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ABSTRACT Two existing theorems for studying pinched hysteresis loops generated by nonlinear
higher-order elements from Chua’s table are reformulated, namely the generalized homothety theorem and
the associated Loop Location Rule, specifying the coordinates where the hysteresis may occur, and the
ω2 criterion theorem for computing the corresponding loop areas. It is demonstrated in this work that the
pinched hysteresis loops are also generated in other coordinates than those predicted by the Loop Location
Rule, and all these possible coordinates are found. The ω2 criterion is generalized to computing the areas of
all hysteresis loops that may be observable.

INDEX TERMS Constitutive relation, content, co-content, higher-order elements, homothety theorem,
pinched hysteresis loop.

I. INTRODUCTION
Nonlinear (α, β) two-terminal elements, also referred to
as the higher-order elements, organized in Chua’s table of
fundamental electrical elements [1], are an important tool
for the so-called predictive modeling of complex nonlinear
dynamical systems and processes including the phenomena
in molecular and nanoscale devices [2]. The (α, β) element
preserves an unambiguous constitutive relation between the
pair of quantities v(α) and i(β), called constitutive variables,
where the positive, zero, or negative integers α and β are
orders of the time derivatives or integrals of terminal volt-
ages and currents of the element. The most widely known
electrical elements from the infinite set of (α, β) elements are
the resistors, capacitors, inductors, and memristors with the
coordinates (0,0), (0,–1), (–1,0), and (–1,–1). The synthesis
of the model of a concrete system is based on the selection of
the (α, β) elements with the relevant nonlinear constitutive
relations and on their proper interconnection. This approach
facilitates the physical insight into the mechanism of complex
phenomena (see for example the predictive model of the
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Josephson junction in [2]) and also significantly decreases the
simulation times (see for example the simulation of predictive
models of the spin-torque nano-oscillator in [3]).

The substantial feature a model built in such a way is
its above-mentioned predictability, which means the abil-
ity to predict the behavior of the modeled object under
general conditions of its interaction with the surroundings,
thus, among others, for arbitrary types of driving signals,
etc. An example of the predictive model of a nonlinear
capacitor is its coulomb - volt characteristic, whereas its
small-signal impedance as a function of frequency is a typical
non-predictive model. The latter model, which is effective
for a concrete operating point, cannot be used for predicting
the behavior of the capacitor under its general (large-signal)
interaction with the remainder of the circuit.

The predictability of a model made up of nonlinear (α, β)
elements starts from the thesis that the predictable model
must consist of building blocks whose models are predictable
in their own right.

It turns out that the concept of the (α, β) two-terminal
elements can also be used for effective modeling of sys-
tems outside of electrical engineering, where, instead of
the voltage and current and their derivatives and integrals,
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the pair of effort (e) and flow ( ) [4] variables, typical
for a given technical area, is used. Let us mention force
and velocity for mechanical engineering, temperature and
entropy flow for thermodynamics, chemical potential and
molar flow for chemical engineering, etc. The works [5]–[7]
deal with special mechanical elements, which are, however,
the mechanical equivalents of previously introduced electri-
cal memristors andmemcapacitors [8], [9]. Also the so-called
inerter, a newly discovered mechanical element [10], has its
existing archetype in Chua’s classical table of (α, β) electrical
elements [11].

The procedures of predictive modeling, developed in
electrical engineering, can be therefore applied in a
multi-disciplinary way with the utilization of the relevant
version of the table of (α, β) elements. It must be obtained via
transforming Chua’s table from electrical engineering into a
given scientific branch via respective analogies, for example
the well-known electric-mechanical voltage-force or voltage-
velocity analogy.

The above modeling approach can be advantageous for
studying interesting hysteretic effects, which have been
experimentally observed and intensively studied in various
branches of science. The hysteresis loops, pinched at the ori-
gin of the coordinates of appropriate measured variables, will
be denoted hereinafter as the PHL (pinched hysteresis loops).
Their shape and area depend on the parameters of the system
and the driving signal. There have been earlier works dealing
with hysteresis in the current-voltage characteristics of the
electric arc or incandescent lamps [12]. The hysteretic effects
in the i–v characteristics of the CdSe point contact diodes [13]
were published in the same year the memristor was intro-
duced into the circuit theory as a hypothetical element [14],
and 37 years before the manufacture of a nanodevice that
exhibited the features of the memristor [15] as the (α, β)
element for α = β = −1. The pinched hysteresis that accom-
panies the deformations of inelastic materials and the cyclic
stress of buildings simulating an earthquake are documented
in [16]. Works from the area of organic and inorganic nature
model the memory effects in gases [17], in cylindrical protein
polymers (microtubules) [18], in nanofluidic [19] and quan-
tum [20] memristors, in synaptic junctions [21], in hafnium
oxide-based ferroelectrics [22], in solutions with measuring
electrodes [23], in muscle fibers [24], in human skin [25], or
in the behavior of plants and primitive organisms [26], [27]
with the utilization of the (–1,–1) element, i.e. the memris-
tor. Novel pinched nonlinear hysteretic structural models for
effective processing of measured hysteresis loops in various
types of complex systems are suggested in [28].

In the past, the causes of the studied hysteretic behavior
were often identified incorrectly. The respective systems are
denoted in [2] by the attribute ‘‘mistaken identity‘‘. A typical
example is the original Huxley-Hodgkin axon model [29],
containing time-varying conductances whose manifestations
were interpreted, in agreement with [30], as inductive reac-
tances. Later on, this non-predictive model was substituted

by correct models of the Potassium and Sodium ion channels,
which were identified as memristors [31].

The clue for revealing the true identity of systems that gen-
erate the PHLs can be the Generalized Homothety Theorem
(GHT). In [32], it is defined as follows:

The movement of the operating point in the (v(α), i(β))
space along the nonlinear constitutive relation of an (α, β)
element from Chua’s table is accompanied by the movement
of the operating point in the (v(α+1), i(β+1)) space along a
pinched hysteresis loop. The loops that correspond to the
driving signals of the same levels but various frequencies are
homothetic entities with the homothetic center at the origin
of the (v(α+1), i(β+1)) space, and the scale factor equal to the
ratio of frequencies. The areas within the lobes of the loops
increase with the square of the frequency.

The GHT, applicable to (α, β) elements with arbitrary
waveforms v(α) and i(β), specifies three regularities, associ-
ated with this element:

1. It specifies the coordinates where the PHL can be gen-
erated. The corresponding rule will be denoted here-
inafter as ‘‘The Loop Location Rule’’ (LLR).

2. It predicts the change of the shape of the loop if the fre-
quency of the driving constitutive variable is changed
(‘‘The Homothetic Rule’’, HR).

3. It describes the frequency dependence of the loop area
(‘‘The Frequency Rule’’, FR).

The LLR can have useful consequences. For example,
if the PHLs are observed in voltage-current, thus v(0)–i(0)

coordinates, then the source of such a behavior can be the
(–1,–1) element, which is the memristor defined by the
constitutive relation between the v(−1)–i(−1) variables (time
integrals of the voltage and current, denoted as the flux and
charge). For the PHLs studied in the stress-strain character-
istics of cyclically stressed polymers, the (–1,–2) mechanical
element, whose constitutive variables are the integral of force
vs. the second integral of velocity, can be responsible for the
hysteretic behavior: Considering that the effort is the force
and the flow is the velocity, the stress-strain coordinates can
be interpreted as a force-displacement pair (the first integral
of the velocity). The corresponding electrical (–1,–2) element
is the memcapacitor.

To verify the hypothesis offered by the LLR, namely that
a concrete (α, β) element is responsible for the hysteretic
behavior, the HR, FR, and other auxiliary rules dealing with
the symmetry and frequency dependence of the loop area can
be used.

According to [33], for a sinusoidal driving signal, the loop
is formed by two lobes centrally symmetric with respect to
the origin of the coordinates. Many papers have been devoted
to evaluating the area of the lobes of PHLs generated by
various mem-systems, and how these areas depend on the
frequency [34]–[43]. According to [34], the lobe area S can
be found from the area Å between the curve of the constitutive
relation g() and the chord linking two terminal operating
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FIGURE 1. Illustration of the ωωω2 criterion for computing the area S of the
PHL lobe from the constitutive relation g() of the element.

points (see Fig. 1) by using the formula S = ω2Å, which will
be denoted below as the ω2 criterion. This criterion is derived
in [34] for a memristor driven by a charge with harmonic
waveform. The derivation is made frommore general regular-
ities revealed in [34], namely that the area within the loop is
directly proportional to the value of an exactly defined part of
the (co)action potential. The ω2 criterion is closely related to
the FR, which is a part of the homothety theorem. FR exactly
describes the evolution of the loop area if the frequency of a
general driving signal is changed, but it does not provide a
formula for computing this area. On the other hand, the ω2

criterion enables evaluating the area, but only for harmonic
driving signals.

The cause of the asymmetry of the PHL can be seen in that
the corresponding system cannot be properly modeled only
by one ideal (α, β) element but via a more complex scheme
of interconnected models, which in their entirety exhibit a
more complicated behavior [27], [44]. As one more reason of
the asymmetry, the model of some systems cannot be com-
pounded from a mere set of two-terminal (α, β) elements [3].
A recommended guideline for building such models is the
analysis of physical processes in the system with the aim
to obtain their equations of motion. These equations are the
starting point for the synthesis of the predictive model via
procedures described in [3], [45]. Also the above information
about the frequency dependence of the area of generated
PHL can be useful for building up the model. An instructive
example is given in the work [17], dealing with the analysis
of the hysteretic relationship between the discharge current
and the gap voltage in helium dielectric barrier discharges.

II. MOTIVATION, CONTRIBUTIONS, AND PAPER
ORGANIZATION
Based on the state-of-the-art analysis in Section I, the follow-
ing two questions come into consideration:

1. Is there also some other pair of variables in addition to
the first derivatives of the constitutive variables for which,

according to the LLR, the PHLs are observable in their coor-
dinates?

2. If yes, what are the corresponding regularities? Can the
ω2 criterion also be generalized to computing the areas of
these loops?

As will be shown in Section III, the answer to the ques-
tion 1 is yes. As a consequence, the LLR cannot be directly
used for an unambiguous identification of the element which
is responsible for the hysteretic behavior. If the hysteresis can
be observable in various coordinates, it is not obvious which
of them can be used for specifying the coordinates of the
element in the table. The other consequence is the necessity
of engaging in the problems from question 2.

The motivation for this work is to resolve all the above
issues. The remainder of the paper is organized as follows.
The LLR is reformulated in Section III such that all possi-
ble coordinates are found where the PHLs generated by an
arbitrary (α, β) element can be observable. Section IV deals
with the computation of PHL areas. The existing ω2 criterion
is extended, and the relation between the areas denoted as
+ and – in Fig. 1 and this criterion is clarified. Simulations
in Section V demonstrate the usefulness of the above new
pieces of knowledge in electrical and mechanical engineer-
ing. Finally, Section VI summarizes the results and suggests
possible ways of continuing in the research.

To generalize the notation, the effort (e) and flow
( ) variables will be considered hereinafter instead of elec-
trical voltage (v) and current (i). In Section V, describing the
simulations of mechanical and electrical systems, the effort
and flow variables will be specified for concrete domains.

III. MODEL OF COMPLETE SYSTEM OF PHLS IN CHUA’S
TABLE: REVISITING THE LLR
Generally, the PHL appears in the e(α+j)− f(β+k) plane, j,
k 6= 0, if and only if both variables simultaneously cross
the zero value. Let the (α, β) element be driven by a biased
waveform

e(α)(t) = u0 − U cos (ωt) (1)

where u0 provides a proper operating point of the element,
and U , ω are the amplitude and angular frequency. The odd-
and even-order derivatives of the signal (1) are

e(α+2k−1)(t)= (−1)k−1 Uω2k−1 sin (ωt)

e(α+2k)(t)= (−1)k−1 Uω2k cos (ωt) , k=1, 2, 3.. (2)

Faà di Bruno’s formula [46] for the nth-order derivative of
the quantity f(β) = g(e(α)) holds:

f(β+n)(t) =
∑ (n)!

m1! . . .mn!
g(m1+...+mn)

n∏
j=1

(
1
j!
e(α+j)

)mj
(3)

The symbol g() denotes a higher-order derivative of the
constitutive relation with respect to e(α). The summation is
performed via all n-tuple nonnegative integers (m1, ..mn),
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FIGURE 2. Illustration of the ωωω2 criterion for computing the area S of the
PHL lobe from the constitutive relation g() of the element.

which are the solution to the Diophantine equation

1 · m1 + 2 · m2 + . . .+ n · mn = n (4)

Even-order derivatives of f(β) cannot form the PHL with
either odd- or even-order derivatives of e(α). To generate a
loop, the right side of (3) for n even would have to contain
either sine or cosine components in each of its addends.
It would enable the generation of PHL in combination with
the odd or even order of derivative (2). However, this is not
fulfilled, since two of the possible solutions to (4) are always
m1 = n, m2 = . . . = mn = 0 and m1 = . . . = mn−1 = 0,
mn = 1. For n even, (3) is therefore formed by a sum of terms,
one of them containing only the cosine component e(α+n), and
the other only the sine component e(α+1).

For an odd-order derivative of f(β), the PHL cannot appear
for the even-order derivative of e(α), since with n being odd,
all solutions to the Diophantine equation (4) contain nonzero
parts mj with odd indices j. As a result, the sine compo-
nent contained in every addend (3) is decisive for crossing
odd-order time derivative of f(β) by zero value.
When driving the (α, β) element via a harmonic signal,

the PHL is, for reasons given above, generated only in the
e(α+j)− f(β+k) planes, where j and k are odd positive integers.
The layout is illustrated in Fig. 2. The symbols of the loop or
cross placed in the coordinates (α+ j, β+k), j, k = 1, 2, 3, ..
inform about whether the PHL is or is not generated in the
e(α+j) – f(β+k) planes.

IV. LOOP AREA COMPUTATION: REVISITING THE ω2

CRITERION
The area of the PHL lobe can be computed as a generalized
content C or co-content C∗ [47] generated within one half-
period of the sine component, when the complete PHL lobe

was formed. For a general pair of signals in the e(α+j) – f(β+k)

plane, the content and co-content are

Cj,k=

T
2∫

0

e(α+j)
df(β+k)

dt
dt, C∗j,k=

T
2∫

0

f(β+k)
de(α+j)

dt
dt (5)

Integrating by parts the definition equations (5) leads to
regularities which hold for every j, k:

Cj,k = C∗j−1,k+1,C
∗
j,k = Cj+1,k−1, Cj,k + C∗j,k

=

[
e(α+j)f(β+k)

] T
2

0
(6)

The last relation in (6) is the Legendre transformation
between the content and co-content. With j, k being odd, the
PHLs are generated, and the content and co-content differ
only in the sign, because e(α+j) is equal to zero at the begin-
ning and end of the first half-period.

Eq. (1) and (2) yield the algebraic relation between e(α) and
e(α+2), namely e(α+2) = −ω2ẽ(α), where ẽ(α) = e(α) − u0.
Denote f̃(β) = f(β)− y0, where y0 = g(u0). The area of the
loop lobe in the e(α+1) – f(β+1) plane will be

C∗1,1 = C2,0 = −ω
2
∫
ẽ(α)d f̃(β) = −ω2C̃0,0 (7)

The integral in (7) is the content of the constitutive relation
g̃(), which is transformed from the original relation g() by
moving the origin of the coordinates into the operating point
(u0, y0). This content corresponds to the negative algebraic
sum of the areas denoted in Fig. 1 as + and –.
Applying the rule (6) yields a result which is analogous

to (7)

C∗1,1 = ω
2
(∫

f̃(β)dẽ(α) − Vmax (g̃ (Vmax)− g̃ (−Vmax))

)
︸ ︷︷ ︸

Å=−C̃0,0

(8)

Eq. (8) is the classical ω2 criterion [34] applied to common
(α, β) elements. Relations (6) and (2) lead to the followingω2

criterion, which holds for arbitrary PHLs:

odd j : C∗j+1,j+1=ω
2C∗j,j; even j : Cj+1,j+1=ω

2Cj,j (9)

It follows from (2) that e(α+j+2) = –ω2 e(α+j) for every
j ≥ 0. Considering the definitions (5) and the fact that the
content and co-content differ only in signs for odd j, k , it must
hold for the effort-type excitation

odd j, k : C∗j+2,k = ω
2Cj,k (10)

Eq. (6) and (9) can be used for computing the area of every
PHL represented by the content Cj,j for an arbitrary odd j.
An example is the area of the loop generated in the e(α+3) –
f(β+3) plane

C∗3,3 = ω
6
(
Å− U21G

)
, 1G =

[
dg
de(α)

] T
2

0
(11)
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FIGURE 3. (a) Absorber of mechanical vibration employing an inerter
with the inertance b, (b) steady-state transition of nonlinear inerter: The
acting force and acceleration are given by unambiguous constitutive
relation (13); the time derivatives of these variables are interconnected
via ambiguous hysteretic relations.

where 1G is a difference in the generalized conductances of
the element between the end and beginning of the half-period
of excitation. Geometrically, it is the difference between the
tangents of the angle at which the PHL is leaving the f(β+1) –
e(α+1) origin and the angle at which the PHL is coming back.
The value of Cj,j for an arbitrary j > 0 is the starting

point for determining the areas of the PHLs whose symbols
in Fig. 2 appear on the horizontal line which corresponds
to the value j. The areas are determined according to the
relation (10).

V. SIMULATIONS
A. MECHANICAL INERTER
The vibration absorber in Fig. 3 containing a linear inerter is
designed in [10]. It consists of a pair of springs with stiffness
k1 and k2, a damper with the damping coefficient c, and an
inerter with the inertance b, which for the linear inerter is the
constant of proportionality between the acceleration a and the
applied force F. Then the corresponding constitutive relation
of the linear inerter is

a = v(1) =
1
b
F (12)

where v is the velocity. Note that the inerter is therefore
the (0,1) element in the framework (effort, flow) = (force,
velocity).

The absorber is designed as a mechanical bandpass rejec-
tion filter such that the 10 Hz vibrations, causing the deflec-
tion z, are not projected onto the coordinate x of the body
with the mass M. The parameters of the absorber are as
follows [10]:
M = 10 kg, k1 = 9× 104 Nm−1, k2 = (9/8)×104 Nm−1,

c == 537.6 Nsm−1, b = 22.8 kg.

The results of a transient analysis of the absorber driven
into the node z by a 10 Hz sinusoidal vibration with a velocity
amplitude of 0.1 ms−1 are available in [11]. It is shown
therein that the prospective nonlinearity, introduced into the
constitutive relation (12), makes the filtering of the vibration
worse. The nonlinearity considered in [11] consists in the
limitation of the acceleration to the levels ±100/b if the
absolute value of the force exceeds the value of 100 N. How-
ever, this means that the first derivative of the acceleration
is not a continuous function of time. In order to utilize this
mechanical system for verifying the Loop Location Rule, i.e.
that the PHLs appear in the coordinates of the appropriate
odd derivatives of constitutive variables, this limitation must
be modeled via a function with continuous derivatives, for
example

a = v(1) =
m
b
tanh

(
F
m

)
(13)

where the parameter m determines the limit value of the
acceleration. For the inerter driven by a small force F →0,
the nonlinear constitutive relation (13) passes into the linear
form (12). For a large excitation force, the acceleration is
limited to the value m/b, the same as in [11].
The parameter m = 50 is chosen for the subsequent

simulations with a view to accentuating the nonlinear effects.
Fig. 3 (b) demonstrates the absorber transition to the steady
state. It is shown that the nonlinearity of the inerter is respon-
sible for the acceleration limits m/b = 2.193 ms−2. Accord-
ing to the conclusions from Section III, the PHLs of the
sine-driven inerter should be drawn in coordinates of the first
derivatives of the force and acceleration. However, the inerter
is not driven by a harmonic signal during the transient in
Fig. 3 (b). Consequently, a set of PHLs may be observable
in Fig. 3 (b), which approaches to a steady-state hysteretic
pattern.

The results of the steady-state analysis are summarized in
Fig. 4. Since the computation of higher-order derivatives from
the simulated waveforms is subject to nonacceptable errors,
the patterns in Fig. 4 were obtained from analytic formulae
of these derivatives, derived from (13) and on the assumption
of sinusoidal force acting on the inerter with the amplitude
extracted from the original steady-state simulation.

Fig. 4 confirms the LLR, since the PHLs appear in coor-
dinates that are also displayed in Fig. 2. The symmetries
of some characteristics, which can be traced up from the
simulation results, are particularly remarkable.

B. NONLINEAR RESISTIVE CIRCUIT WITH SILICON DIODES
Consider the electrical resistive (0,0) element as two identical
antiparallel diodes with the resulting hyperbolic-sine-type
current-voltage constitutive relation

i = 2Is sinh
(

v
nvT

)
(14)

where Is, n, and vT are the saturation current, emission
coefficient, and thermal voltage, respectively. In the simula-
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FIGURE 4. Simulated (F (α), v (β)) steady-state characteristics of the inerter
working inside the absorber in (3a) for all combinations of indices
α = {0,1,2,3} and β = {1,2,3,4}. The characteristic exhibiting the PHLs
are colored. For the sake of clarity, the axes are normalized and the
corresponding measures and units are omitted.

FIGURE 5. PHL generation by a circuit with two diodes 1N4001 driven by
the signal (1) with the parameters U ≡ Vmax = 400 mV, u0 ≡ v0 = 100 mV,
f = 1 Hz. The PHL in the v (k)-i(k) plane, k = 1,3, is scaled by the kth

power of frequency, amplitude Vmax, and maximum of the kth derivative
of current I (k)

max.

tion results for sinusoidal excitation in Fig. 5, the variables
of the corresponding loops are properly scaled. The maxi-
mum derivatives of the currents I (k)max for k = 1 and 3 are
2.519 mAs−1 and 1.802 As−3. It is confirmed that the PHL
originates only in the v(α+k) – i(β+k) planes for the positive
odd k .

C. HEWLETT-PACKARD MEMRISTOR
Fig. 6 provides the results of simulations performed on the
Hewlett-Packard (HP) memristor [48] with the port equation

v =
(
R0 −

(
Roff − Ron

) q
Q0

)
i (15)

where R0, Roff , and Ron are the initial, OFF, and ON resis-
tances of the memristor, Q0 is a charge necessary for switch-
ing between the ON and OFF states. The memristor is driven
by the signal (1), namely by the charge q = i(−1) with the

FIGURE 6. PHL generation by a circuit with HP memristor driven by the
signal (1) with the parameters U ≡ Qmax = 4 µC, f = 1 Hz. The PHL in the
ϕ(k) –q(k) plane, k = 1,3, is scaled by the kth power of frequency,
amplitude Qmax, and maximum of the kth derivative of flux 8(k)

max. The
memristor parameters are R0 = 50 k�, Roff = 100 k�, Ron = 1 k�,
Q0 = 10 µC.

FIGURE 7. PHL generation by a circuit with HP memristor driven by the
signal (1) with the parameters U ≡ Qmax = 4 µC, f = 1 Hz. The PHL in the
ϕ(k) –q(k) plane, k = 1,3, is scaled by the kth power of frequency,
amplitude Qmax, and maximum of the kth derivative of flux 8(k)

max. The
memristor parameters are R0 = 50 k�, Roff = 100 k�, Ron = 1 k�,
Q0 = 10 µC.

amplitude U ≡ Qmax and the offset u0 ≡ q0. Consider-
ing (2) with k = 1, the excitation can be accomplished via
sinusoidal current with the frequency-dependent amplitude
Imax = ωQmax. The offset q0, specifying the initial operating
point on the constitutive relation ϕ = f (q), is given by the
initial value of the memristance R0. The loop graphs are again
properly scaled. The maximum derivatives of the fluxes8(k)

max
for k = 1 and 3 are 877.9 mV and 60.375 Vs−2.
It follows from the duality principle for the (α, β) ele-

ments [49] that the ω2 criterion (9) for the voltage excitation
can be reworded for the current excitation via a mere inter-
change of the contents and co-contents. For a current-driven
memristor with a general nonlinear constitutive relation, the
area of the loop in the ϕ(3) – q(3) plane will be given by the
content

C3,3 = ω
6
(
Å− Q2

max1R
)
, 1R =

[
df
dq

] T
2

0
(16)

Arranging (16) yields

C3,3 = ω
4
(
C1,1 − I2max1R

)
(17)

An interesting interpretation of (17) is presented in Fig. 7.
The area of the triangle 0AB formed by the perpendicular
crossing through the point Imax and by two tangents to the
PHL lobe, led by the v – i origin, is

S0AB =
1
2
I2max |1R| (18)
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It is obvious that, if the constitutive relation is concave, the
lobe is clockwise oriented, thus C1,1 > 0 and1R < 0; for the
convex constitutive relation, the opposite is true. In any case,
the parentheses in (17) contain the sum of two terms with the
same signs. The first term represents the area of the v – i lobe,
the second term is twice the area of the triangle circumscribed
around this lobe.

It is proved in [34] for the HP memristor that the area
of the v – i lobe is equal to two-thirds of the S0AB area.
Connecting this piece of knowledge with (17) reveals the
following regularity concerning the area of the v(2) – i(2) lobe:

∣∣C3,3
∣∣ = 8

3
ω4S0AB, C3,3 = 4ω4C1,1 (19)

VI. CONCUSION
New pieces of knowledge presented in this work can be
summarized as follows:

1. An arbitrary (α, β) element driven by a harmonic signal
generates pinched hysteresis loops in the coordinates of
odd-order time derivatives of its constitutive variables.
The cause of the hysteresis is the nonlinearity of the
constitutive relation of the element.

2. The algorithm of computing the area of the lobe of an
arbitrary pinched hysteresis loop from item 1 is found.
The relations between the areas of various pinched
hysteresis loops are governed by the generalizedω2 cri-
terion, which allows an area computation based directly
on the constitutive relation of the element. This cri-
terion introduces order into researching the frequency
dependence of higher-order hysteresis in nonlinear cir-
cuits.

3. The regularities 1 and 2 hold for arbitrary (α, β)
elements, thus not only for (mem)resistors, (mem)
capacitors and (mem)inductors. It is worth noting that
they take effect independently of the type of the non-
linearity of the constitutive relation of the element.

4. The findings 1 and 2 hold for the (α, β) elements with
a general pair of (effort, flow) constitutive variables.
It makes them useful not only in the classical electrical
engineering but also in other branches of science.

The above findings open up new possibilities of ongoing
research. The following open issues are of particular interest:

1. Is it possible to generalize the Homothety Rule (HR,
the part of The Generalized Homothety Theorem) to
all loops according to Fig. 2?

2. What regularities and relationships govern the various
forms of the characteristics (e(α+k), f(β+l)), k , l ∈ N+
(see the example of the characteristics of the inerter in
Fig. 4)?

3. How does the loop area depend on frequency for a
fixed amplitude of the driving variable e(α+k), k ∈
N+? Hitherto known are only the results for the loop
corresponding to the content C1,1 for the memristor,
k = 0 (the area increases with the square of frequency)

and k = 1 (well-known frequency criterion: the area
disappears with increasing frequency).

4. Searching for the identity of the element via the PHL
analysis with the help of item 3. An exemplary work
is [17] about researching the discharges in helium. The
area of the PHL lobe grows with frequency, and the
element identity is not currently known.

5. Researching into a complete system of PHLs (Loop
Location Rule) for general waveforms of the constitu-
tive variables of the element.
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