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ABSTRACT This article proposes a scheduled step-size normalized subband adaptive filter (NSAF)
algorithm in stationary system environment. The mean-square deviation of the NSAF according to the step
size is analyzed geometrically to construct a pre-designed trajectory. The mean-square deviation learning
curve of the NSAF algorithm is forced to follow the pre-designed trajectory. This method removes the need
for the NSAF algorithm to introduce tuning parameters and does not add any additional online computation.
The table of the scheduled step sizes can be reconstructed online in proportion to not only the number of taps
but also the number of subbands once they are scheduled offline. The novel memory-efficient scheduling
scheme minimizes the memory space required and simplifies operation without performance degradation.
Because of these features, the proposed algorithm performs as well as the variable-step-size NSAFs studied
previously, and is very suitable for chip level implementation in terms of computational complexity and
memory space. Simulation results show that the proposed algorithm is robust against external environment
change and has good performance compared to the existing variable step-size algorithms without any
additional online computation and tuning parameter.

INDEX TERMS Adaptive filters, normalized subband adaptive filter algorithm, scheduled step size.

I. INTRODUCTION
Adaptive filters are widely used in signal processing fields
such as system identification, echo cancellation, and active
noise control [1]–[5]. The primary performance indicator of
a good adaptive filter is that the algorithm should have fast
convergence speed, low steady-state error, and low compu-
tational complexity. Among the adaptive filter algorithms,
the normalized-least-mean-square (NLMS) algorithm is most
commonly used because of its simplicity of implementation
and low computational complexity [6]–[8]. However, it suf-
fers a large performance degradation in terms of convergence
speed for correlated inputs. To overcome this drawback,
several adaptive filter algorithms have been proposed. The
affine-projection (AP) algorithm is one of an important fam-
ily of adaptive filter algorithms [9]–[12]. It can compensate
for the disadvantage of the NLMS algorithm by accumulat-
ing and using multiple input vectors instead of one input
vector, but the computational complexity increases because
of the matrix inverse operation. To solve this computational
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complexity problem, a method of updating the auxiliary fil-
ter coefficient instead of updating the actual adaptive filter
coefficient has been proposed [13]–[17]. This method uses
the time-shift structure of the input signal to represent the
actual adaptive filter coefficient as the sum of the auxiliary
coefficients. The advantage is that when only the error signal
is needed, updating this auxiliary coefficient is sufficient.
An approximate filtering method using only the first element
of the error vector and approximating values using the first
element for the remaining elements was also studied [13],
[14]. This method reduced the computational complexity
from MK to M , where K denotes for the projection order.
Because the approximate filtering method includes assump-
tions, a fast AP algorithm without assumptions has also been
proposed [18], [19]. Many other studies on the AP algorithm
are summarized in [20].

The normalized subband adaptive filter (NSAF) algorithm
is another important family of algorithms that can
improve the convergence performance of adaptive filters
[3], [21]–[23]. Lee and Gan proposed the NSAF, which is
based on the minimum disturbance principle [23]. The NSAF
algorithm has the effect of whitening the correlated input
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because it divides the input signal and the desired signal by
several frequency bands, downsamples it, and reconstructs
it. However, the performance of NSAF is severely degraded
when impulsive noise is introduced. Impulsive noise refers
to noise having a very large amplitude in a short time with a
low probability. This impulsive noise environment is found in
various fields such as acoustic signal processing, active noise
control, and communication. To secure robustness against
such impulsive noise, the sign NSAF algorithm and step-size
scaler concept were proposed [24], [25]. The sign NSAF
algorithm mitigates the performance degradation caused by
impulsive noise by using only the sign of the error signal,
but has a disadvantage in that the convergence speed is slow.
The step-size scaler does not update the filter coefficients by
making the step size very small when impulsive noise occurs.

In addition to the research to mitigate the performance
degradation of the NSAF algorithm caused by the external
environment, research to improve its inherent performance
was also conducted. The step size of the NSAF algorithm is a
trade-off between the convergence rate and the steady-state
error. To address this problem, several variable-step-size
NSAFs were introduced [26]–[31]. A variable-step-size
matrix NSAF (VSSM-NSAF) was proposed by making the
assumption that the noise variance is the same as the L2-norm
of the a posteriori error [26]. The VSSM-NSAF algorithm
exhibits good tracking performance in a non-stationary envi-
ronment by estimating the power of system noise, but still
suffers from a large steady-state error. The NSAF with vari-
able step size (NSAF-VSS) calculates the step size at every
iteration [27]. Because it calculates the optimal step size
for each iteration, it exhibits a faster convergence rate and
lower steady-state error compared to a fixed-step-size NSAF.
However, because NSAF-VSS does not estimate the vari-
ance of the error signal, it does not respond immediately to
sudden system changes. To solve this problem, the variable
step-size NSAF (VSS-NSAF) was proposed [28]. Because
the VSS-NSAF estimates the variance of the error signal
at every iteration, the algorithm converges well even if a
sudden system change occurs. However, VSS-NSAF requires
an additional online calculation to estimate the error sig-
nal. The variable individual step-size NSAF (VISS-NSAF)
further improves the performance of the adaptive filter by
calculating the optimal step size for each frequency band for
each iteration [29], [30]. However, it also requires an online
calculation to compute the optimal step size for each subband.
Recently, the novel variable-step-size NSAF (NVSS-NSAF)
was proposed by using a combined error cost function, but it
did not exhibit better performance than the previously studied
variable-step-size NSAFs [31].

These variable-step-size NSAFs have much better conver-
gence performance than fixed-step-size NSAFs, but require
several tuning parameters and additional online calcula-
tions to compute the optimal step size in each iteration.
These tuning parameters are difficult to set and should be
reset if the system environment changes. Further, the speed
of the algorithm decreases due to the increase in the

computational complexity. To solve this problem, many stud-
ies have been conducted to reduce the computational amount
of NSAF [32]–[34]. Although algorithms to reduce the com-
putational amount have been introduced, algorithms that
include the variable-step-size concept still cannot avoid addi-
tional online computation. To completely solve this problem,
the step-size scheduling scheme was studied for NLMS and
AP [35], [36]. By geometrically analyzing the mean-square-
deviation (MSD) learning curve, a step-size table associated
with a pre-designedMSD curve is created and assigned every
moment. This approach exhibits very good convergence per-
formance without involving any tuning parameters or addi-
tional online calculations. However, this approach has not
been studied for NSAF, one of the important families of adap-
tive filters. The NLMS and AP algorithms are not suitable for
actual chip-level implementation because the performance of
the NLMS algorithm is highly degraded for correlated input,
and the AP algorithm involves the matrix inversion operation.

Therefore, this article proposes a scheduled step-size
NSAF (SS-NSAF) algorithm considering the actual
chip-level implementation of the algorithm. In this study,
the step-size scheduling scheme is extended to the NSAF in a
stationary environment so as to obtain excellent performance
without additional tuning parameters or online calculations.
A new MSD analysis is conducted for a fixed step size, and
based on this, the optimal step size in each iteration is found
and stored in a table. In addition, it was proved that the pro-
posed algorithm can be automatically adapted to the number
of taps and the number of subbands. The scheduled step-size
table forces the MSD curve to follow the pre-designed tra-
jectory consisting of an iteration and step size pair, without
any additional online calculation, thereby providing excellent
convergence performance. In addition, we propose a novel
memory-efficient step-size scheduling method to minimize
the memory space required by the algorithm and maxi-
mize the operational efficiency, thus suggesting an optimal
algorithm for real chip-level implementation.

This article is organized as follows. Section 2 analyzes
the MSD to find the two asymptotes of the NSAF algo-
rithm, and Section 3 schedules the step size based on
this. Section 4 proposes a modified scheduling method for
memory efficiency and chip-level implementation efficiency.
Finally, Section 5 evaluates the performance of the proposed
algorithm by comparing it to that of other algorithms.

II. MSD ANALYSIS OF THE NSAF ALGORITHM
The desired signal d(n) is defined as

d (n) = uT (n)w+ v (n) , (1)

where u (n) is M -dimensional input vector with variance
σ 2
u , and w is an M -dimensional optimal weight vector that

we have to estimate. The variable v (n) is white Gaussian
measurement noise with variance σ 2

v , and it is independent
of the input signal.

Fig. 1 shows a block diagram of the NSAF algorithm,
where N is the number of subbands, Aj (z) , j = 0, . . . ,
N − 1 are analysis filters, and Sj (z) , j = 0, . . . ,N − 1 are
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FIGURE 1. Block diagram of the NSAF algorithm.

synthesis filters. The desired signal d(n) and the input signal
u(n) are divided into frequency bands by the analysis filters.
Each divided signal is defined as dj(n) and uj(n), where
j = 0, 1, . . . ,N − 1. The adaptive filter output is yj(n). The
partitioned signals dj(n) and yj(n) are then decimated by a fac-
torD. These two decimated signals, dj(n) and yj(n), are added
together and then interpolated with the interpolation factor I .
The synthesis filter bank S(z) then merges these interpolated
signals. The decimated output signal is defined as yj,D(i) =
uTj (i)ŵ, where uj(i) = [uj(iN ), uj(iN − 1), . . . , uj(iN −M +
1)]T , and ŵ(i) is an estimate ofw at the ith iteration. The index
n denotes the time index of the original signal, and the index i
denotes the time index of the decimated signal. In this study,
D and I are set equal to N for critical decimation.
The basic adaptive filter coefficient update equation of the

NSAF algorithm can be written as

ŵ (i+ 1) = ŵ (i)+ µ
N−1∑
j=0

uj (i)

uTj (i)uj (i)
ej,D (i) . (2)

The weight-error vector of the system is defined as w̃ (i) ,
w − ŵ (i), then the basic adaptive filter coefficient update
equation, (2), is expressed as

w̃ (i+ 1) = w̃ (i)− µ
N−1∑
j=0

uj (i)

uTj (i)uj (i)
ej,D (i)

= F (i) w̃ (i)− µ
N−1∑
j=0

uj (i)

uTj (i)uj (i)
vj,D (i) , (3)

where F (i) = IM − µ
∑N−1

j=0
uj(i)uTj

uTj (i)uj(i)
, and IM is an

M -by-M identity matrix. The measurement noise signal
vj,D (i) is a white Gaussian signal with average 0 and vari-
ance σvj,D. To perform MSD analysis, we define the MSD
as MSD(i) , E

(
w̃T (i) w̃ (i) | Ui

)
= Tr (P (i)) , where

P (i) , E
(
w̃ (i) w̃T (i) | Ui

)
and Ui , {uk | 0 ≤ k < i}.

We consider u (i) as a deterministic quantity for P (i). The
weight-error vector w̃ (i) and the measurement noise signal
vj,D (i) are assumed to be independent of each other. The
relation between P(i) and P (i+ 1) can then be obtained as
follows:
P (i+ 1) = F (i)P (i)FT (i)

+µ2
N−1∑
j=0

σ 2
vj,D

uj (i)uTj (i)(
uTj (i)uj (i)

)2 . (4)

By taking the trace operation on both sides of (4), the
following equation can be obtained:
Tr(P (i+ 1)) = Tr(FT (i)F (i)P (i))

+µ2
N−1∑
j=0

σ 2
vj,D

uj (i)uTj (i)(
uTj (i)uj (i)

)2 . (5)

Now, Tr(FT (i)F (i)P (i)) can be arranged and bounded as
follows.
Tr(FT (i)F (i)P (i))

= Tr(P (i)− 2µ
N−1∑
j=0

uj (i)uTj (i)

uTj (i)uj (i)
P (i)

+µ2
N−1∑
j=0

uj (i)uTj (i)

uTj (i)uj (i)
P (i))

= Tr (P (i))+
(
−2µ+ µ2

) N−1∑
j=0

uTj (i)P (i)uj (i)

uTj (i)uj (i)

≤ Tr (P (i))+
(
−2µ+ µ2

)
Nλmin (P (i)) , (6)

where λmin (P (i)) is the minimum eigenvalue of the MSD
matrix P (i). Because the inequality Mλmin (P (i)) ≤

Tr (P (i)) is always satisfied, there exists some β ≥ 1,
which gives the approximation λmin (P (i)) ≈

Tr(P(i))
βM . By

combining this approximation with (6), (5) can be written as

Tr(P (i+ 1)) ≈
(
−2µ+ µ2

)
Nλmin (P (i))

+Tr (P (i))+ µ2
N−1∑
j=0

σ 2
vj,D

uTj (i)uj (i)

= γTr (P (i))+ δ. (7)

For notational convenience, two variables γ and δ are
defined as γ

def
=

(
1−

(
2Nµ− Nµ2

)
/ (βM)

)
, δ def

=

µ2∑N−1
j=0

σ 2vj,D

uTj (i)uj(i)
. The general term of the recursion

formula (7) can then be obtained as follows:

Tr(P (i)) ≈ γ iTr (P (0))+
i∑

k=0

γ kδ. (8)

Tr (P(i)) in (8) consist of two parts, the transient part
h1 (i, µ) , γ iTr (P (0)) and the steady-state part h2 (i, µ) ,∑i

k=0 γ
kδ:

h1(i, µ)
def
= γ iTr (P (0)) , h2(i, µ)

def
=

i∑
k=0

γ kδ. (9)

To select the optimum β, we recommend comparing theMSD
learning curve to a wide range of β ≥ 1 for a fixed step size.
The most important element in the system is the nature of
the input. For example, if the input signal is white Gaussian,
the beta must be 1.

III. SCHEDULED STEP-SIZE NSAF ALGORITHM
The proposed algorithm is obtained by geometrically analyz-
ing the MSD curve of the NSAF algorithm. For a fixed step
size between 0 and 1, h1(i, µ) and h2(∞, µ) defined in (9)
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produce straight lines, respectively. The MSD learning curve
switched from the transient part to the steady-state part near
the intersection of the two straight lines. As in [35], these
intersections can uniquely defined for any fixed step size,
which is proved in the following theorem.
Theorem 1: For any iR > i0, where i0 is included in the set

of all positive and zero integers such that

i0 , argmin
i

[(
i−

N
βM

)i
Tr (P (0)) ≤

βµ

2− µ
σ 2
v

σ 2
x

]
(10)

there exists a unique µ ∈ (0, 1], say fN ,M (iR), that satisfies
h1(iR, µ) = h2(∞, µ).
Proof 1: As the step sizeµ increases from 0 to 1, h1(iR, µ)

strictly decreases, but h2(∞, µ) strictly increases. For any
iR > i0, h1(iR, 0) > h2(∞, 0) and h1(iR, 1) < h2(∞, 1),
which proves the theorem.

For a fixed step size µ, the point where h1(iR, µ) and
h2(∞, µ) intersect, i.e., the unique time for the MSD curve to
reach steady-state part, can be obtained. After that cross point,
it is difficult to expect that the MSDwill decrease any further,
and therefore the step size must be changed if the MSD curve
reaches this cross point. With this scheme, the step size µ can
be scheduled as follows:

µi ,

{
1, for i ≤ i0
fN ,M (i), for i > i0,

(11)

where fN ,M (·) is defined in Theorem 1. Whereas the real
numbers iR, the intersection of h1(iR, µ) and h2(∞, µ), can
be calculated for any real number µ ∈ (0, 1], the proposed
algorithm has to generate µ for all integers i > i0, which
is analytically impossible. However, Theorem 1 guarantees
the one-to-one correspondence of fN ,M : {i|i ∈ [i0,∞)} →
{µ|µ ∈ (0, 1]}, which makes it possible to construct the
step-size table by using the following inverse function:

f −1N ,M (µ) =
log

(
h2(∞,µ)
Tr[P(0)]

)
log

(
1− 2Nµ−Nµ2

βM

) . (12)

Fig. 2 helps intuitively understand how to change the step
size when moving from the current iteration to the next itera-
tion. In addition, Table 1 summarizes the scheduled step-size
NSAF algorithm described above.

The following lemma shows the scalability of the con-
structed step-size table with respect to the number of taps M
and the number of subbands N , which means that it is easy to
adapt the constructed lookup table to the number of taps and
the number of subbands.
Lemma 1: For arbitrary tap lengths M1 and M2, and the

number of subbands N1 and N2, the function f
−1
N ,M (·) satisfies

f −1N1,M1
(µ)N1

M1
≈
f −1N2,M2

(µ)N2

M2
. (13)

Proof 2: h1(i, µ) in (9) can be approximated as

h1(i, µ) '
(
1−

2µ− µ2

α

) αN
βM i

Tr (P(0)) , (14)

FIGURE 2. Determine step size at the i th iteration.

TABLE 1. Scheduled step-size NSAF algorithm summary.

where α is any constant satisfying the condition
(2µ− µ2)/(α) � 1 and (αN )/(βM ) � 1. Then (12)
becomes

f −1N ,M (µ) ≈
βM
αN

log
(
h2(∞,µ)
Tr(P(0))

)
log

(
1− 2µ−µ2

α

) . (15)

Therefore, once we construct the step-size lookup table for
the given tap length M1 and the number of the subbands N1,
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TABLE 2. Reset algorithm for sudden system change.

the table can be easily modified for any M2 and N2 by using
this scalability property.

IV. PRACTICAL CONSIDERATIONS
A. STEP-SIZE SCHEDULING SCHEME
The step-size lookup table for every iteration occupies a large
memory space. In addition, when an algorithm is actually
implemented at the chip level, the division operation performs
an inaccurate approximation operation. To solve these practi-
cal problems, the following downsampled scheduling method
is proposed. The proposedmethod constructs the lookup table
with only m pairs of (i∗(k), µ∗(k)) for k = 1, . . . ,m:

0.5µ∗(k − 1) = µ∗(k), i∗(k) , bf −1N ,M (µ∗(k))c − 1 (16)

where i∗(0) , i0 and µ∗(0) , 1. By changing the step size to
half of the previous value at i∗(k), if only one initial step size
is stored in the memory space in a real chip implementation
situation, the step size can be changed at the scheduled time
through only floating-point arithmetic.

B. SUDDEN SYSTEM CHANGES: RESET ALGORITHM OF
THE STEP-SIZE TABLE
Because the proposed algorithm is designed for a stationary
environment, a reset algorithm is needed to cope with sudden
system changes. The reset algorithm used in [36] is applied to
the proposed algorithm. The reset algorithm is based on the
error signal, where σ̄ 2

e,i is the time-averaged value of e2i . With
w = 0, σ̄ 2

e,i is calculated as

σ̄ 2
e,0 = E(e20) = σ

2
d , (17)

σ̄ 2
e,i+1 = ασ̄

2
e,i + (1− α)e2i . (18)

The covariance of the a priorimeasurement error ei converges
as follows:

lim
i→∞

E(e2i ) ≈ σ
2
u Tr (P(∞))+ σ 2

v

≈
2+ (β − µ)

2− µ
σ 2
v , e2th. (19)

If σ̄ 2
e,i > γ e2th, it is determined that the system has changed,

and the scheduling sequence is initialized. The reset algo-
rithm is summarized in Table 2.

C. COMPUTATIONAL COMPLEXITY
The number of computations of the proposed algorithm
is compared with other variable step-size algorithms. The
length of w is M , the lengths of the analysis filter bank and

TABLE 3. Summary of the computational complexity.

the synthesis filter bank are both L, and the number of sub-
bands is N . The computational complexities of the SS-NSAF
and other existing VSS-NSAF algorithms are summarized
in Table 3. A typical NSAF algorithm requires 3M+3NL+1
online computation for every iteration. NSAF-VSS algorithm
requires more computation to calculate the optimal step size
for each iteration, which requires on-line computation as
much as 2M + 14. So the total computational complexity of
the NSAF-VSS algorithm is 5M +3NL+15. Also, the VSS-
NSAF algorithm requires a total amount of 5M + 3NL +
4N + 14 to estimate the error signal at every iteration and
to calculate the optimal step size based on this error signal.
NVSS-NSAF algorithm also requires the calculation of 3M+
3NL+N (M+2N+7)3M+3NL+7 because of the additional
estimation process and the calculation of optimal individual
step size for each iteration. On the other hand, the proposed
algorithm does not require any additional multiplication oper-
ation because the step-size table is calculated off-line and
the pre-stored step sizes are applied in every iteration in the
on-line process.

V. SIMULATION RESULTS
In this section, various simulations are presented to verify
the performance of the proposed algorithm in the channel
estimation scenario. The unknown filter coefficient w was
generated randomly as a unit vector, and the length of the
adaptive filter and the length of the unknown filter were set
to be the same. Also Tr (P(0)) is assumed to be zero. The
signal-to-noise ratio (SNR) is defined as

SNR , 10log10
(
σ 2
y /σ

2
v

)
. (20)

In order to verify the performance of the proposed algo-
rithm in a correlated input situation, the autoregressive (AR)
models are set as follows in equations (21), (22) and the
white Gaussian input is filtered and applied to the simulation
environment.

R1 (z) =
1

1− 0.95z−1
. (21)

R2 (z) =
1

1− 1.6z−1 + 0.81z−2
. (22)

In order to confirm how well the proposed algorithm tracks
the changed system when there is a sudden change in the
system environment at a certain point in time, we have
newly generated w at half of the total iterations. In addition,
a simulation was conducted to show that the proposed algo-
rithm is robust in a system environment mismatch situation.
Each simulation result was obtained through 10 independent
trials.
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FIGURE 3. NMSD learning curves of the proposed SS-NSAF algorithm
according to the number of subbands N (M=1024, SNR=30dB, White
Gaussian input).

FIGURE 4. NMSD learning curves of the proposed SS-NSAF algorithm
according to the number of subbands N (M=1024, SNR=30dB, AR1 input).

A. INPUT SELF-WHITENING EFFECT THROUGH THE
NUMBER OF SUBBANDS
For correlated input signals, a proper choice of the number of
subbandsN should bemade. In Fig. 3, 4, 5,M and SNR are set
to 1024 and 30dB, respectively. The length of the prototype
filters are set to 8 times N .

The MSD curves according to the number of subbands in
a white Gaussian input situation are shown in Fig. 3. Since
the input signal is not correlated, the NSAF’s self-whitening
effect does not work in this case. Therefore, there is almost
no difference in convergence performance of theMSD curves
according to the number of subbands. The MSD learning
curves according to the number of subbands in AR1 input
environment is shown in Fig. 4. In this case, the best per-
formance is achieved when N = 14. This means that the
input signal is sufficiently whitened at N = 14. Fig. 5
shows the MSD learning curves according to the number of
subbands for the AR2 input. In this case, the misalignment of

FIGURE 5. NMSD learning curves of the proposed SS-NSAF algorithm
according to the number of subbands N (M=1024, SNR=30dB, AR2 input).

FIGURE 6. NMSD learning curves of the conventional-NSAF, ME-SS-NSAF
and SS-NSAF algorithm (M=1024, N=8, SNR=30dB, White Gaussian
input).

the proposed algorithm decreases as the number of subbands
increases. The proposed algorithm shows the best perfor-
mance when about N = 14. This indicates that the input
signal is sufficiently whitened when N = 14.

B. PERFORMANCE COMPARISON BETWEEN SCHEDULED
STEP-SIZE NSAF AND FIXED STEP-SIZE NSAF
The following simulation in Fig. 6 was performed to
check how well the MSD curves of the SS-NSAF algo-
rithm follows the pre-designed trajectory generated from
the respective fixed step-size NSAF algorithms. The simu-
lation was performed in the environment of M = 1024,
N = 8, SNR = 30dB. The simulation result shows that
SS-NSAF follow the pre-designed trajectory well. Therefore,
it was confirmed that the proposed algorithm closely follows
the pre-designed trajectory guaranteed by each step size for
all step sizes between 0 and 1 without any additional online
calculation.
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FIGURE 7. NMSD learning curves of the conventional-NSAF, NVSS-NSAF,
NSAF-VSS, VSS-NSAF and proposed algorithm with sudden system change
environment. (M=1024, N=8, SNR=30dB, White Gaussian input).

C. NOVEL MEMORY EFFICIENT SCHEDULING
The black dotted line in Fig. 6 represents the MSD learning
curve of the novel memory efficient scheduled step-size
NSAF (ME-SS-NSAF). As can be seen in the Fig. 6, ME-SS-
NSAF shows almost the same performance as the full-table
version. The newly proposed ME-SS-NSAF algorithm max-
imizes the efficiency of memory space by storing only the
initial step-size value. In addition, by reducing the step size
by half at the next step-size change point, it guarantees
almost the same performance as the full table version of
the SS-NSAF with a simple decimal point shift operation in
chip-level implementation.

D. PERFORMANCE COMPARISON
In this simulation, the performance of the proposed algo-
rithm is compared with that of the existing algorithms.
The novel variable-step-size NSAF (NVSS-NSAF) designed
by Wen and Zhang [31], the NSAF with variable-step-size
(NSAF-VSS) introduced by Shin et al. [27] and the variable-
step-size NSAF (VSS-NSAF) proposed by Jeong et al. [28]
are included. The simulations were performed to verify the
performance of the proposed algorithm for various condi-
tions. The number of subbands N is set to be two cases, 8
and 16, and the length of the proto type filter is set to be N 2.
Q = 1, δ = 0.0001 and λ = 0.9945 for the NVSS-NSAF,
Tr [P(0)] is set to be 100 for the NSAF-VSS, J (0) is set to be
1 for VSS-NSAF, Tr [P(0)] = 0 and β = 1 for the proposed
algorithm.

Fig. 7, 8, 9 show the MSD learning curves of the conven-
tional NSAF, NVSS-NSAF, NSAF-VSS, VSS-NSAF and the
proposed algorithm for white Gaussian input,AR(1) input and
AR(2) input. As can be seen in Fig. 7, 8, 9, the proposed algo-
rithm shows very similar performance to other existing algo-
rithms. The variable-step-size NSAF papers compared with
the proposed algorithm have very good performance in terms
of convergence speed and steady-state error. NVSS-NSAF
is a recently proposed algorithm, but its performance was

FIGURE 8. NMSD learning curves of the conventional-NSAF, NVSS-NSAF,
NSAF-VSS, VSS-NSAF and proposed algorithm with sudden system change
environment. (M=1024, N=8, SNR=30dB, AR1 input).

FIGURE 9. MSD convergence performance comparison between
conventional-NSAF, NVSS-NSAF, NSAF-VSS, VSS-NSAF and proposed
algorithm with sudden system change environment. (M=1024, N=8,
SNR=30dB, AR2 input).

not very good. NSAF-VSS calculates the optimal step size
for every iteration through MSD analysis, but when the
system changes significantly, NSAF-VSS did not converge.
VSS-NSAF also calculates the optimal step size for every
iteration. VSS-NSAF also estimated the variance of the error
signal as well, showing the ability to converge well even with
sudden system changes. However, since all the compared
papers calculate optimal step size in every iteration, the addi-
tional online calculation increases greatly. On the other hand,
it can be confirmed that the proposed algorithm shows sim-
ilar performance to variable-step-size NSAF algorithms that
perform very well without any additional online calculations,
and also shows good performance in sudden system changes
due to the application of the reset algorithm. In addition,
as shown in Fig. 10 and Fig. 11, the proposed algorithm can
reconstruct the step-size table by scalability property even
if the tap length or the number of subbands is different.

VOLUME 8, 2020 199031



T. Park et al.: Scheduled Step-Size Subband Adaptive Filter Algorithm With Implemental Consideration

FIGURE 10. MSD convergence performance comparison between
conventional-NSAF, NVSS-NSAF, NSAF-VSS, VSS-NSAF and proposed
algorithm with sudden system change environment. (M=512, N=8,
SNR=30dB, White Gaussian input).

FIGURE 11. MSD convergence performance comparison between
conventional-NSAF, NVSS-NSAF, NSAF-VSS, VSS-NSAF and proposed
algorithm with sudden system change environment. (M=1024, N=16,
SNR=30dB, White Gaussian input).

Even in these various environments, it was confirmed that the
proposed algorithm still shows good performance.

E. INCORRECTLY ESTIMATED ENVIRONMENT
Fig. 12 shows the proposed algorithm’s robustness against the
incorrectly estimated SNR. This simulation shows the MSD
learning curves of the proposed algorithm and the existing
algorithms when the actual SNR= 50dB is incorrectly esti-
mated by SNR= 20dB. Since the NSAF-VSS algorithm does
not estimate the power of the measurement noise σ 2

v , the per-
formance is significantly reduced if the SNR is incorrectly
estimated. On the other hand, the VSS-NSAF algorithm
shows robust performance in the incorrectly estimated SNR
environment. However, the VSS-NSAF algorithm estimates
the power of the measurement noise in every iteration, which
increases the online computation amount. In contrast, the pro-
posed algorithm is robust to the incorrectly estimated SNR

FIGURE 12. NMSD learning curves of the NSAF-VSS, VSS-NSAF and
proposed algorithm in a misestimated SNR environment. The algorithms
were all designed with 20dB SNR (M=1024, N=8, SNR=50dB, White
Gaussian input).

as much as the VSS-NSAF algorithm without any additional
online computations because of its open-loop feature.

VI. CONCLUSION
This article proposes an SS-NSAF algorithm to improve
the convergence performance of NSAF without additional
on-line computation. The MSD learning curve of the general
NSAF algorithm was geometrically analyzed to create the
objective curve. The step-size table was generated to force the
MSD learning curve to follow the objective curve without any
additional online computations. The generated step-size table
was proportionally adjustable for the number of taps and the
number of subbands. The novel memory efficient scheduling
scheme minimizes the memory space required and at the
same time greatly simplifies the operation. This brings very
important advantages to chip level implementation. The sim-
ulation results showed that the proposed algorithm performs
as well as the other variable step-size algorithms without any
additional online computations and performs robustly in the
wrong estimated SNR environment.
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