
Received October 15, 2020, accepted October 23, 2020, date of publication October 29, 2020, date of current version November 11, 2020.

Digital Object Identifier 10.1109/ACCESS.2020.3034767

Residential Power Scheduling Based
on Cost Efficiency for Demand
Response in Smart Grid
XUNYAN JIANG 1,2 AND LEI WU 2
1School of Economics and Management, Hunan Provincial Engineering Research Center of Electric Transportation and Smart Distributed Network, Changsha
University of Science and Technology, Changsha 410114, China
2College of Mathematics and Computer, Xinyu University, Xinyu 338004, China

Corresponding author: Lei Wu (jxxywulei@126.com)

This work was supported by the National Natural Science Foundation of China under Grant 71420107027 and Grant 71671018.

ABSTRACT Residential power scheduling for demand response in a smart grid is a complex task. The
traditional methods aim to minimize consumption costs and maximize consumption payoffs. In this paper,
a power scheduling algorithm based on cost efficiency for smart homes is proposed to improve consumers’
consumption efficiency and satisfaction. In this proposed method, a definition of cost efficiency for
residential power scheduling is introduced. Consumers’ consumption costs are modelled based on electricity
payments and users’ discomfort. A pair of parameters for a trade-off between users’ discomfort and their
electricity payment is designed to model cost efficiency based on the consumer’s preference. A power
scheduling algorithm based on cost efficiency is developed by adopting a fractional programming approach.
Four consumption models are analysed and discussed. The results show that this proposed method can
effectively improve consumers’ consumption efficiency and satisfaction while saving costs. It is shown
that discomfort and additional payment can impact consumers’ consumption behaviour and smooth their
consumption profile curves.

INDEX TERMS Residential power scheduling, cost efficiency, discomfort cost, electricity payment cost,
smart home.

I. INTRODUCTION
The concept of a smart grid focuses on the enhancement of
the energy efficiency of the power grid [1], [2]. A common
solution is the development of demand-side management
(DSM), which makes the demand profile match the sup-
ply [3]. Demand response (DR) is one of themost widely used
DSMactivities [4]. It is a procedure used to influence electric-
ity users’ consumption habits through responses to electricity
prices or incentives. With the development of the social econ-
omy, lifestyles have changed dramatically, the demand for
residential electricity has been increasing. Residential load
management will play a greater role in DSM and is quite
challenging [5]. In recent decades, an increasing number of
DR programmes for residential load management have been
developed, such as control-mechanism-based DR methods
which help reduce loads during peak-demand hours through

The associate editor coordinating the review of this manuscript and

approving it for publication was Khmaies Ouahada .

centralized or distributed schemes [6], motivations-based DR
methods, which reduce or shift consumer power demands
through pricing-mechanisms-based [7] or incentive-based
DRs [8], decision-variable-based DR methods, which man-
age electricity user loads through task scheduling [9] or
energy-management-based DRs [10]. These DR programmes
aim to change the load structure and the activation time of
loads in an in-home environment to balance consumers’ load
demands at different times [11]. An appropriate programme
of residential load management can be used to achieve the
scheduling of residential users’ electrical appliances effec-
tively. In DR programmes, the pricing-mechanisms-based
and energy-management-based DRs are usually more suited
for residential consumers [12]. These DR programmes are
adopted by energy suppliers to influence consumer behaviour
and smooth their demand curves.

For pricing-mechanisms-based DR programmes, the
power suppliers provide varied prices to consumers dur-
ing different periods [13]. After receiving the price signal,
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customers tend to consume less electricity when the pro-
grammes charge high prices. Recently, a number of pricing
schemes for DSM have been developed. The most traditional
pricing schemes are based on flat pricing, which is fixed
during a period, such as a season [14]. For example, Doos-
tizadeh and Ghasemi [15] proposed a day-ahead electricity
pricing model for DSM, where the users who participate in
the scheme reduce their electricity consumption by using less
electricity in a day. Another kind of pricing scheme based on
flat pricing is time-of-use (TOU) pricing, which uses fixed
prices for different days of the week or different hours in a
day [16]. A simulation of household behaviour showed that
users are attracted by off-peak prices and will avoid peak
prices. However, the reductions in their electricity bills are
limited [17]. Similar to TOU, critical peak pricing charges
fixed prices during different periods, although prices can
change when the system is in an emergency period [18].
When this occurs, the participant customers are notified of
the new energy price, usually a day in advance. Although the
loads are significantly reduced during emergency periods,
users are not economically efficient. Popular DR schemes
are day-ahead bidding (DAB) pricing [19] and real-time
(RT) pricing [20]. The former scheme divides a day into
various periods in which electricity prices are different. Based
on historical data, electricity prices are determined, and
the price signal is given to the users one day in advance.
The participating consumers respond to the price signal
and upload their hourly consumption demands to bid for
electric energy. The DR programmes based on DABP aim
to shift the consumers’ demand away from peak periods and
create a maximum payoff for energy suppliers [21]. How-
ever, the latter scheme maximizes customer participation.
Electricity prices are different during the different periods
throughout the day and are announced before the start of
each period [22]. The consumers that participate in these
programmes install an energy management controller (EMC)
in their premises, and their electricity consumption is based
on their preferences [23]. This kind of DR programme can
result in high reductions in electricity consumption. However,
asmost household consumers do not concern themselves with
systematic electricity decisions, the implementation of it in
the residential domain has had little success.

For energy-management-based DR programmes, a reduc-
tion in consumers’ electricity usage is achieved through cur-
tailing their loads under a certain pricing model [24]. The
common practices aim to trigger fewer loads or schedule
some specific electrical appliances into the off-peak peri-
ods to reduce the total electricity usage when the system is
stressed [25]. For example, Ahmadi et al. [26] developed a
mixed-integer linear programmingmodel for a solar-powered
stochastic operation to capture thermal load uncertainties
in a smart home, which significantly achieved an energy
cost-saving and provided a decrease in the peak electricity
demand. Astriani et al. [27] proposed an additional controls
method that managed the consumed power effectively on
the demand side by coordinating the output power within

islanded microgrids. Recently, there have been many works
focusing on dispatch models for smart homes and residen-
tial buildings, taking different energy sources and respon-
sive loads into consideration, while also tackling different
objectives such as cost and comfort. For example, Anvari-
Moghaddam et al. [28] proposed a multi-agent-based energy
management solution that could provide optimal control for
integrated homes/buildings and microgrid systems using var-
ious renewable energy resources (RESs) and controllable
loads. Jiang et al. developed a load scheduling algorithm
based on cost efficiency and consumer preference for man-
aging residential electrical appliances, which achieved the
desired trade-off between economic efficiency and consumer
preference [29]. Anvari-Moghaddam et al. developed a mul-
tiobjective mixed-integer nonlinear programming model [30]
and a residential energy management algorithm based on
cost-effectiveness and comfort awareness [31], respectively.
The two methods consider a meaningful balance between
energy savings and a comfortable lifestyle for the manage-
ment of energy in smart homes. Latifi et al. proposed a
distributed-game theoretic demand response with multi-class
appliance controls in a smart grid to maximize consumer
satisfaction levels [32]. These energy-management-based DR
programmes aim to reduce total electricity consumption
through the curtailment of consumer loads or the alteration
of load activation time when the system experiences a peak
period. However, customer satisfaction based on the user
comfort and preference, along with a reduction in electricity
consumption, is still a drawback to existing DR programmes
for DSM.

To answer the above questions, this paper proposes a novel
algorithm for residential demand management based on cost
efficiency in a smart grid to improve consumers’ consumption
efficiency and satisfaction. In the proposed DR programme,
the consumption cost is composed of the electricity payment
cost and the discomfort cost, both of which are influenced
by consumer preference. Cost efficiency can be calculated
by the ratio of the user’s total consumption benefit to their
total consumption cost. A novel power scheduling algorithm
based on cost efficiency is established. The algorithm is
optimized by designing a pair of modulation parameters
for constraining consumer preference. Different consumption
models can be modelled by turning the parameters value in
the cost efficiency. A series of experiments are conducted
on different consumption models. The results show that the
proposedmethod can effectively affect consumers’ behaviour
and improve their satisfaction, smoothing their consumption
profile curves.

The contributions of our method are summarized as
follows:

1) A novel algorithm for residential power scheduling
based on cost efficiency is designed to schedule consumers’
electricity appliances. The proposed algorithm considers not
only consumers’ electricity payments but also their comfort.
The simulation result shows that the proposed algorithm is
effective in reducing electricity consumption and that it can
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FIGURE 1. Consumption scenario of proposed residential power scheduling.

help consumers obtain maximal consumption benefits while
saving costs.

2) A consumer’s consumption cost is established by
calculating their electricity payment cost and discomfort cost.
A pair of modulation parameters are designed, and their val-
ues reflect consumer preference. Through tuning the param-
eter value, consumer consumption efficiency and satisfaction
can be better understood, which could be for changing con-
sumers’ consumption behaviour.

3) Cost efficiency is modelled by the ratio of the user’s
total consumption benefits to their total consumption costs.
Different consumption models can be modelled by tuning the
parameter value in the cost efficiency. The simulation results
show that a consumer’s consumption preference determines
their consumption model and that different consumption
models achieve different consumption efficiencies. A con-
sumer’s consumption satisfaction level depends on their con-
sumption preference.

This paper is organized as follows. The problem is
described and formulated in section 2. In section 3, the
consumption behavior is modeled. In section 4, the load
scheduling based on the proposed algorithm is analyzed.
In section 5, the simulation results are analyzed and dis-
cussed. In section 6, the research work of this paper is
summarized.

II. PROBLEM DESCRIPTION AND FORMULATION
A. PROBLEM DESCRIPTION
In a smart grid, residential power management plays an
important role in demand-side energy management. In this
section, a residential consumption scenario (shown in
Figure 1) for the application of the proposed power schedul-
ing algorithm is described first. As shown in Figure 1, in an
intelligent power system, the proposed residential power
scheduling algorithm based on cost efficiency is applied to
manage demand and appliances. In this study, the residential
appliances include schedulable appliances (e.g., air condi-
tioners) and non-schedulable appliances (e.g., refrigerators).
The electrical appliances used in this paper are air condi-
tioners (AC), ovens, refrigerators, lighting, clothes wash-
ers (CWs) and TVs. These appliances are classified into two
types. Appliances in the first group, with fixed powers, start
to work continuously at a flexible time. Appliances in the
second group, with flexible powers, start to work continu-
ously at the predefined time.

All the aforementioned appliances are effectively moni-
tored andmanaged automatically by a smart metre. The smart
metre utilizes a user interface to exchange measurements
and control information between the power service provider
(e.g., utility) and the residential customers. Despite power
lines joins up with the user interface, the access of a two-way
communication exists between the utility and residential
customers. The communication conditions for applying the
proposed power scheduling algorithm can be guaranteed by
ensuring that the existing communication networks exchange
the information.

B. PROBLEM FORMULATION
In [21], cost efficiency is defined as the ratio of the utility
of the customer’s electricity consumption and the customer’s
total electricity costs. The author chose cost efficiency to
manage residential power consumption. Mathematically, the
process of cost efficiency is presented as follows:

C.E. =
Utility
Cost

(1)

where Utility is the user’s electricity consumption utility,
and Cost is the electricity cost. The results showed that
cost efficiency can effectively measure consumer economic
efficiency.

Traditional residential demand scheduling programmes for
demand-side management consider the electricity payment as
the electricity cost (the monetary cost). A reduction in elec-
tricity consumption leads to decreases in consumers’ elec-
tricity bills through the scheduling of electrical appliances.
In [21], only the electricity payment is taken into account to
calculate the cost efficiency. However, an electrical appliance
should be shifted in a scheduling horizon that includes time
and power ranges. The task for the operation of an appliance
is delayed or fulfilled with the dissatisfied power that results
in consumers’ discomfort. For instance, when the scheduling
time horizon for a CW is 6 pm-8 am, the user chooses to make
the CW start working the next day at 7 am and stop working
at 8 am. The user may select to delay the operation of the
CW to another time in its scheduling range because of lower
electricity prices. Similar to the above example, the user may
choose to shift the lighting power from 0.6 kWh to 0.3 kWh to
reduce electricity consumption. An operation such as that can
result in customer discomfort. Thus, in a practical application,
user comfort is also considered.
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Given these two considerations, including electricity pay-
ment and customer comfort, the total consumption cost
should be composed of the monetary cost and the discom-
fort cost. In addition, the discomfort cost is associated with
a reduction in monetary cost, caused by the scheduling of
electrical appliances at set points that deviate from normal
power use times. As a result, the significance of the mon-
etary cost and the discomfort cost in the total consumption
cost relies on consumer preference. Let µ1 denote the user’s
preference for the electricity payment while µ2 denotes the
user’s discomfort preference. The total consumption cost can
be defined as follows:

TC = µ1Pay+ µ2DC (2)

where Pay denotes the total electricity payment, DC denotes
the total discomfort cost that is expressed in exactly the
same unit with Pay due to it can be mapped into a monetary
cost by the approach in the following Section III. B, µ1 is a
weight that measures consumer preference for the electricity
payment, µ2 is a weight that measures consumer preference
for the discomfort cost, and µ1+µ2 = 1. When the user has
a complete preference for the electricity payment, µ1 = 1,
µ2 = 0. In contrast, when the user has a complete preference
for the discomfort cost,µ1 = 0,µ2 = 1. Except for those two
extreme cases,µ1 andµ2 are constrained by 0 < µ1 < 1, 0 <
µ2 < 1 and µ1 + µ2 = 1. Hence, the total consumption cost
TC varies in the set point of different interval distributions.
The optimization problem of Eq. (1) can be converted into
modelling cost efficiency based on consumer preference as
follows:

C.E. =
Utility

µ1Pay+ µ2DC
(3)

Cost efficiency based on consumer preference, as in
Eq. (3), is sensitive to the schedule of the electrical appliances
because the slightly scheduling of the appliances changes
the consumer’s electricity payment and affects their comfort
and consumption utility. In this paper, in order to reduce a
user’s electricity consumption and maximize their consump-
tion efficiency, we chose it as the optimization objective to
derive the following.

1) Model consumption behaviour based on cost efficiency.
2) Study different residential consumption models based

on consumer preferences.
3) Improve consumer satisfaction through trade-offs

between their electricity payment and discomfort.
4) Maximize consumer consumption efficiencies through

the maximization of cost efficiency.

III. MODELLING CONSUMPTION BEHAVIOUR
A. ELECTRICITY PAYMENT COST
In this section, the consumption behaviour of a smart home
is described, and the pricing mechanism for electricity con-
sumption is built on the foundation of TOU pricing, DAB
pricing and RT pricing. The users respond to a price signal
to decide how to manage their electrical appliances. Let the

electricity price at the t ∈ T time slot be Pt , where T is
the operation cycle of the system, and T = {1, 2, . . . , 24}.
The residential electrical appliances are A = {A1,A2}, where
A1 is the aforementioned first type of appliance and A2 is
the second type of appliance. Thus, one of the appliances a
works at t time to consume electrical energy x ta. The user’s
consumption load in time slot t is defined as

Lt =
∑
a∈A

∑
t∈T

x ta (4)

If TOU pricing is used in the DR, the electricity payment
cost PayT can be given by

PayTt = PtLt (5)

In the day-ahead bidding, the future pricing is given to
consumers ahead of time, and the customers of the smart
house upload the day-ahead consumption load L̂t to bid for
the electricity [21]. Let [Dbmin, D

b
max] be the lower and upper

bound of the load in the bidding contract. L̂t should be con-
strained by [Dbmin, D

b
max]. If the consumer’s load is less than

or equal to the threshold amount stipulated in the contract,
users pay bidding price for the electricity. However, if the
electricity consumption exceeds the threshold, the user pays
a higher price for the portion of the electricity used beyond
the scope of the bid. Let P′t represent the real-time price in
time slot t . P′t is defined as

P′t =

{
P1t for the part of dlt within L ′t
P2t for the part of dlt in excess of L ′t

(6)

where P1t and P
2
t are two different unit prices, and L ′t is the

threshold of the consumption load. If Lt > L ′t , customers are
charged the excess part Lt -L ′t withP

2
t . The electricity payment

cost with DAB pricing PayD can be given by

PayDt =
∑
t∈T

max
{
P1t Lt , P

2
t Lt + (P1t − P

2
t )L
′
t

}
(7)

After the contracts take effect between the supplier and
consumer, in the actual consumption process, the consump-
tion load Lt may deviate from the uploaded consumption
load. In this case, the consumer should undertake an addi-
tional payment for their part that deviated from the uploaded
amount. The additional payment is defined as

Payaddt = L̂tP′t +
(
Lt − L̂t

)
ηt (8)

where ηt denotes the penalty/refund parameter and is
defined [21] as

ηt =



1.5 if
Lt
L̂t
≥ 1.05

Lt
L̂t

if 0.95 <
Lt
L̂t
< 1.05

0.5 if
Lt
L̂t
≤ 0.95

(9)
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Thus, the total electricity payment, namely, the total elec-
tricity payment cost for all the appliances A in a day is defined
as

Pay =
∑
t∈T

max
{
P1t Lt , P

2
t Lt + (P1t − P

2
t )L
′
t

}
+

∑
t∈T

Payaddt

(10)

B. DISCOMFORT COST
Given the above analysis, consumers may schedule their
electrical appliances to respond to the price signal or be
motivated to get the rewards offered by electricity providers.
As such, the discomfort cost can be produced in the process of
electricity consumption. In [33], an optimal power scheduling
strategy proposed that the discomfort cost was modelled from
the operation time and power of the appliances. In this way,
the discomfort caused by some operations out of the con-
sumer’s willingness was effectively quantitated. In this study,
we introduce the definition of the discomfort cost for smart
house power scheduling. Let

[
trba , tr

c
a
]
be the scheduling hori-

zon of the time for appliance a (a ∈ A1) with constant power
ra. Let

[
prba , pr

c
a
]
be the scheduling horizon of the power for

appliance a (a ∈ A1). Let tsa be the time that appliance a starts
to work. Thus, the formulation of the discomfort [33] derived
from delaying the operation is given by

DCa(tsa) = δa(t
s
a − tr

b
a )
k s.t. tsa ∈ T ,

tsa ∈ [trba , tr
c
a] and a ∈ A1 (11)

where k ≥ 1 is real numbers, when the appliance a is delayed,
the users must undertake some countermeasure called φ′

constrained by the operational characteristics ϕa of appliance
a, and 0 < ϕa < 1whose setting as reference [33], δa = φ′ϕa.
The formulation of the discomfort [34] caused by the

power deviation from normal electricity consumption is given
by

DC t
a = ρ

t
a(x

t
a − x̂

t
a)

2 s.t. t ∈ T ,

tsa ∈ [trba , tr
c
a] and a ∈ A2 (12)

where x̂ ta represents the normal electricity consumption of
appliance a that varies with different time slots. when x ta =
x̂ ta, (x

t
a−x̂

t
a)

2 is minimum. If1 = x ta−x̂
t
a, x̂

t
a+1 or x̂ ta−1, all

result in customer discomfort. When the electricity consump-
tion is x̂ ta±1, the users must undertake some countermeasure
called φ. ρta is a parameter that can be obtained by φ

/
12.

The formulation of the total discomfort caused by the
above two kinds of discomfort can then be defined as

DC =
∑
a∈A1

δa(tsa − tr
a
a )
k
+

∑
t∈T

∑
a∈A2

ρta(x
t
a − x̂

t
a)

2

s.t. tsa ∈ [traa , tr
b
a ] (13)

C. UTILITY FUNCTION
Let TLan denote the length of time that appliance a fulfils the
nth task to expend and T a is the number of tasks for appliance
a in a day. Then, appliance a works continuously to fulfil the

nth task to produce the total demand defined as follows:

dan =
∑

t∈TLan ,n∈T a
x ta (14)

Users operate the appliance a to fulfil the nth task to
produce the utility of appliance a. Thus, the user’s electricity
consumption utility is based on the task cycle of each electri-
cal appliance. The utility value [21] for appliance a in the nth
task cycle can be calculated as

Ua,n(dan ) , U (dan , β
a) (15)

where βa is a parameter that reflects the consumer satis-
faction level of appliance a. Here, we solve the problem of
Eq. (13) by the quadratic utility functions [35] as

Ua,n(dan ) =


βadan −

θa

2
(dan )

2 if 0 ≤ dan <
βa

θa

(βa)2

2θa
if dan ≥

βa

θa

(16)

where θa is a predetermined parameter.
In view of the above analysis, the utility of the operation of

an appliance is based on its load consumption. Additionally,
the settings of parameters β and θ determine the capability
of an appliance to create utility. Each appliance should be
set a unique value for β and θ that depends on consumer
preference [29]. For example, the consumer operates the oven
to fulfil a task for 0.5 h to produce the best utility of 8/3. Thus,
the operation of the oven consumes 1 kWh electricity to work
0.5 h and creates a utility value of 8/3. According to Eq. (14),
we have β/θ = 0.5 and (β)2/2θ = 8/3. To meet the two
equations, the value of β and θ are 16/3 and 32/3, respectively.

D. CONSUMPTION BEHAVIOUR BASED ON COST
EFFICIENCY
On the basis of the previous description, the consumption
cost includes the electricity payment and the discomfort cost.
Due to consumers having different preferences for electricity
payments and discomfort costs, the cost efficiency varies as
preference weights of electricity payments and discomfort
costs change. From Eq. (3), it is easy to trade-off the electric-
ity payment and consumers’ discomfort, but the reduction in
electricity consumption comes at the expense of a loss of user
comfort. An optimal residential power scheduling algorithm
needs to consider consumer consumption efficiency. In this
section, we model consumption behaviour based on cost
efficiency. In the process of which, we propose to reduce
consumers’ electricity consumption and improve their sat-
isfaction through maximizing cost efficiency based on their
consumption preferences. The proposed approach can be pre-
sented as Eq. (17), as shown at the bottom of the next page.

Eq. (17) shows that if the users are committed to reduc-
ing their electricity payment by tolerating discomfort, their
preference weight for the discomfort cost decreases as their
tolerating capacity increases. When the consumers do not
consider completely the discomfort and only care about the
reduction of their electricity bill. That is to say, the consumers
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have maximal tolerability for the discomfort with a com-
plete preference for the electricity payment, and µ1=1, µ2=0.
Mathematically, Eq. (17) can be converted into the following
optimization problem:

maximize
X̂∈X

∑
a∈A

∑
n∈T a

U (dan , ω
a)∑

t∈T
max

{
P1t Lt , P

2
t Lt+(P

1
t −P

2
t )L
′
t
}
+
∑
t∈T

Payaddt

(18)

In contrast, if users enjoy the process of electricity con-
sumption, their preference weight for the electricity payment
decreases as their discomfort preference weight increases.
In this case, the consumers select a comfortable power for
each appliance to operate it in a satisfactory time slot t ,
in order tominimize their discomfort andmaximize their con-
sumption utility. Thus, consumers have a complete preference
for discomfort, and µ1=0, µ2=1. Mathematically, Eq. (17)
can be converted into the following optimization problem:

maximize
X̂∈X

∑
a∈A

∑
n∈T a

U (dan , ω
a)∑

a∈A1
δa(tsa − trba )k +

∑
t∈T

∑
a∈A2

ρta(x ta − x̂ ta)2
(19)

where X̂ denotes the feasible consumption set after optimiz-
ing its electricity consumption demand.

IV. LOAD SCHEDULING BASED ON COST EFFICIENCY
In the proposed method, the trade-off of the electricity pay-
ment cost and the discomfort cost reflects the consumer’s
satisfaction; consumers consider not only the electricity pay-
ment but also comfort in electricity consumption. According
to the characteristics of the scheduled and non-scheduled

appliances in an in-home environment, users can schedule
their electrical appliances or curtail a specific part of their
electric load to reduce their consumption of electricity. Thus,
except for electricity payment, some discomfort costs need
to be involved in calculating cost efficiency. In view of
the aforementioned analysis, a complementary relationship
exists between the electricity payment and the discomfort
cost. In this paper, we use a pair of parameters, µ1 and µ2,
tomap out the relationship andmodel consumption behaviour
for a smart house based on the distribution of the parameter
values. Detailed information for the consumption models is
provided below.

A. SMART HOUSE CONSUMPTION MODEL I
In actual electricity consumption, some users consume elec-
tricity and manage their load demand through TOU pricing.
In this case, the best cost efficiency can be defined as follows:

CE I =

∑
a∈A

∑
n∈T a

U (dan , ω
a)∑

a∈A

∑
t∈T

P1t x ta
(20)

The consumption load allocation based on CE I can be
obtained by solving the following optimization problem:

X̂1 = arg max
X̂1∈X

∑
a∈A

∑
n∈T a

U (dan , ω
a)∑

a∈A

∑
t∈T

P1t x ta
(21)

where X̂1 denotes the feasible consumption set after opti-
mizing its electricity consumption demand for smart house
consumption model I.

C .E . =
Ua,n(dan )

µ1Pay+ µ2DC

=

∑
a∈A

∑
n∈T a

U (dan , ω
a)

µ1

(∑
t∈T

max
{
P1t Lt , P

2
t Lt + (P1t − P

2
t )L
′
t
}
+
∑
t∈T

Payaddt

)
+ µ2

( ∑
a∈A1

δa(tsa − trba )k +
∑
t∈T

∑
a∈A2

ρta(x ta − x̂ ta)2
)

s.t. C1 : Lt =
∑

t∈T ,a∈A

x ta, Pay
add
t = P′t (dlt )

(
Lt − L̂t

)
ηt

C2 : x ta = ra, ∀t ∈ {tsa, . . . , t
s
a + TL

a
n − 1} ⊂ [trba , tr

c
a], ∀a ∈ A1

C3 : x ta = 0, ∀t ∈ T\{tsa, . . . , t
s
a + TL

a
n − 1}, ∀a ∈ A1

C4 : prba ≤ x
t
a ≤ pr

c
a, ∀t ∈ [trba , tr

c
a], ∀a ∈ A2

C5 : x ta = 0, ∀t ∈ T\[trba , tr
c
a], ∀a ∈ A2

Variables :

tsa(a ∈ A1)

x ta(a ∈ A2, t ∈ T ) (17)

where C1 is the definition of Lt and Payaddt as Eq. (4) and Eq. (8). C2 is the consumption requirements for the appliance a(a ∈ A1). C3 denotes the non-operating
state of the appliance a(a ∈ A1). C4 is the consumption boundaries for the appliance a(a ∈ A2). C5 denotes the non-operating state of the appliance a(a ∈ A2).
Variables are the constrain for tsa and x

t
a besides C1, C2, C3, C4 and C5.
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B. SMART HOUSE CONSUMPTION MODEL II
In DR programmes based on DAB pricing, consumers upload
the load demand L̂=(L̂1, L̂2, . . . , L̂24) to bid for their electrical
energy. In this case, to meet the bid requirements, consumers
predetermine their load starting time and work power. If users
operate their electrical appliances according to the upload
demand without scheduling, the best cost efficiency can be
defined as follows:

CE II =

∑
a∈A

∑
n∈T a

U (dan , ω
a)∑

t∈T
max

{
P1t Lt , P

2
t Lt + (P1t − P

2
t )L
′
t
} (22)

The consumption load allocation based on CE II can be
obtained by solving the following optimization problem:

X̂2 = arg max
X̂2∈X

∑
a∈A

∑
n∈T a

U (dan , ω
a)∑

t∈T
max

{
P1t Lt , P

2
t Lt + (P1t − P

2
t )L
′
t
}

s.t. C1 : Lt =
∑

t∈T ,a∈A

x ta (23)

where X̂2 denotes the feasible consumption set after opti-
mizing its electricity consumption demand for smart house
consumption model II.

C. SMART HOUSE CONSUMPTION MODEL III
In actuality, consumers tend to choose lower prices for the
operation of their electrical appliances. In this case, con-
sumers shift their load into times with lower prices rather than
a predetermined operation time or by decreasing the work
power of some appliances. As a result, the discomfort cost
is produced, and the best cost efficiency can be defined as
follows:

CE III =

∑
a∈A

∑
n∈T a

U (dan , ω
a)

µ1

(∑
t∈T

max
{
P1t Lt ,P

2
t Lt + (P1t − P

2
t )L
′
t
})

+µ2

( ∑
a∈A1

δa(tsa − tr
a
a )
k
+
∑
t∈T

∑
a∈A2

ρta(x
t
a − x̂

t
a)

2

)
(24)

The consumption load allocation based on CE III can
be obtained by solving the optimization problem as
Eq. (25) and (26), as shown at the bottom of the next page.

D. SMART HOUSE CONSUMPTION MODEL IV
For real-time consumption, consumers can slightly change
their load demand, resulting in a real-time load above or
below the original load demand. As a result, the portion in
excess of the original load should be punished while the
portion that is inferior to the original load should be rewarded.
In this case, the best cost efficiency under the proposed power
manager method can be defined as follows:

The consumption load allocation based on CE IV can be
obtained by solving the optimization problem as Eq. (27), as
shown at the bottom of the next page.

FIGURE 2. Day-ahead electricity prices.

V. SIMULATION RESULTS AND DISCUSSION
A. THE DESCRIPTION OF THE CASE
In this section, we calculate the cost efficiency of the
different consumption preferences, analyse the consumers’
consumption efficiency for maximal cost efficiency, and
test the performance of the proposed power scheduling
algorithm.

The used DAB, derived from the electricity price offered
to the public in Australia in 2013.9.1 [36], is introduced. The
retail electricity prices announced by the utility one day ahead
are presented in Figure 2. We set P2t = 1.5P1t as a refer-
ence [21]. The two types of residential electrical appliances
with scheduling horizons mentioned above are managed. The
refrigerator is operated at a constant power of 0.15 kWh all
day. The oven works at a power of 1 kWh to fulfil a task
for 1.5 h during its scheduling horizon (e.g., 6 am-8 am,
11 am-1 pm and 6 pm-8 pm). The CW is operated at a power
of 0.5 kWh to fulfil a task for 1 hour during its scheduling
horizon (e.g., 6 pm-8 am). The TV is operated at the power of
0.15 kWh within an interruptible time range (e.g., 7 am-9 am,
11 am-2 pm and 7 pm-11 pm). The 3 appliances mentioned
above belong to the first group of appliances. However, light-
ing works by the power in [0.3, 0.8] within an interruptible
time range (e.g., 6 am-12 pm). The AC is operated with the
power in [0.8, 2] all day. The 2 appliances belong to the
second group of appliances.

More than one task may be fulfilled by one appliance in
a day. Different appliances have different utility parameters
on the basis of their task fulfilment and power, and the utility
produced by the fulfilment of every single task composes its
total utility. For instance, if the CW is operated continuously
two times in a day, its task number is 2. Similar to those of the
CW, the utility and powerµ1µ2µ1µ2 parameters of all typical
appliances selected in this paper are presented in Table 1
as [21], [33]. In addition, the time horizon, the predetermined
starting time, the task number, the predetermined demand
and demand constraints for consumers are all set in Table 1
as [21], [33]. The parameters (µ1 and µ2) set for the different
models are discussed in the following simulation experiments
shown in Table 2.
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B. COST EFFICIENCY ANALYSIS
In this section, we conduct a simulation experiment based on
model I to calculate the cost efficiencies of each appliance at
starting time slot t . In the experiment, the 6 kinds of appli-
ances mentioned above are used, and their settings are shown
in Table 1. Two types of cost efficiencies are analysed. The
first is a case in which the appliances work with a constant
power, as in Table 1; especially in the case of lighting and
AC power, which are set to 0.4 kWh and 1 kWh, respectively,

with demands of 3.2 kWand 24 kW, respectively. The number
of tasks for all appliances is one, and additional electricity
payments are not considered. The experiment aims to find
the best consumption case by analyzing the cost efficiency of
each appliance to fulfil one task at starting time slot t . The
simulation results of cost efficiencies are shown in Figure 3.

From Figure 3, under the price mechanism shown in
Figure 2, the best cost efficiency for an oven is obtained
at 6 am, and the CW has the best cost efficiency at 4 am.

X̂3 = arg max
X̂3∈X

∑
a∈A

∑
n∈T a

U (dan , ω
a)

µ1

(∑
t∈T

max
{
P1t Lt ,P

2
t Lt + (P1t − P

2
t )L
′
t
})
+ µ2

( ∑
a∈A1

δa(tsa − traa )k +
∑
t∈T

∑
a∈A2

ρta(x ta − x̂ ta)2
)

s.t. C1 : Lt =
∑

t∈T ,a∈A

x ta

C2 : x ta = ra, ∀t ∈ {tsa, . . . , t
s
a + TL

a
n − 1} ⊂ [trba , tr

c
a], ∀a ∈ A1

C3 : x ta = 0, ∀t ∈ T\{tsa, . . . , t
s
a + TL

a
n − 1}, ∀a ∈ A1

C4 : prba ≤ x
t
a ≤ pr

c
a, ∀t ∈ [trba , tr

c
a], ∀a ∈ A2

C5 : x ta = 0, ∀t ∈ T\[trba , tr
c
a], ∀a ∈ A2

Variables :

tsa(a ∈ A1)

x ta(a ∈ A2, t ∈ T ) (25)

where X̂3 denotes the feasible consumption set after optimizing its electricity consumption demand for smart house consumption model III.

CE IV =

∑
a∈A

∑
n∈T a
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a)
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(∑
t∈T
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{
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)
(26)
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x ta (a ∈ A2, t ∈ T ) (27)

where X̂4 denotes the feasible consumption set after optimizing its electricity consumption demand for smart house consumption model IV.
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TABLE 1. Smart house appliance settings and constraints.

FIGURE 3. The cost efficiencies of each appliance at starting time slot t .

If the oven fulfils a task in the morning, at noon and at
night, respectively, it has higher cost efficiency when ending
its work at 7 am, 12 am and 7 pm, respectively. Similarly,
if the CW fulfils two tasks during its operational time range,
it can obtain a higher cost efficiency working between 4 am
and 6 am. The TV, lighting and AC are interruptible appli-
ances, and their time length in the fulfilment of one task
is flexible. The refrigerator is a non-schedulable appliance.
In view of its characteristics, the power management of the
refrigerator can be enforced by the appliance itself. However,
the consumer can select the starting time for the TV, lighting
and AC based on their preferences and the distribution of
the corresponding cost efficiencies. In addition, of the four
kinds of appliances compared, the TV has the highest cost
efficiency, the AC has the second highest cost efficiency,
the refrigerator has the third highest cost efficiency, and the
lighting has the smallest cost efficiency. Based on the results,

FIGURE 4. The cost efficiencies of AC and Lighting at with different work
power at starting time slot t .

to reduce electricity consumption, consumers can selectively
shift or curtail the electricity consumption derived from the
TV, lighting and AC.

In another case, appliances work on a flexible power sched-
ule. For example, lighting and the AC are operated by steps
0.1 and 0.3 in their power intervals, respectively. The simula-
tion results of the cost efficiencies for lighting and the AC at
different powers at starting time slot t are shown in Figure 4.
From Figure 4, under different power usages, lighting and the
AC achieve different cost efficiencies, and they have higher
cost efficiencies at higher power usages. Thus, lighting and
the AC can be scheduled by changing their work power based
on consumer preference.

C. IMPACT OF DISCOMFORT COST AND ADDITIONAL
PAYMENT
Based on the analysis of the six household electrical appli-
ances, to reduce electricity consumption, we consider not
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FIGURE 5. Electricity payment cost in Model I-IV, respectively.

FIGURE 6. Normalization discomfort cost in Model III-IV.

only the consumer’s electricity payment but also the con-
sumer’s comfort in changing the predetermined status for
each appliance. For instance, we can shift the oven from 7 am
to 6 am and change the work power of the AC from 1.5 kWh
to 1 kWh. However, this will produce discomfort costs. In this
section, a simulation experiment is conducted to test the
impact of the discomfort cost. In the experiment, parameters
(µ1 and µ2) setting are set as shown in Table 2, and the
appliance setting is as presented in Table 1. For each appli-
ance, the electricity payment cost before and after scheduling
and the discomfort cost after scheduling are shown in Figure
5 and Figure 6, respectively. From Figure 5, due to the starting
time and operation power (except for the load demand in
different models being different, the electricity payment costs
in models I-IV are different.

From Figure 6, the discomfort cost of the refrigerator is
zero because it is a non-schedulable appliance. In addition,
since model I and model II have no time delay and power
change, a discomfort cost is not produced. Due to the oven
operation having a longer time delay and the operational
power of the lighting being lower in model III than in model
IV, the discomfort costs of the oven and lighting in model III
are higher than those in model IV. However, since consumers
respond to the price signal by shifting TV, CW and AC use
to the times with lower electricity prices and because the
operational power of the TV is lower than in model III, the
discomfort cost of the TV, CW and AC in model IV is higher
than in model III.

FIGURE 7. Interval cost efficiency of the Model III-IV.

The distribution of the cost efficiencies after scheduling
is shown in Figure 7. From Figure 7, the different electric-
ity consumption preferences for consumers achieve different
cost efficiencies. Cost efficiency is the lower when users have
a greater preference for the discomfort cost. Cost efficiency is
the higher when users have a greater preference for the elec-
tricity payment. In real-time consumption, the two extreme
cases are not advisable because the former produces maximal
discomfort, whereas the latter leads to expensive electricity
bills. We also find that the cost efficiency gradually decreases
as the consumer comfort preference goes down. Additionally,
we calculate the cost efficiency before scheduling and find
that its value is 3.6169. Compared with the values in Figure
7, the smallest cost efficiency in the interval is larger than the
cost efficiency of 3.6169. Therefore, electricity consumption
satisfaction depends on the electricity payment and consumer
discomfort preference; when taking these preferences into
account, the discomfort cost helps to boost the cost effi-
ciency. Consumers can choose a kind of cost efficiency that
is preferentially suitable for managing their load by assessing
their load demands and income and then constraining their
electrical consumption behaviour in concert with this.

For the additional payment, in model IV, consumers’ real-
time consumption deviates from bid demands and results
in lower or higher electricity payments or discomfort costs.
From Figure 7, cost efficiency in model IV is higher than
in model III, which shows that the additional payment can
increase the value of cost efficiency because of the policy in
which people are rewarded for falling below the threshold
and punished for exceeding it. In addition, the simulation
result presented in Figure 7 shows that it is easy to produce
higher electricity payments or lower discomfort costs because
of consumers’ increasing comfort preferences. Whether the
additional payments increase or decrease the total electricity
cost, the variation trends of cost efficiency and the additional
payment in the corresponding interval are consistent. Further-
more, as shown in Figure 8, the consumption shape curves of
models I and II have a wide range of oscillation. However,
in contrast to the curves of model I and II, the consumption
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TABLE 2. Parameters (µ1 and µ2) setting for the different smart house consumption models.

TABLE 3. Values of indicators for the consumption model I-IV.

FIGURE 8. Load shapes of the Model I-IV, respectively.

shape curves of models III and IV are smoother. Notably,
the consumption shape curve of model IV is smoother than
the other curves. The results show that the discomfort and the
additional payment can effectively smooth the user consump-
tion shape curve.

D. EFFECT OF COST EFFICIENCY SCHEDULING BASED ON
CONSUMER PREFERENCE
In this section, the total electricity consumption, consumer’s
electricity payment and the electricity consumption reduction
ratio, et al., of the different models are compared to test the
performance of the proposed power scheduling algorithm.
In the experiment, we assume the consumer’s preference
weight for the electricity payment and the discomfort cost are
0.5 and 0.5, respectively (namely, µ1 = 0.5 and µ2 = 0.5).
The simulation results are shown in Table 3.

As presented in Table 3, the total electricity consumption
of model IV is the lowest among all consumption models,
whereas that of model I is the highest. Compared with model
I, model III and IV can achieve reduced electricity consump-
tion of 8.83 kW, and rate reductions of 21.43%, respectively,
whereasmodel II achieves a reduction in electricity consump-
tion by 5.87 kW with a rate reduction of 14.25%. Addi-
tionally, although model III and IV have the same reduction
rate in electricity consumption, the cost efficiency of model
IV is the highest, and its electricity payment is the lowest
among all of the consumption models. At the same time,
as shown in Figure 8, compared to that of the other consump-
tion models, the consumption shape curve of model IV is
the smoothest. According to the above analysis, the proposed
DR algorithm can achieve better consumption efficiency than
other consumption models. Additionally, the cost efficiency
scheduling based on consumer’s preference is effective.

VI. CONCLUSION
In this paper, a novel residential power scheduling algorithm
based on cost efficiency in a smart grid is proposed. The con-
sumption cost for this is composed of the electricity payment
cost and the discomfort cost, and the trade-off of the electric-
ity payment cost and the discomfort cost is achieved by tuning
the values of parameters (µ1 and µ2). The consumption costs
and cost efficiencies based on the consumer consumption
preferences of six electric appliances (including an oven, a
refrigerator, a TV, lighting, a CW and an AC) derived from a
smart house were discussed. Four smart house consumption
models (model I, model II, model III and model IV) were
constructed: model I is a DR programme with TOU pricing
mechanism,model II is based on the DAB pricingmechanism
without load scheduling, model III is based on the DAB
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pricing mechanism with load scheduling, and model IV is
the proposed algorithm based on real-time consumption with
RT pricing. Through the discussion of the four consumption
models, consumption that satisfies consumers for the six
electric appliances is analysed, the impact of the discomfort
and additional payment is discussed, and the effect of the pro-
posed method is validated. The following detailed conclusion
can be drawn from this research.

1) The electricity payment and consumer discomfort
caused by scheduling of electrical appliances are considered
together to model cost efficiency. A series of simulation
experiments are conducted to analyse the cost efficiency of
each appliance using different starting times or flexible work
power. The simulation results show that users can find the
optimal work time and power for their electrical appliances,
not blindly, but felicitously, scheduling their load through the
application of the proposed method.

2) Consumer preferences regarding electricity payments
and discomfort costs are mapped into the distribution of the
parameters (µ1 andµ2). The corresponding parameter values
in the distribution by step 0.1 are set to analyse consumer
satisfaction with the cost efficiency. The simulation results
show that the electricity payment and consumer discomfort
preference affect electricity consumption satisfaction, and
taking this into account, we find the discomfort cost helps to
boost cost efficiency. This information helps users effectively
trade-off their consumption preferences to obtain the best
economic efficiency by setting reasonable weights for elec-
tricity payments and discomfort costs.

3) TOU, DAB and RT pricing mechanisms are used in
the proposed method. Some cases are studied to test the
performance of the proposed power scheduling algorithm,
and the impact of the discomfort and additional payment are
discussed. The simulation results show that the discomfort
and the additional payment can effectively smooth users’ con-
sumption shape curves. The proposed method based on DAB
and RT pricing mechanisms can effectively reduce users’
electricity consumption. Notably, the RT pricing mechanism
is adopted in the proposed method to help consumers obtain
the best consumption efficiency.

4) The electricity payments and discomfort costs of six
residential electrical appliances are analysed in models I-IV.
In view of the analysis, the effect of cost efficiency scheduling
based on consumer consumption preferences is demonstrated
by discussing the load shapes of models I-IV and assess-
ing the reduction of electricity consumption. The simulation
results show that the proposed method with RT pricing can
curtail 8.83 kW of electricity use and that the reduction ratio
is 21.34%. In contrast, the proposed method with RT pricing
obtains the smoothest load shape curve and provides the best
consumption efficiency among all consumption models.

This work describes a power scheduling algorithm based
on cost efficiency and consumer consumption preferences
for effectively scheduling the electrical appliances in a
smart house. Consumer consumption efficiency, satisfac-
tory and consumption behavior are discussed. Some hidden

information has been explored that can help the electricity
industry successfully execute DR schemes in the face of
future challenges. Even so, a further investigation should be
required to consider the renewable energy resources such as
photovoltaic system and wind turbine in smart house. Future
studies should explore the distributed generation and storage
model.
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