the
defense of open sea. The radar systems for both the simu-
lations below adopt the netted architecture which enforces
themost strict distance constraints. The communication capa-
bilities of radar nodes are assumed to be the same, and the
parameters of the ISC-PSO algorithm is given in TABLE 3
with the repetitive parameters of the PSO omitted.

1) APPLICATION SCENARIO I
In this scenario, the boundary of the RDA and the RSA is
smooth. The whole area is a square region of size 700 km×
480 km, the region where 0 ≤ y ≤ 200km is the RDA, and
the region where 200km ≤ y ≤ 480km is the RSA. We set
dmin=40km, dmax=360km, and Ns = 10. Simulation results
for this case are shown in Fig. 13.

From Fig. 13, we observe that both node deployment
schemes guarantee good surveillance performance by deploy-

TABLE 3. Parameters of the ISC-PSO for both application scenarios.

FIGURE 12. Sketch of the RDA and the RSA in application scenarios.

FIGURE 13. Optimization results. (a). surveillance performance by the
PSO; (b). surveillance performance by the ISC-PSO.

ing radar nodes at the boundary of the RDA and the RSA.
In such a situation, to satisfy the distance constraints, the rel-
ative positional relationship of the nodes is uniquely deter-
mined, and each node is kept 40 kilometers away from the
nearest nodes. Hence the enforcement of the distance con-
straints is strict. Similar to the simulation results presented
previously, we observe that some nodes overlap when using
the PSO algorithm. In contrast, we can obtain an accurate
node placement scheme using the ISC-PSO algorithm.

2) APPLICATION SCENARIO II
In this scenario, the RDA has a convex surface facing the
RSA. The whole area is a square region of size 400 km×
360 km, the region below the solid line is the RDA, and the
region above the solid line is the RSA. We set dmin = 40km,
dmax=150km, and Ns = 5. Fig. 14 shows the corresponding
simulation results.

From Fig.14(a), we see that all the optimized node posi-
tions obtained by the PSO algorithm gather in the protruding
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FIGURE 14. Optimization results. (a). surveillance performance by the
PSO; (b). surveillance performance by the ISC-PSO.

position of the RDA and even overlap. The radar systems
adopting such a deployment scheme is easy to be hit and
destroyed, and the spatial diversity gain cannot be well uti-
lized. Hence such a deployment scheme is not advisable.
In contrast, the deployment scheme obtained by the ISC-PSO
algorithm is satisfactory. From Fig.14(b), we observe that all
the distance constraints are satisfied, and the optimized node
positions are properly dispersed, to fully utilize the spatial
diversity gain and get stronger robustness.

This set of simulations further illustrates the necessity of
introducing distance constraints when optimizing the node
positions, and verifies the applicability and effectiveness of
the proposed ISC-PSO algorithm.

VI. CONCLUSION
We have studied an optimization problem of node placement
with distance constraints in this article. We have derived an
analytical expression for the detection probability for dis-
tributed MIMO radar systems, and have formulated a node
placement optimization problem with distance constraints.
Then a node placement algorithm based on the ISC-PSO has
been proposed to solve the formulated optimization prob-
lem with complex constraints. Our simulation results have
demonstrated the effectiveness of the proposed node place-
ment algorithm.
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