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ABSTRACT Distinctive phonetic features have an important role in Arabic speech phoneme recognition.
In a given language, distinctive phonetic features are extrapolated from acoustic features using different
methods. However, exploiting lengthy acoustic features vector in the sake of phoneme recognition has a
huge cost in terms of computational complexity, which in turn, affects real time applications. The aim of
this work is to consider methods to reduce the size of features vector employed for distinctive phonetic
feature and phoneme recognition. The objective is to select the relevant input features that contribute to the
speech recognition process. This, in turn, will lead to a reduced computational complexity of recognition
algorithm, and an improved recognition accuracy. In the proposed approach, genetic algorithm is used to
perform optimal features selection. Therefore, a baseline model based on feedforward neural networks is
first built. This model is used to benchmark the results of proposed features selection method with a method
that employs all elements of a features vector. Experimental results, utilizing the King Abdulaziz City for
Science and Technology Arabic Phonetic Database, show that the average genetic algorithm based phoneme
overall recognition accuracy is maintained slightly higher than that of recognition method employing the
full-fledge features vector. The genetic algorithm based distinctive phonetic features recognition method
has achieved a 50% reduction in the dimension of the input vector while obtaining a recognition accuracy
of 90%. Moreover, the results of the proposed method is validated using Wilcoxon signed rank test.

INDEX TERMS Arabic speech distinctive phonetic feature, phoneme recognition, genetic algorithm.

I. INTRODUCTION

Performance of automatic speech recognition (ASR) sys-
tems is highly affected by input features that are extracted
from the speech waveform. Features can be affected, in turn,
by the speech variability that is caused by many factors
such as speaker variability (e.g., speech tempo, speaker’s
age and gender, etc.), or by external sources such as
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background noise. Some features that are used in ASR
systems are acoustic features such as spectrogram, mel-
frequency cepstral coefficients (MFCCs), and short-time
energy just to name a few. There are also other types of
features that are highly representative, which are the distinc-
tive phonetic features (DPFs). These features are introduced
to a system as binary vectors where each bit of that vector
describes the presence or absence (denoted as + or —, respec-
tively) of some articulatory and acoustic properties that are
associated with a particular phoneme utterance. DPFs are
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language dependent and each spoken language has its own
finite set of DPFs, where a unique binary vector is assigned
to each phoneme of the language [1].

Theoretically, the DPFs can describe all phonemes with
uniquely distinctive binary patterns. DPF elements (bits) can
be very useful also in categorizing phonemes based on simi-
larity among them that can be directly traced by matching the
DPF vectors of the different phonemes [2].

Here is an example, the phonemes /s/ and /z/ are very close
to each other in the DPF space. Both phonemes share the
same phonetic features (e.g., consonant, fricative, alveoden-
tal, etc.) except for the voicing feature, which refers to the
physiological activity on the vocal folds, in which this pair
of phonemes shows contrary values. That is, vocal folds must
vibrate in order to vocalize /z/, otherwise a pure /s/ will be
uttered [4]. The DPF elements in modern standard Arabic are
listed in Table 1, depending on most references [1].

A. ARABIC LANGUAGE OVERVIEW
Modern standard Arabic (MSA) has 34 phonemes: three short
vowels /a, i, u/, three long vowels /a:, i:, u:/, and 28 con-
sonants that are grouped under a number of subcategories
such as plosives, affricatives, nasals, trills, etc. There are
two subcategories of Arabic phonemes that are not found in
many languages, which are the pharyngeal and the emphatic
phonemes [4]. The duration of phonemes in Arabic is phone-
mic. That is, phonemes (vowels and consonants) can be
uttered in short or long periods, where both ways directly
affect the word meaning [5].

Words in Arabic consist of syllables, where each syllable
must have at least one vowel. Therefore, a word would have
as many syllables as there are vowels in that word [6].

B. LITERATURE REVIEW

Extracting DPFs has been tackled in many published stud-
ies. In [7], DPFs are extracted using multilayer perceptron
(MLP), and have been demonstrated to enhance the robust-
ness of ASR. In [8], a canonicalization process was proposed
composing of multiple DPF extractors in order to neutralize
the effect of speaker’s gender on ASR system robustness.
Similarly, in [9] multiple DPF extractors were deployed to
eliminate the effect of hidden factors and to reduce the effect
of noise. In extension to that, in [10], the DPF extractors
are utilized to neutralize hidden factors of speakers’ vari-
ability in addition to gender and to eliminate the effect of
noise. In [11], a DPF extractor was proposed to enhance
the accuracy of speech segmentation, using recurrent neural
network (RNN) followed by an MLP neural network. In [12],
a phoneme recognition system was proposed consisting of
two-stage DPF extraction: the first stage converts acoustic
features to a 45-bit DPF vector, while the second stage makes
the vectors orthogonal before being fed to a hidden Markov
model (HMM) classifier. The work in [13] proposed the use
of recurrent neural networks to detect phonological features
in continuous speech.
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Articulatory Features (AFs) are utilized in [14] to develop
pronunciation models for ASR systems. In [15], the articu-
latory features are investigated with respect to monolingual,
cross-lingual, and multilingual ASR. The work published
in [16] is an attempt to develop a large vocabulary ASR sys-
tem utilizing the distinctive phonetic features instead of the
ordinary short-term spectra features. DPF-based phone-level
segmentation is reported in [17], where the system is built
using recurrent neural networks and a multi-layer neural net-
works. In [3], a representation method is proposed such that
a speech waveform is represented by some abstract linguistic
descriptors from which a set of discriminative features is
derived and fed to ASR systems. The work in [18] attempted
to improve the ASR performance by adopting a multi-stream
technique of DPFs and spectral features. A noise-robust
ASR system that applies logarithmic normal distributions
of HMMs for the purpose of approximating DPF elements
was proposed in [19]. The robustness of ASR under Low-
SNR of car environments was investigated in [20], where
DPFs along with spectral cues are utilized to enhance sys-
tem robustness. Phoneme classification for Bengali Language
using DPFs and deep neural network was reported in [21].
In [22], a deep neural network is used to predict historical
phonetic features drawn upon synchronic phonetic patterns
arising from coarticulation and statistical constraints in Proto-
Indo-European language. In [23], extracted acoustic features
of speech signal using hamming window and pre-emphasis
filter, in addition to extracted decompositional features using
daubechies-filtered Sth-depth Wavelet Packet Decomposition
(WPT), are optimized using genetic algorithm to classify
Turkish vowels.

The relevance of evolutionary-based algorithms, like a
genetic algorithm, that belong to a family of search algo-
rithms inspired by the process of evolution in nature, was
demonstrated in a recent study showing that optimizing the
topology of an Artificial Neural Network may lead to a high
classification rate of spoken utterances of both native and
non-native English speakers [24].

C. DISTINCTIVE PHONETIC FEATURES IN

THE ARABIC LANGUAGE

The Arabic language has a number of unique characteristics,
such as the presence of a relatively large number of pharyn-
geal and emphatic sounds, in addition to various types of
allophones, many of which are the result of emphaticness and
gemination. Arabic also has several lexical stress systems,
likely unknown in other languages, but regrettably unstudied
and in need of thorough investigation. In the context of the
present investigation of DPFs in Arabic, only a limited num-
ber of previous studies dedicated to the subject are available.
In [25], Arabic DPFs were extracted using modular con-
nectionist architectures with rule-based systems (SARPH).
In [26], Selouani et al. deployed neural networks of mixed
architectures fed with continuous speech in order to recognize
complex Arabic phonemes.
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TABLE 1. DPF values of Arabic phonemes.
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In our previous works, the multidimensional phonological
feature structure of Arabic was investigated by assessing the
performance of statistical and connectionist approaches in
performing the complex mappings between DPFs and associ-
ated acoustic cues [27]. In a review paper [28], a background
on Arabic DPFs, highlighting the historical and geographical
varieties, the problem of ambiguous definitions between clas-
sical and modern phonology, and the deviations in phonemes
and DPF elements across dialects of Arabic were investigated
and presented. HMM was used with an original normalization
technique to perform Arabic phoneme classification using the
DPF elements and utilized DPFs for the purpose of introduc-
ing a canonical process for phoneme level classification by
means of substituting the speech waveform with its phonetic
binary DPF vector [29]. In another work [30], the problem
of DPF modeling and extraction of modern standard Ara-
bic is tackled by using deep neural networks (DNNs) and
compared with the classical MLP models. The representa-
tiveness of several acoustic cues for different DPF elements
was measured additional to the proper evaluation measures
satisfying the imbalanced nature of the DPF elements which
was addressed. It is important to note that our previous work
on DPF modeling using DNN had an objective acoustic-
to-phonetic conversion, where Arabic DPFs were extracted
from acoustic features using DNNs. However, input feature
selection was not within the scope of that previous work.
On the other hand, the present work has a different objective
and scope, which is to come up with a unified reduced set of
acoustic features that can be used to extract any DPF element
using any machine learning technique.

D. MOTIVATION AND OBJECTIVES

The aim of this work is to consider methods to reduce the
size of features’ vector employed for phoneme recognition
by using a genetic algorithm-based approach. The objective
is to select the relevant input features that yield to reduce
the computational complexity of the recognition algorithm
while improving the DPF recognition accuracy. Genetic algo-
rithms (GAs) have been successfully integrated into various
speech-processing applications such as speaker adaptation of
acoustic models or speech enhancement [31]. GAs have also
shown advantage in enhancing the performance of voice com-
munication systems [32]. The main advantage of using GA
to optimize the feature selection is their ability to extend the
search space of best parameters by applying the principle of
maintaining and manipulating a large population of solutions.
Their methodology consists of implementing a ‘survival of
the fittest’ strategy in their search for better solutions. Thus,
the original idea of this article is to use the ability of GAs
to select the relevant acoustic features from speech. GAs and
neural networks are very common and effective in process-
ing digital speech mainly in recognition and classification
problems. Reducing speech acoustic features while keeping
the nominal system accuracy is a very important goal that
will help to reduce central processing unit (CPU) time and
memory requirements. Hence, the main contribution of this
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FIGURE 1. Phonemes classification using DPF elements and GA for
adaptive features selection.

work is to build a robust features selection model, whose input
is a wide range of multiple acoustic features. This proposed
model is in the form of a hybrid of genetic algorithm and
neural network, to predict distinctive phonetic features of
phonemes in modern standard Arabic.

E. PAPER'S ORGANIZATION

After Section I, Introduction, the remaining of this arti-
cle is organized as follows. Section 2 presents an intro-
ductory background about the genetic algorithm and gives
an overview of the proposed GA-based DPF recognition
method. Section 3 provides information about the dataset and
features used in this study. Also, in this section, the extracted
features are examined and preprocessed for the purpose of
normalization and reducing the outliers. Section 4 presents
experimental results pertaining to the development of a base-
line model based on Feedforward Neural Networks (FF-NN).
This model will be used to evaluate the phoneme recog-
nition accuracy of the GA-based features selection method
against the whole feature vector-based method. Details of the
GA-based features selection method is given in this section.
Section 5 presents and analyzes the performance of phoneme
recognition based on DPF elements, while the discussion
is presented in Section 6. Section 7 gives the concluding
remarks.

Il. OVERVIEW ON THE GENETIC ALGORITHM

BASED METHOD

This sections presents the architecture of proposed GA-based
DPF recognition method. Also, it gives brief introduction
about the basics of GA.

A. SYSTEM MODEL
Figure 1 shows the proposed architecture for phonemes clas-
sification using DPF elements and GA for adaptive features
selection. In this model, the dataset consists of N prepro-
cessed features. The N-point features vector is applied to M
GAs followed by M FF-NNs working in parallel, where M
is the number of DPF elements. The output of each branch
is one bit with value either ‘0’ or ‘1°, depending on the DPF
element it represents.

The selected features by each GA and the parameters
of each FF-NN are determined through a training process.
In the testing phase, a phoneme is identified by measuring
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the Euclidean distance between the outputs of M
FF-NNs, a vector of M bits, and the actual DPF vectors of all
phonemes.

B. GENETIC ALGORITHM

GAs belong to a family of computational models, namely
evolutionary algorithms, inspired by the process of natural
evolution [33]. They have received increasing popularity due
to their robustness and efficiency in solving complex prob-
lems in which many classical mathematical methods fail [34].
In particular, GAs work by executing five main steps [35].

e Coding. The parameters of a given problem are encoded
often using a binary string.

o Initiation of population. A set of randomly generated
strings (chromosomes) are generated as candidate solu-
tions.

o Evaluation of responses. A goodness of fit is applied to
each string (chromosome) to determine its chance to be
selected for creating the next generation.

o Reproduction. It involves two steps: 1) selecting a set
of strings from the previous population, 2) generating
a new population through combining parts of selected
strings (cross over operation).

o Mutation. It maintains genetic diversity from one gen-
eration of a population to the next. It alters one or
more elements (genes) in a string (chromosome) from
its initial state. In binary encoding, a gene of value ‘I’
gets changed to ‘0’ and vice versa.

The proposed genetic algorithm based feature selection
method using feedforward neural network is a metaheuristic
method for dimensionality reduction. It has a potential appli-
cation in automatic speech recognition and its applications.
For example, in [24], the authors used evolutionary algo-
rithms based optimized deep neural network for recognition
of diphthong vowel sounds in the English phonetic alphabet.
In [36], the author tied genetic algorithm with Manhattan
distance to classify plain and emphatic vowels in continu-
ous Arabic speech. Also in [37], the genetic algorithm was
exploited in the segmentation of Arabic speech, and in [38],
it has been used with the K-nearest neighbour algorithm
to build a voice command recognition system. Using the
proposed GA-based optimization method allows to maintain
the selected indices of features after finding them during the
training process. The training process as to be applied once
through the corpus. Therefore, the reduced size of features’
vector contributes in reducing time cost when performing the
real time applications. In addition, using genetic algorithm
can help in removing redundancy in the dataset under inves-
tigation [39].

1Il. DATASET AND FEATURES EXTRACTION

This section is to address a fundamental step in this work,
pertaining to the preparation of data for the subsequent exper-
iments. It is of great importance to provide the system with
suitable data that carries rich phonetic information. Also,
feature extraction is an essential preprocessing step, where
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TABLE 2. Information of the dataset used in this work.

Number of subjects | 7 males

Dataset size 13,766 phonemes
Training subset 9,636 phonemes (70%)
Test subset 4,130 phonemes (30%)

representative acoustic features are extracted and prepared for
training the acoustic-to-phonetic conversion models.

A. KAPD DATASET

The dataset used in this work is extracted from the KACST
Arabic Phonetic Database (KAPD) [40], [41] as summa-
rized in Table 2. KAPD is a phonetically rich speech corpus
recorded by seven native Saudi male subjects. Each Arabic
phoneme appears in a carrier word in one of three differ-
ent positions: initial, middle, and final position. Also, for
each position of these, three different carrier words exist,
where the target phoneme co-articulates with one of the three
short vowels (i.e., /a/, /i/, and /u/) of Arabic in each word.
For a consonant phoneme in a middle position, the carrier
word contains the phoneme in one of two states: single and
geminated. Each one of the aforementioned combinations is
uttered by each one of the seven subjects in eight different
experiment each one of them aims at capturing some physical
characteristics of the speech signal, in addition to record-
ing the uttered word. KAPD is composed of the following
subsets: Subset A for aerodynamic data, Subset C for lip-
labeled face images, Subset E for epiglottal imaging data,
Subset G for electroglottographic measurement data, Subset
N for nasal and oral air pressure measurements data, Subset
P for electropalatal imaging data, Subset V for vocal folds
imaging data, and Subset X for velopharyngeal imaging data.
The experiments carried out in this work are based on random
samples taken from KAPD dataset. That is, 13,766 phonemes
are used and split into two subsets: training subset consist-
ing of 9,636 phonemes (70%), and test subset consisting
of 4,130 phonemes (30%).

B. FEATURES EXTRACTION

The input acoustic features are extracted from each phoneme
waveform. That is, a number of 15, evenly spaced, 20-ms long
frames are sampled from each waveform. Spacing between
frames vary from one waveform to another since phonemes
are not all equal in the time duration. Each frame is win-
dowed by a 20-ms Hamming window. Other preprocessing
of DC removal and pre-emphasis using « = 0.97 are also
applied. The following acoustic features are extracted from
each frame:

1) 256-point Spectrogram calculated using short-time
Fourier Transform. The number of spectrogram points
in an input vector is: 256 points per frame x 15 frames
= 3840 points.

2) 39-coefficient MFCC, where log energy, first derivative
and second derivative are computed for each frame.
This results in a total of 585 coefficients per phoneme,
which has 15 frames.
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FIGURE 2. A sample of the normalized spectrogram features of phoneme
‘as21’.

3) Zero-crossing Rate (ZCR), where each frame yields
one scalar value that brings to a total of 15 ZCR values
per input vector.

4) Short-time Energy, where there is also one scalar value
per frame summing up to 15 values per input vector.

5) Voicing Percentage, which is one value representing
the percentage of frames (among the 15 frames) that
carry valid (nonzero) pitch values. There is only one
percentage value in each input vector.

Therefore, the total length of original features vector is 4,456
(= 3,9404+-585+15+415+1) points. In this study, only the
first 15 points are considered from MFCC coefficients for
each frame instead of considering all 39 coefficients. This
is because the remaining 24 MFCC coefficients have been
found significantly of small values. Selecting a large num-
ber of MFCC coefficients results in more complexity in the
model [42]. Based on this modification, the number of MFCC
coefficients for all 15 frames is now 15 x 15 = 225 points
instead of 585 points, which brings the features vector used
in our experiments to 4,096 points.

C. FEATURES NORMALIZATION

A features'vector consists of the aforementioned five differ-
ent types of features, each of which has its own dynamic
range. Therefore, it is essential that features'vectors are nor-
malized before being applied to a machine learning algo-
rithm. In our development, each type of features of a given
features vector is normalized so that it has unity variance.
Figure 2 shows a sample of the normalized spectrogram
features of a phoneme represented by 15 records.

Note that the normalized spectrogram has spikes, corre-
sponding to resonances in the vocal tack. The amplitudes of
the spikes vary between the records of a phoneme, and also
vary between those of other different phonemes. Figure 3
shows the boxplot of normalized spectrogram features of the
dataset under consideration. A boxplot is a standardized way
to display data distribution by using five statistical measures,
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FIGURE 3. Boxplot of normalized spectrogram features.

which are the minimum, first quartile (Q1), median, third
quartile (Q3), and maximum of dataset [43]. It tells about the
skewness of data distribution and presence of outliers.

In this context, the minimum and maximum of a dataset
are defined as Q1 —1.5xIQR and Q3+1.5xIQR, respectively.
Here, IQR is the difference between Q3 and Q1. Therefore,
any sample of value less than the minimum or greater than
the maximum is considered an outlier. For the normalized
spectrogram features, the minimum value is -1.2661, the first
quartile (Q1) is -0.47869, the third quartile (Q3) is 0.046241,
and the maximum value is 0.83364. However, there is a large
number of outliers due to the presence of spikes. In fact,
the presence of these spikes causes a large dynamic range
for spectrogram features. Therefore, it is important to limit
spikes'amplitudes so that they all have relatively comparable
values.

Let s(n) be the n™ sample of the features shown in Figure 2.
The new scaled feature sample, s'(n), is then given by

s'(n) = s(m)/(1 + Bls(m))) ey

The parameter ‘B’ is a scalar whose value is greater than or
equal to 0. This parameter controls the amount of scaling.
If B8 = 0, then no scaling is performed; that is, s'(n) = s(n).
However, for extremely large values of 8, the value of s'(n)
becomes zero. In what follows, the value of 8 is set to 1. With
this value, samples of large amplitudes will undergo high
attenuation, while those of relatively low amplitudes will pass
almost unchanged. Figure 4 shows the resulting normalized
and scaled spectrogram features.

Figure 5 shows the normalized MFCC features of the same
phoneme considered above. The boxplot of whole MFCC fea-
tures of normalized KAPD dataset is shown in Figure 6. It is
clear from the figure that these features have large dynamic
range. Thus, the scaling operation is applied to these features
in a similar manner to what is described in (1). Figure 7 shows
the normalized and scaled MFCC features. Figure 8, on the
other hand, shows the complete features vector, including the
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FIGURE 9. The boxplot of all features vectors after pre-processing.

pitch percentage and the normalized energy and zero-crossing IV. FEATURE SELECTION APPROACH
features. The boxplot of all features vectors after being pre- This section considers the selection of appropriate configu-
processed is shown in Figure 9. ration for the GA-based features section process. Therefore,
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a model suitable for phoneme classification is first intro-
duced. This model is needed to act as a base line against which
the performance of the GA-based features selection method
is compared.

A. DEVELOPMENT OF A BASELINE MODEL

With the normalized and scaled dataset described in Sub-
section III-C, machine learning algorithms can be used to
classify different phonemes. However, the performance of
such algorithms is greatly affected by many factors, including
specific parameters related to the input data; e.g., the length of
features vector and the correlation among its entries, and the
signal-to-noise ratio. For the normalized and scaled KAPD
(NS-KAPD) dataset, the length of each features vector is
4096, as described in Subsection I1I-B With this high dimen-
sional vector, its entries may not be all equally important,
as it may contain redundant and/or irrelevant features and/or
noise. Therefore, it is essential that the size of the input
features vector be reduced to contain only the features which
contribute to the classification process. By doing so, the orig-
inal representation of data will not be affected, and may even
provide better readability and interpretability. Furthermore,
the computational complexity will be reduced, and the clas-
sification accuracy could be improved.

In this subsection, the problem of selecting a small subset
of entries of a features vector is addressed by applying GA.
Features selection based on GA has been widely studied and
a large number of methods have been developed in different
applications; in [44], the authors used genetic algorithm to
design decoder-tailored polar code, where in [45], the prob-
lem of finding optimal distance for a traveling salesman is
solved using genetic algorithm. In [46], the effect of using
different configurations of GA is investigated. Using the
available NS-KAPD dataset, a model suitable for phoneme
classification is considered here. This model will be used
as a base line against which the performance of the GA-
based features selection method is compared. The proposed
model is a simple Feedforward Neural Network (FF-NN),
consisting of an input layer, two hidden layers each of which
has 100 neurons, and an output layer in the form of a binary
vector of size 34. In the ideal case, one element of the output
binary vector is ‘1’ and the remaining elements are zeros.
The active element corresponds to one of the 34 different
phonemes. Figure 10 shows the architecture of proposed
FF-NN model, where W is the weights vector and b is
the bias.

The FF-NN model is trained using 70% randomly selected
features vectors of the NS-KAPD dataset. The remaining
30% features vectors are used for testing. Table 3 presents
the performance in terms of four measures: the average clas-
sification accuracy, Area Under Curve (AUC), G-mean, and
F-score. These numbers are our baseline to evaluate the per-
formance of GA to select a subset out of the 4096 features of
an input vector. In other words, the performance given in the
table is the yield of the system when our full features vector
is used without the involvement of GA selection scheme.
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FIGURE 10. The architecture of proposed FF-NN model.

TABLE 3. The accuracy, AUC, G-mean, and F-score by using all
4096 baseline features.

Accuracy AUC G-mean F-score

68% 0.84 0.81 0.677

B. GENETIC ALGORITHM BASED FEATURES
SELECTION METHOD
In our development, each features vector is encoded by 61 bits

divided in order as follows:
a) 15bits encode the 15 spectrogram records. That is, each

bit encodes one spectrum record. If the bit value is ‘1°,
this means the corresponding record will be included
in the new features vector, otherwise it will not be
included.

b) 15 bits encode the 15 MFCC records. That is, each bit
encodes one MFCC record. If the bit value is ‘1°, this
means the corresponding record will be included in the
new features vector, otherwise it will not be included.

c¢) 15 bits encode the 15 zero-crossing values.

d) 15 bits encode the 15 energy values.

e) 1 bit encodes the value of pitch percentage.
Figure 11 shows the schematic diagram of the encoding

process. For each possible binary string of length 61 bits,
the corresponding features are selected and used to train and
test the proposed FF-NN, as described in Figure 12. Note that
the GA needs to search for the binary string which gives the
maximum possible classification accuracy. Each spectrum or
MEFCC record is encoded by one bit to reduce the search space
of GA. Following this encoding scheme, the search space
becomes 20! candidate features vectors. If, however, entries
of spectrogram and MFCC records are not encoded, then this
leads to a search space of size 240%.

For the remaining genetic operations, there are many pos-
sibilities each of which may be effective for one type of
application but worse for another. In fact, there is no one
choice fitting all, and the majority of research efforts are
focused on finding an optimum choice for a specific setting.
In what follows, the GA performance is investigated using
the commonly used configurations in literature, as follows.
For parent selection operator, Roulette wheel selection, tour-
nament selection [47], and their hybrid combination [48] are
considered. For crossover operator, the single point crossover,
double point crossover, and uniform crossover [49], [50]
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TABLE 4. The performance of different GA configurations.

Selection method Crossover operator | Accuracy
Hybrid selection 68.2 %
Roulette wheel selection | Uniform crossover | 67.77 %
Tournament selection 66.87 %
. . Single point 67.2 %
Hybrid selection
Double point 67.6 %

are considered. The crossover operator is followed by bit flip
mutation. The details of each operator are well explained in
its relevant reference.

Table 4 shows the performance of the five configurations,
in terms of the classification accuracy, when the GA is applied
along with the FF-NN to the NS-KAPD dataset. It is evident
from the table that the GA with the selection operator comb-
ing Roulette wheel and tournament schemes, and uniform
point crossover is the best performing algorithm. Therefore,
this GA configuration is selected for our analysis to follow.

Table 5 gives further details about the performance of
the best performing GA in terms of AUC, G-mean, and
F-measure. Compared with the performance of FF-NN alone,
it is observed that the GA gives almost similar results but
with a reduced size features vector. By comparing the per-
formances using all four measures, it is noticed that there
is almost a full match with the corresponding figures given
in Table 2. By this, it can be concluded that the same per-
formance is kept by using almost 50% of the features vector
length generated by the GA.
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TABLE 5. The accuracy, AUC, G-mean, and F-score by using the reduced
feature vector by GA algorithm.

Accuracy AUC G-mean F-score

68.2 % 0.842 0.81 0.674

In particular, the GA shows that only a features vector
of size 3231 is sufficient to achieve the performance of the
full-fledge features vector. The confusion matrix is depicted
in Figure 13. This matrix shows that the phonemes ‘sb10’,
‘db10’, and ‘fs10’ are greatly confused with the phonemes
‘ss10°, ‘zb10’, and ‘vs10’. This is intuitively not surprising
because the features vectors of these phonemes may not be
well separable.

Figures 14 (a) and (b) show results when the t-distribution
stochastic neighbor embedding (t-SNE) algorithm [51] is
applied to the corresponding features of phonemes ‘sb10’
and ‘ss10’, and the two mostly separable phonemes (‘hz10’
and ‘ss10’). The t-SNE algorithm is used to reduce the data
dimensionality from 4096 to 2, while preserving both local
and global structure of data, hence it facilitates its visual
inspection.

From the figures, it is observed that features of phonemes
‘sb10’ and ‘ss10’ overlap, which makes phonemes’ discrim-
ination difficult. This overlap led to 59 times confusions
between these two phonemes. Therefore, it can be concluded
that there is a big similarity between the two phonemes ‘sb10’
and ‘ss10’, but, on the other hand there is a big dissimilarly
between ‘hz10’ and ‘ss10’ phonemes.

V. PHONEME RECOGNITION PERFORMANCE USING
DISTINCTIVE PHONETIC FEATURES ELEMENTS

In this study, each phoneme is represented by 30 DPF ele-
ments that are listed in Table 1, which can be used for
phoneme recognition. Note that the NS-KAPD dataset has
feature vectors of dimension 4096. It is possible that the
4096 features may not all contribute to the recognition of a
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FIGURE 13. The confusion matrix of the 34 phonemes.

DPF element. In this section, GA is used to determine the
features well represent a particular DPF element, and build
for each element an FF-NN for its classification. Table 6
shows the performance of the developed 30 FF-NNs, along
with the number of selected features for each DPF element.
The table also displays the number of ‘1s’ in the final output
code vector of GA.

By virtue of Table 6, it is of interest to note that the
average accuracy across all over the 30 DPF elements
is 90%, while the average AUC, GM, and F_Score are
0.85, 0.84, 0.78, respectively. This excellent performance
has been achieved with a great reduction in the required
number of features, which ranges from 2982 down to
1131 with an average 50% (=2047/4096) of total number of
features.

Table 7 gives more details about the selected features for
each DPF element, and provides the final 61-binary string
output of GA. For example, the first DPF element has a 61-bit
string vector with 31 entries of ‘1s’. This corresponds to the
selection of spectrogram features computed from 8 frames,
MFCC features computed from 10 frames, zero-crossing fea-
tures computed from 6 frames, and energy features computed
from 7 frames. The pitch percentage for this PDF element,
however, is not selected.

Figure 15 depicts the number of times each entry of the
61-bit string vectors carries the value of ‘1. It is evident
from the figure that entries number 42 and 57 have the lowest
frequency of having the value of ‘1’, while entry number
15 has the highest. These three entries represent the corre-
sponding frames of zero-crossing percentage, energy, and the
spectrogram features, respectively.
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As described in Subsection II-A, Figure 1 shows the tar-
geted architecture for phonemes classification using DPF ele-
ments and GA for adaptive features selection. In this figure,
N = 4096 and M = 30. Therefore, the 4096-features vector
is applied to 30 GAs followed by 30 FF-NNs working in
parallel. The output of these FF-NNs constitutes a binary
vector of length 30 of ‘Os’ or ‘ls’, depending on the DPF
elements of phoneme under consideration.

Figure 16 shows the performance, in terms of the con-
fusion matrix of proposed classification system, where the
features that are nominated for training and testing are those
that are selected by the GA. In this setting, the outputs of
30 FF-NNs constitute the predicted DPF vector correspond-
ing to a particular phoneme. Therefore, a phoneme is identi-
fied by measuring the Euclidean distance between the output
of the model and the actual DPF vectors of all phonemes.
The phoneme whose DPF vector has the minimum distance
is selected. The test set is composed of 100 samples of
each phoneme except the phonemes (‘as21’, ‘is21°, ‘us21’)
that have representation of 28, 26, and 26, respectively,
in the KAPD dataset. Note that the two confusion matri-
ces in Figure 13 and Figure 16 represent results of two
methods of phoneme recognition using the output of GA-
FFN model. The first method computes the confusion matrix
right after the neural network, while in the second method
the confusion matrix is computed from the predicted DPF
elements.

Figure 17 shows the identification accuracy for each
phoneme computed from Figure 16, where the two phonemes
‘bs10’ and ‘fs10’ are that of the worst performance as
each phoneme gets confused with other phonemes. The two
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TABLE 6. The performance of the developed 30 FF-NNs, along with the number of selected features for each DPF element.

No. DPF Accuracy (%) AUC GM F_Score  No. of ‘1s’ in the final 61-bit output vector of GA  Length of Features Vector out of 4096 entries
1 affricative 98.5 0.853 0.84 0.75 31 2211
2 alveodental 84.9 0.814 0.81 0.749 28 2648
3 alveopalatal 97.4 0.873 0.866 0.785 21 1649
4 anterior 96.8 0.853 0.84 0.740 25 1894
5 aspirated 94.2 0.797 | 0.777 0.6648 25 2177
6 bilabial 96.6 0.947 | 0.947 0.9796 24 1411
7 consonant 933 0.895 | 0.893 0.958 29 2422
8 continuant 91.69 0.762 | 0.734 0.621 27 2689
9 coronal 92.15 0918 | 0918 0.904 34 2427
10 emphatic 96 0.804 | 0.784 0.663 25 1625
11 fricative 924 0.719 | 0.6738 0.535 28 1925
12 glottal 97.3 0.676 | 0.597 0.4554 30 1969
13 high 98.8 0.856 | 0.845 0.791 41 2703
14 interdental 97.7 0.808 | 0.788 0.651 27 2392
15 labiodental 97.8 0911 0.907 0.824 32 2694
16 labiovelar 98.5 0.849 | 0.836 0.756 19 1151
17 lateral 98.3 0.933 | 0.931 0.872 27 1683
18 nasal 933 0.904 | 0.902 0.847 32 1915
19 palatal 97.6 0.904 | 0.900 0.835 22 1622

20 pharyngeal 97.7 0.872 | 0.864 0.8067 23 1679
21 plosive 98.1 0.770 | 0.737 0.631 27 1145
22 rounded 95.4 0.950 | 0.950 0.934 31 2508
23 semivowel 94.7 0.830 | 0.817 0.720 27 1938
24 short 97.9 0.779 0.75 0.626 24 1652
25 trill 96.2 0.961 0.961 0.968 27 2675
26 unvoiced 98.7 0.967 | 0.966 0.948 22 1863
27 uvular 89.2 0.882 | 0.880 0.913 37 2982
28 velar 855 0.855 | 0.855 0.849 30 2692
29 voiced 873 0.793 | 0.780 0.694 23 1920
30 vowel 98.9 0.965 | 0.965 0.946 27 1131

phonemes ‘sb10’ and ‘ss10’ are of lower performance as they
are mutually confused. This later observation is consistent
with our previous observation in Section [V.B. The t-SNE plot
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in Figure 14 (a).

for the features of both phonemes, ‘sb10’ and ‘ss10’, reveals
the presence of severe overlap between them, as depicted
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TABLE 7. GA selected features with the corresponding 61-bit string for each DPF element.

No. DPF No. of ‘1s* | Frequency | MFCC | Zero Crossing | Energy | Pitch The 61-Bit String Representation
1 affricative 31 8 10 6 7 0 1100010101100111110101111010010001100011010010010101110100100
2 alveodental 28 10 5 6 7 0 1100010111011111000100001001010101100001010010110001011001100
3 alveopalatal 21 6 7 1 7 0 1010000001100111101101000001100000000010000000110011110001000
4 anterior 25 7 6 5 7 0 1101000101100010110010000101100101011010000000100010011101100
5 aspirated 25 8 8 6 2 1 1110101100001010001101111110000111010001001000100010000000001
6 bilabial 24 5 8 5 5 1 0100001000001110111111000010100000100011001010100101000001011
7 consonant 29 9 7 5 7 1 0100101001111110001010110101010010001001000111101001010010011
8 continuant 27 10 8 5 3 1 1111100101001110010110001111100000010000101110000110000100001
9 coronal 34 9 7 8 9 1 1101011001010110001011011000110011111100000111111101100101001
10 emphatic 25 6 5 7 7 0 1010000100100111010010010100001010011110100000010001111001010
11 fricative 28 7 8 3 9 1 1011001000110011100010101111001000001000100001110100010111011
12 glottal 30 7 11 8 3 1 0101101110000011110111100111100001111010101010000000111000001
13 high 41 10 8 11 11 1 1101000011111111110000111100101011111110101101101100111101111
14 interdental 27 9 5 4 8 1 1100010011011111010100100000100101100000000101101100101101001
15 labiodental 32 10 8 8 5 1 1011110011011010100101001110111001001111001011010101100000001
16 labiovelar 19 4 8 3 4 0 1000000011000011001111011010000000010100000100001000100001010
17 lateral 27 6 9 4 7 1 1010000111000100101110011110011000000000110010111000110101001
18 nasal 32 7 7 7 11 0 1100010100011011010010011010010011001111001001110101101111100
19 palatal 22 6 5 6 5 0 0010010101001011110000001100001110100000100010001001000110010
20 pharyngeal 23 6 9 3 4 1 1000101001000110101101101101101100000000000100001101100000001
21 plosive 27 4 7 8 7 1 0000100100000111110100010010011000110111100101011110000000111
22 rounded 31 9 13 4 4 1 1011010110100111111010111111110101000011000000100000111000001
23 semivowel 27 7 9 6 5 0 1000011110000111110100010111101010001010110000000100001110010
24 short 24 6 7 5 6 0 1001010001100010100000111110101101001001000000100001110001010
25 trill 27 10 7 4 6 0 1111100100011111000110110001100001000110000010101011010000010
26 unvoiced 22 7 4 3 7 1 1010010001001110000000000110110100001000000101100101010100011
27 uvular 37 11 10 10 6 0 1111001011101111111011001100111110001111001110010001010001110
28 velar 30 10 8 4 7 1 1110010111100110100110111000110000101000100100011010111000011
29 voiced 23 7 8 3 5 0 1101010010010010011011010110011000010000100000001011100000010
30 vowel 27 4 6 8 8 1 1000001001000010110100100110001001001010011110000101111101011

Wilcoxon signed rank test [52] is used to judge the signif-
icance of the GA-FNN’s results, as compared to the corre-
sponding uttered phonemes. Wilcoxon signed-rank test is a
non-parametric statistic test used for comparing two paired
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sets of observations whose difference comes from a distribu-
tion of zero median. In our experiments, the p-value of a two-
sided Wilcoxon signed-rank test is 0.12. This result indicates
that the test fails to reject the null hypothesis of zero median
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FIGURE 14. The t-SNE algorithm of separable and non-separable
phonemes.

in the difference at a significance level of 5%. That is, this
means that the difference between the median of GA-FNN
based outputs and that of the corresponding real phonemes’
sequence is zero; hence, the two paired of sets (model’s
output and corresponding real pronounced sequence) are not
statistically different.

These promising results demonstrate the effectiveness of
the approach applied in this work in realizing an efficient
compromise between the following three challenging require-
ments that are commonly encountered when developing
speech processing systems: First, the ability to deal with
variability in speech signal, which is a crucial requirement
for system robustness. Such variability is captured in system
input via a diversity of acoustic features that, in turn, would
significantly increase input dimensionality and model com-
plexity. Second, the urging need to reduce input dimension-
ality, which would greatly limit the involvement of multiple
types of acoustic features in system input. Lastly, the funda-
mental requirement to increase system performance, which
is directly affected by the aforementioned requirements.
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Therefore, these results pave the way for more efficient
DPF-based system design approaches in order to enhance
system robustness by means of diversifying input acoustic
cues, while maintaining lower input dimensions, and superior
system performance. This effort is also validating the ability
of GA to reduce features space of speech signal, in general,
which is very useful in digital signal processing front-end in
order to minimize CPU time and memory usage by removing
duplicate redundant features. Certainly, that will have direct
positive impact on real-time speech recognition systems that
are implemented on low-resource computers.

VI. DISCUSSION

The GA has different parameters to configure and cost func-
tions to estimate, which contribute to the total complexity of
the entire algorithm. Therefore, each variant of GA has dif-
ferent time complexity based on algorithm implementation;
for example, time complexity is shown to be polynomial of
degree two in [53], where in [54], it is proportional to number
of samples in the training set multiplied by squared number of
total features, whereas in [55], it is proportional to number of
features under investigation. By analyzing the whole process
of the proposed GA-FFN model, as described in Section V-
B, it would not be difficult to determine the time complexity
as O(NPG), where N is the length of features vector, P is
the population size, and G is the number of generations. This
result is consistent with the finding reported in [56]. In the
proposed model, the GA is only used in the training phase to
select the best and optimal set on input features. The optimal
configuration of input vectors composed of selected features
is used in the testing phase. That is, in the testing phase GA
is no longer needed, and the time complexity will be solely
due to the FFN network, which is O(N) [57]. On the other
hand, for a training phase having a constraint of short time
processing, GA full-parallel implementation on a dedicated
hardware (e.g. Field Programmable Gate Arrays (FPGAs))
can be considered; see [58] and the references therein.
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This solution provides high-performance and higher speed
when compared to sequential solutions.

Although the proposed GA-FNN method achieved good
result in reducing the dimensionality of feature space, it has
some limitations. Because this model uses GA for features
selection, the running time during the training phase using
Intel Core 19-9900k processor with 64 RAM is quite large
(few hours). In order to cope with the problem of computa-
tional time, GA full-parallel implementation on a dedicated
hardware (e.g. Field Programmable Gate Arrays (FPGAs))
can be considered [58]. Another limitation is related to the
selection of the appropriate operators such as crossover and
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mutation to prevent algorithm divergence. Therefore, there is
no guarantee of optimality of the obtained solution. On the
other hand, besides its role as a classifier (phoneme rec-
ognizer) the FNN was used to estimate the GA objective
function during the evaluation process of the huge amount
of individuals produced through generations. This dual role
assigned to FNNs as fitness estimators as well as classifica-
tion and recognition engines must be assessed by comparing
it to an approach using two different systems, dedicated sep-
arately to the estimation of the objective function on the one
hand, and to the classification of phonemes on the other hand.

Compared to comparative methods, GA is selected to
reduce the complexity of speech acoustic features in order
to remove data redundancy in signal front-end processing.
To the best of our knowledge, this is the first time to be consid-
ered in the literature. On the other hand, FNN was considered
as a vehicle in performing GA task and to be used as a baseline
in evaluating the huge amount of produced generations and
chromosomes to help avoid exhaustive options. FNNs meth-
ods are well-known engines in performing classification and
recognition with straightforward design methods and tune-
ups. In linguistics, there are comparative methods that are
based on systematic process of reconstructing the segmental
and suprasegmental inventory of an ancestral language from
cognate reflexes by performing a feature-by-feature compari-
son in the genetically related ancestor languages [59]. Indeed,
comparative methods are supposed to deal with higher levels
of language units such as phonemes in NLP disciplines, but
the scope of the current work is to deal with acoustic feature
engineering of speech signals.
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VIi. CONCLUSION

This work has considered the problem of reducing the size of
features' vector employed for DPF and phoneme recognition.
Specifically, the GA has been used to perform the features
selection process. The experimental results obtained using the
GA-based selection method show that a 79% reduction in the
size of features' vector with performance, at least, as good
as that obtained using the full-fledge features vector can be
achieved. In particular, a features' vector of an average size
of 3231 elements, selected by GA aided with FF-NN for
phoneme recognition, has an accuracy of 68.2%, as compared
to 68% obtained using the full-fledge features vector whose
length is 4096 elements. For DPF recognition, the reduction
in features' vector size is 50% in average with recognition
accuracy of 90%. Therefore, the proposed method contributes
to the reduction of computational complexity of the problem
at hand with no degradation in the system’s performance.
Further, it opens a new direction for research, where other
evolutionary algorithms can be tested for achieving further
reduction in the size of features' vector.
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