
Received September 25, 2020, accepted October 17, 2020, date of publication October 29, 2020,
date of current version November 11, 2020.

Digital Object Identifier 10.1109/ACCESS.2020.3034799

Symmetry Breaking in Model Checking of
Fault-Tolerant Nuclear Instrumentation and
Control Systems
IGOR BUZHINSKY 1,2 AND ANTTI PAKONEN 3
1Department of Electrical Engineering and Automation, Aalto University, 02150 Espoo, Finland
2Computer Technologies Laboratory, ITMO University, 197101 Saint Petersburg, Russia
3VTT Technical Research Centre of Finland Ltd., 02044 Espoo, Finland

Corresponding author: Igor Buzhinsky (igor.buzhinsky@gmail.com)

This work was supported in part by the Finnish Research Programme on Nuclear Power Plant Safety 2019–2022
(SAFIR2022), and in part by the Government of the Russian Federation under Grant 08-08.

ABSTRACT One of the approaches to assure reliability of nuclear instrumentation and control (I&C)
systems is model checking, a formal verification technique. Model checking is computationally demanding,
but nuclear I&C systems have certain properties that simplify the verification problem. The most notable
of these properties are redundancy (duplication of certain system parts in several divisions) and symmetry,
which are the means of ensuring failure tolerance. In this work, we extend our previous method of model
checking failure tolerance of nuclear I&C systems by proposing an automated symmetry breaking approach
that utilizes these properties to simplify the verification problem. As a result, fewer failure combinations need
to be checked. We evaluate this approach on a case study that encompasses three safety functions allocated
to four I&C systems in the same I&C model.

INDEX TERMS Formal verification, model checking, symmetry breaking, nuclear I&C systems, fault
tolerance.

I. INTRODUCTION
Instrumentation and control (I&C) systems of nuclear power
plants (NPPs) must be ensured to be correct. This is achieved
with approaches that encompass both architectural choices,
such as following the defense-in-depth (DiD) [1] principles,
and functional verification. In Finland, the latter is performed
formally [2]–[5] with the model checking [6], [7] technique.

One of the obstacles of applying model checking in indus-
trial practice is computational complexity. This problem
received algorithmic solutions, including symbolic model
checking [8], bounded model checking [9], and the IC3 [10]
algorithm. However, handling large industrial systems is still
a challenge. A complementary approach to reduce compu-
tational complexity is utilization of domain-specific knowl-
edge. In this article, we follow this approach to verify
fault-tolerant nuclear I&C systems, harnessing their redun-
dancies (the similarity of the intra-system divisions) and
symmetries (patterns in inter-system connections).

This work continues our previous work [11]. With respect
to [11], its contributions are: (1) we propose a symme-
try breaking approach for model checking of nuclear I&C

The associate editor coordinating the review of this manuscript and

approving it for publication was Junjian Qi .

systems, which automates the reasoning based on which cer-
tain failure combinations can be omitted from model check-
ing, (2) we improve our failure injection technique to widen
the class of formal specifications to which it is applicable,
and (3) we enlarge our case study. Specifically, selection of
verification configurations to be verified is done by logi-
cally proving that during verification certain configurations
provide guarantees at least as strong as others.

The remainder of the paper is organized as follows.
In Section II, general information about nuclear I&C systems
is given. Then, Section III explains how these systems can
be formally verified with model checking. In Section IV, our
symmetry breaking approach is presented. In Section V, this
approach is evaluated on a case study based on a fictitious
NPP. Related work is reviewed in Section VI. The paper is
concluded in Section VII.

II. NUCLEAR I&C SYSTEMS
The functionality of nuclear I&C systems is usually speci-
fied using function block diagrams (FBDs), and the logic is
often distributed across multiple processing units in multiple
buildings. Formal verification of such systems was previ-
ously considered in [2]–[5], [12]–[15]. Among the functions
that are most important in terms of formal verification are

197684 This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/ VOLUME 8, 2020

https://orcid.org/0000-0003-3713-6051
https://orcid.org/0000-0002-6803-2303
https://orcid.org/0000-0002-4043-9427


I. Buzhinsky, A. Pakonen: Symmetry Breaking in Model Checking of Fault-Tolerant Nuclear I&C Systems

safety functions. Due to the need to assure failure tolerance,
they are designed in a redundant, often symmetric way, where
identical processing units are placed in different buildings
of the NPP. Thus, their verification needs to account both
for software (the FBDs) and hardware (failures and com-
munication) [11]. Failure tolerance can also be improved
through diversity, i.e., the use of different technology or
design principle in a redundant system.

A. DEFENCE-IN-DEPTH
According to the Defence-in-Depth (DiD) principle [1], ‘‘a
nuclear power plant shall be designed using multiple, suc-
cessive redundant structures and systems in order to prevent
reactor damage and the detrimental effects of radiation.’’ In
practice, this requires successive levels of protection (called
DiD levels) to be as independent of each other as possible.
The I&C systems of the plant must also fulfill the DiD
principle. In theory, the I&C architecture could be designed
to achieve total independence between the DiD layers. Such
a solution, however, is impractical [16]. An optimized archi-
tecture avoids these problems using justifiable compromises
in the separation of DiD layers. In Section V, our case study
will include the following DiD levels (defined according to
European guidelines [17]):
• Level 1: prevention of abnormal operation and failures.
• Level 2: control of abnormal operation and failures.
• Level 3: control of accident to limit radiological releases
and prevent escalation to core melt conditions.

B. HARDWARE FAILURES
According to the Finnish regulatory guides for nuclear
safety [1], the following failure types are defined:
• The single failure criterion means that a safety function
must be possible to perform even if any single
component designed for the function fails.

• A common cause failure (CCF) refers to multiple fail-
ures across redundant subsystems: a failure of two or
more structures, systems and components due to the
same single event or cause. Such a failure can manifest
as the loss of all of the sensors, computers, communica-
tion pathways, and/or actuators used by an I&C system.

• A consequential failure refers to a failure caused by a
failure of another system, component or structure or by
an internal or external event at the facility. An example
of such a failure is the simultaneous loss of several I&C
systems due to the failure of a shared power supply.

The most safety critical digital I&C systems are those used
for reactor protection onDiD level 3. In Finland, such systems
belong to safety class (SC) 2, andmust fulfill the single failure
criterion.1 At the same time, they also must withstand the
CCF of the systems on the lower DiD levels.

Hardware failures in nuclear I&C model checking were
previously considered in [18], with detailed failure modes,

1For SC2, there is an stricter requirement (called N+2) stating that the
system has to tolerate a single failure in any component while any other
component is simultaneously out of operation due to repair or maintenance.

and in our previous works [11], [19], where the single fail-
ure criterion was applied with failures that substitute signal
values in failing divisions with nondeterministic values. We
follow the latter approach in this article.

III. MODEL CHECKING OF NUCLEAR I&C SYSTEMS
A. FORMAL MODELS
Formal models that we consider represent possible behaviors
of the modeled system as sequences of its states (i.e., under
the discrete, transition-based model of time). Our formaliza-
tion is close to the one that is suitable for NuSMV [20] mod-
els but is enriched with domain-specific information related
to failure tolerance assurance and checking in nuclear I&C
systems.

Amodule (V in,V out,V int, S in, Sown, S0,T , 6) consists of:

1) Sequences V in
= (vin1 , . . . , v

in
m) of input variables,

V out
= (vout1 , . . . , voutn ) of output variables and V int

=

(vint1 , . . . , v
int
k ) of internal variables with their sets

of possible values (Rin1 , . . . ,R
in
m), (R

out
1 , . . . ,Routn ) and

(Rint1 , . . . ,R
int
k ) respectively. The value of each variable

consists of two parts: the primary value, which is either
a Boolean or an integer from some finite set, and a
binary fault status (i.e., a Boolean variable will effec-
tively have four possible values).2

2) The sets of input states S in = Rin1 × . . .× R
in
m and own

states Sown = Rout1 × . . .× R
out
n × R

int
1 × . . .× R

int
k .

3) The initial state relation S0 ⊆ S in × Sown, which
specifies the initial states of own variables that are
possible given the initial values of input variables. We
assume that input variables are not determined by the
module, but their values are provided from outside.

4) The transition relation T ⊆ (S in×Sown)×Sown, which
specifies how own states can change in time, given the
values of input variables. We assume that T is left-total,
i.e., each state always has at least one successor.

5) The set of input symmetries 6 ⊆ 2V
in
, where a sym-

metry s ∈ 6 is a subset of input variables such that any
permutation of the values of these variables (selected
for the entire module execution) has no effect on the
values of output variables. We require all s ∈ 6 to be
disjoint. Symmetries must be provided by the user but
can be verified automatically [11].

A formal model is composed of a sequence V̂in of system
input variables (with fault statuses; system input variables
are also allowed to be constant, in which case their fault
status is always false), modules M1, . . . ,Mr , and a set C
of connections between them of the form (p, q,M ), where
p is a system input variable or an output variable of some
module, q is an input variable of a different module, and
M is a connection module. In the simplest case, a connec-
tion module is an identity module, which makes the con-
nected variables have the same values. We will also consider
failure modules that can substitute the input value with an

2Fault statuses are typical in nuclear I&C systems and are used to reason
about signal validity, e.g., during voting. [5]

VOLUME 8, 2020 197685



I. Buzhinsky, A. Pakonen: Symmetry Breaking in Model Checking of Fault-Tolerant Nuclear I&C Systems

arbitrary value within the allowed range of the corresponding
variable.3

A formal model has the following execution semantics. All
the modules execute synchronously. In the first step, the val-
ues of system input variables are chosen nondeterministically
from their value sets, and the initial states of all the modules
are chosen nondeterministically according to their initial state
relations. In subsequent steps, system input variables are
again chosen nondeterministically, and the modules proceed
according to their transition relations.

Additionally, we assume thatM1, . . . ,Mr are deterministic
(i.e., their initial state and transition relations are functional)
and are internally decomposed into basic blocks. This decom-
position is similar to the one of the formal model into
modules.

One more attribute of a formal model is a set G of unit
groups, where each group g ∈ G has a positive number d(g)
of divisions. Unit groups, in turn, are disjointly composed of
units and system inputs:

1) Units are groups of identical modules, one per each
division of the unit group. If u ∈ g is a unit, we denote
its modules as M (u, i), 1 ≤ i ≤ d(g). These mod-
ules are identical, but we distinguish their input and
output variables and allow them to be connected with
other components of the formal model in a different
way.

2) System inputs are groups of system input variables with
identical sets of possible values, one per each division
of the unit group. If q ∈ g is a system input, we denote
its input variables as v(q, i), 1 ≤ i ≤ d(g).

Having all these definitions, we can define a formal model
as a tuple F = (V̂in, {M1, . . . ,Mr },C,G). By B(F) we
denote the set of behavior traces (or simply behaviors) of F ,
i.e., possible infinite sequences of states, where each state is
an assignment of all variables in F . In the definition of B(F),
while considering states, we do not distinguish variables that
only differ by the division of the unit they belong to: for
example, if some Boolean variable w belongs to a unit with
four divisions, we treat all states where w is true in exactly
three divisions as equivalent. This will allow us to compare
behavior sets of models derived from F by adding failures
and/or removing certain components.

In Fig. 1, a fictitious formal model is shown that we use as
a running example. It has a single unit group g with d(g) = 2
divisions and two units called utop and ubottom. Each of these
units consists of d(g) = 2 identical modules, whose internal
decomposition into basic blocks is shown inside the colored
rectangles.

A component of a formal model is either a module, an out-
put variable of a module, or a system input variable. We view
the formal model as a directed graph 0 = (V0,E0) whose
vertices are all the components in the formalmodel andwhose
arcs are defined as follows: a module is connected to each

3Connection modules can also be used to inject communication delays,
like in [11]. We do not consider them in this article, although they can be
easily accounted for in our approach.

FIGURE 1. Running example of a formal I&C model. The top-most ‘‘pulse’’
elements always output a signal of specified length, starting on the rising
edge of the input signal (unless the previous pulse is still active). The
‘‘on-delay’’ element (labeled ‘‘t..0’’) sets its output when its input has
been active for over the specified length. The ‘‘flip-flop’’ (labeled S R )
latch element is set and reset by the associated inputs, with priority on
the set side.

of each output variables, and a beginning of each connection
is connected to the module at the end of this connection.
Our approach requires 0 to be acyclic (individual modules,
however, are allowed to have feedback loops inside them).
We say that a component x ∈ V0 is upstream with respect to
a component y ∈ V0 if there exists a directed path from x to y
in 0. For example, in Fig. 1, for each 1 ≤ i, j ≤ 2, M (utop, i)
is upstream with respect to M (ubottom, j).
The unit group g(x) of component x is defined as follows:
1) if x is a module or a system input variable, g(x) is the

unit group such that x ∈ g(x);
2) if x is an output variable of a module of unit u, g(x) =

g(u).
The division d(x) of component x is defined as follows:
1) if x is a module, d(x) is such that x = M (u, d(x)) for

some unit u;
2) if x is a system input variable, d(x) is such that x =

v(q, d(x)) for some system input q;
3) if x is an output variable of a module of unit u, d(x) =

d(u).

B. FAILURE MODELING
As in [11], we model failures by placing certain modules
on connections inside the system. Such failures also cover

197686 VOLUME 8, 2020



I. Buzhinsky, A. Pakonen: Symmetry Breaking in Model Checking of Fault-Tolerant Nuclear I&C Systems

internal failures of computational devices where the mod-
ules are executed since these failures can be simulated by
replacing their outputs with nondeterministic values (unless
the internal contents of modules are queried in the formal
specification).

If a unit group g must allow single failures, then a specific
division i of g is chosen to be failing and failure modules are
placed on all connections that either begin or end (or both)
at this division of g. If CCFs are possible in g, then, in the
worst case, all connections leading from g to other unit groups
are affected. We model this case by placing failures in all
divisions of g.

Having a fault-free model, we reason about possible
failures that can be added to it with failure assignments
φ : G → 2N. For each unit group g, φ gives the indices
of failing divisions in g, and thus φ(g) ⊆ {1, . . . , d(g)}.
For convenience, we extend φ so that for a component
x ∈ V0 it indicates whether x is affected by failures:
φ(x) def

= 1φ(g(x))(d(x)).
By default, we implement failures as replacements of the

failing signals with nondeterministic values, as if the system
had additional input variables. In Section IV-E, we will show
that this treatment of failures must be revised to correctly
handle a certain subclass of CTL properties.

C. TEMPORAL LOGICS
Model checking needs formal languages to specify properties
to be checked for formal models. Predicates over state vari-
ables are not sufficiently flexible since they cannot capture
time. Linear temporal logic (LTL) is an extension of the
Boolean propositional logic that captures time in a particular
behavior trace of the formal model with temporal operators,
such as G (‘‘always’’) and F (‘‘in the future’’). For example,
if x is an integer state variable, then the formula FG(x = 10)
specifies that x eventually becomes 10 and retains this value
forever. An LTL property is said to be satisfied for a formal
model if it is satisfied for all its behaviors.

In computation tree logic (CTL), the values of temporal
formulas are first defined for model states rather than behav-
iors, and a CTL formula is satisfied for a formal model if it
is satisfied in all its initial states. CTL temporal operators are
annotated with path quantifiers A and E, which specify that
a property is satisfied for all or for some behaviors starting
from the current state—thus, it becomes possible to express
reachability.

In our work, CTL properties are limited to the ones of the
form AGEF f , where f is a Boolean formula. We call them
global possibility properties: according to this formula, from
all reachable states of the model, it is possible to reach a
state where f is satisfied. More specifically, if p is a Boolean
variable, then checking AGEF p and AGEF¬p ensures that
both values of p are reachable in any reachable state of the
model.

D. MODEL CHECKING TOOLS
To work with formal models and properties of the
aforementioned classes, we use the following tools:

1) NuSMV [20] and nuXmv [21] model checkers. Formal
NuSMV and nuXmv models are specified in their own
textual language.

2) MODCHK [22], a graphical front-end to NuSMV.
In this tool, modules and formal models can be cre-
ated visually, from a library of basic blocks written in
NuSMV.

3) HW-SW-builder [11], a tool to specify the modular
structure of I&C models textually, based on the same
basic blocks. HW-SW-builder generates NuSMVmod-
els that are similar to the ones produced by MODCHK,
but unlike the latter, it supports failure and delay injec-
tion into the formal model and allows declaring and
checking symmetries that exist in the I&C system. In
this work, we further enhance this tool.

IV. PROPOSED APPROACH
A. MOTIVATING EXAMPLE
We return to the example shown in Fig. 1. The connections
from division 1 of utop are marked with ‘‘F’’ stars, which
indicate possible failures. For now, suppose that these failures
do not manifest themselves and we need to check an LTL
property that specifies the behavior of ubottom, e.g., f =
GFout. One may notice that this is only sufficient to be
done for one division of ubottom since its two modules are
identical and receive inputs from identical divisions of utop.
In [11], such observations were applied to reduce the number
of scenarios to be verified, but reasoning was performed
manually and involved larger systems. Can this symmetry
breaking reasoning be automated?

When it comes to verifying failure tolerance, failures must
also be encompassed in reasoning. If we assume that one of
two divisions of the I&C system may have arbitrary failures
(by placing failure modules on connections), then it only
makes sense to model-check the requirement for the out-
puts of the other division (otherwise, these outputs would
be directly affected by failures). For our example, the cases
of verifying division 2 when assuming failures in division
1 and vice versa would be equivalent. Can similar situations
be determined automatically, especially for larger systems?

Let us now return to model-checking of f . If arbitrary
failures happen in division 1, this adds new behaviors to the
model compared to the fault-free case and keeps any previ-
ously existing behaviors. Hence, if f is proved to be correct
under the presence of failures, checking it for a fault-free
system is not needed.

Unfortunately, this reasoning is not applicable to CTL
properties due to their non-linear semantics. Now suppose
that we need to check a universal reachability property g =
AGEF¬out (‘‘the false value ofout is always reachable’’).
Model-checking g in NuSMV with no failures yields a pos-
itive outcome. The same happens if the failures are injected
into the outputs of both divisions utop (or, equivalently, if utop
is omitted from the system and replaced with nondetermin-
istic inputs to ubottom). However, when a failure is injected
into exactly one division of utop (like shown in Fig. 1),

VOLUME 8, 2020 197687



I. Buzhinsky, A. Pakonen: Symmetry Breaking in Model Checking of Fault-Tolerant Nuclear I&C Systems

g becomes violated.4 Is it possible to model-check univer-
sal reachability properties while still having a more reliable
result for strictly more severe failure assumptions?

B. VERIFICATION CONFIGURATIONS
A verification configuration (from now on, also configura-
tion) is a tuple c = (u, i, φ), where u is a viewpoint unit,
1 ≤ i ≤ d(u) is its viewpoint division, and φ is a failure
assignment. Semantically, c corresponds to model-checking a
property that involves the variables of moduleM (u, i) and its
upstream components while assuming that the formal model
is modified according to φ.
Suppose that we need to model-check the LTL property

Gout of ubottom in Fig. 1, assuming the single fail-
ure criterion. Given that verification with failures in the
verified division of ubottom is meaningless, we get the
following configurations: c1,2 = (ubottom, 1, {(g, {2})})
and c2,1 = (ubottom, 2, {(g, {1})}).5 For illustration pur-
poses, we also consider fault-free configurations: c1,∅ =
(ubottom, 1, {(g,∅)}) and c2,∅ = (ubottom, 2, {(g,∅)}).

C. DOMINATION OF CONFIGURATIONS
Suppose that F is the overall fault-free formal model, i.e., the
one with identity modules on connections. Let Fφ be the for-
mal model obtained from F by assuming that the failure mod-
ules are placed on connections according to φ. Configuration
c1 = (u, i1, φ1) dominates configuration c2 = (u, i2, φ2),
denoted as c1 ≥ c2, if B(Fu,i1,φ1 ) ⊇ B(Fu,i2,φ2 ). Clearly, ≥ is
a partial order on configurations. We say that configurations
c1 and c2 are equivalent, denoted as c1 ≡ c2, if c1 ≥ c2 and
c2 ≥ c1, and that c1 strictly dominates c2, denoted as c1 > c2,
if c1 ≥ c2 and ¬(c1 ≡ c2). Clearly, ≡ is an equivalence
relation on configurations.

How can the domination relation be used to simplify model
checking? This can be done by reducing the number of
verification configurations to consider. First, suppose that
we model-check an LTL property f for all d(u) divisions
of unit u, and the failure criterion that must be accounted
for during verification corresponds to failure assignments
8 = {φ1, . . . , φr }. In this case, all configurations from the
set Q = {(u, i, φ) | 1 ≤ i ≤ d(u), φ ∈ 8} must be checked.
Nonetheless:
1) if for c1, c2 ∈ Qwe know that c1 > c2, then the positive

result of model checking c1 would imply the one of c2;
2) if we know that some Q̂ ⊆ Q is an equivalence class

under ≡, it is sufficient to check any c ∈ Q̂.
In Fig. 1, accounting for the identity of the module

instances in different divisions of the units and the connec-
tions between utop and ubottom, we get: c1,2 ≡ c2,1, c1,∅ ≡

4The 3s on-delay element at the end of the non-failing connection (A2 to
B2) only receives 1s signal pulses, which means that its output is never set.
The other 3s on-delay element, under normal circumstances, resets the SR
flip-flop after the setting 1s pulse (A1 to B1) is over, but here, a failure can
cause a longer signal pulse, which keeps the set-priority flip-flop on until
after the 3s on-delay is over. From that point on, no signal can reset the 3s
on-delay, nor therefore the flip-flop. Note that the design is not meant to
make sense as a real function, but to prove our point.

5Here, we define failure assignments by their graphs.

c2,∅, and each of c1,2 and c2,1 strictly dominate c1,∅ and
c2,∅. As a result, it remains to verify either c1,2 or c2,1.
Finally, note that the input variables of M (ubottom, 1) and
M (ubottom, 2) are not symmetric and had the connections to
the input variables of M (ubottom, 1) or M (ubottom, 2) been
swapped, c1,2 and c2,1 would become incomparable. How
could we obtain such conclusions automatically?

D. COMPUTING THE DOMINATION RELATION
First, we extend the notion of a verification configuration. An
extended configuration is a tuple (x, φ, ϕ), where:

1) x ∈ V0 is a component;
2) φ is defined as in the case of a plain configuration;
3) ϕ ∈ {0, 1} is a failure assumption: whether a failure

directly affects x in addition to failures given by φ.
A plain configuration c = (u, i, φ) can be extended as

follows: E(c) = (M (u, i), φ, 0). We also extend ≥ and ≡ to
cover extended configurations. For an extended configuration
(x, φ, ϕ), a sequence κ(x, φ, ϕ) of sets of child extended
configurations is defined:

1) if x is a system input variable, κ(x, φ, ϕ) is empty;
2) if x is an output variable of some module y,

then κ(x, φ, ϕ) is a singleton sequence consisting of
{(y, φ, ϕ)};

3) if x is a module with input variables vin1 , . . . , v
in
m , then

∪κ(x, φ, ϕ) = {(yi, φ,max(ϕ, φ(x), φ(yi))) | 1 ≤ i ≤
m}, where yi is the beginning of the connection whose
end is vini , the grouping of elements to the nested sets of
κ(x, φ, ϕ) is done according to the input symmetries of
x, and these sets are listed in a fixed order for modules
of each unit.

We say that components x1 and x2 are comparable if they
are both modules of the same units, system input variables of
the same system input, or output variables of modules of the
same unit with the same indices.

For given extended configurations c1 = (x1, φ1, ϕ1) and
c2 = (x2, φ2, ϕ2) with κ(x1, φ1, ϕ1) = (s1,1, . . . , s1,t ) and
κ(x2, φ2, ϕ2) = (s2,1, . . . , s2,t ), c1 ≥ c2 can be concluded6 if
and only if x1 and x2 are comparable and either the following
conditions is satisfied:

1) ϕ1 = 1 (the outputs of x1 can be directly substituted
by failing signals, and x2 will be unable to have more
severe failures);

2) ϕ1 = ϕ2 = 0 and φ(x1) = 1 (due to the same reason);
3) ϕ1 = ϕ2 = φ(x1) = φ(x2) = 0 and for all

1 ≤ i ≤ t there are orderings (c1,i,1, . . . , c1,i,r ) and
(c2,i,1, . . . , c2,i,r ) of elements from s1,i and s2,i respec-
tively such that c1,i,j ≥ c2,i,j for all 1 ≤ j ≤ r (the
upstream components of x1 have failures at least as
severe as the corresponding upstream components of
x2 have).

These rules can be used to recursively check domination
for extended configuration pairs in {E(c) | c ∈ Q}, where Q

6It might be possible than a configuration dominates another configuration
due to properties of formal models other than the ones considered in this
article, e.g., due to the implementations of individual modules. Our approach
will not detect such cases.

197688 VOLUME 8, 2020



I. Buzhinsky, A. Pakonen: Symmetry Breaking in Model Checking of Fault-Tolerant Nuclear I&C Systems

is the set of plain configurations to be model-checked. We
implemented this computation in Prolog. Recursive applica-
tion of rule 3 eventually terminates since 0 is acyclic and
system input variables have no child extended configurations.
Unfortunately, this rule may need to consider all permuta-
tions of elements within each input symmetries in modules.
Nonetheless, in our case study, where symmetries are at most
of size 4, we are still able to compute the entire matrix of the
domination relation in less than one second.

E. SYMMETRY BREAKING WHILE CHECKING GLOBAL
POSSIBILITY
For LTL, the reasoning of Sections IV-C and IV-D was appli-
cable due to the following: ifF2 is obtained fromF1 by adding
failures on one or more connections, then B(F2) ⊇ B(F1) and
hence, due to the semantics of LTL, if h is an LTL property
satisfied for F2, h is necessarily satisfied for F1.
Now suppose that we need to model-check a CTL prop-

erty. Unfortunately, for CTL, the reasoning of Sections IV-C
and IV-D is not applicable since a CTL property is not a
predicate that must be satisfied for all behaviors of the formal
model. Nonetheless, we will show how to make it applicable
for a global possibility property g = AGEF f .

Suppose that g is false for F1, which means that there is
a reachable state σ1 in F1 such that for all paths (i.e., in the
graph formed of states and transitions of F1) from σ1 to some
state σ ′2 we have ¬f (σ

′

2). We now consider a refined way of
adding failures to F1 so that g is also false for F2: we augment
F1 and F2 with a global failure bit γ , which is initialized
nondeterministically and allowed to change from 1 to 0 on
any step but not vice versa. Failure modules in F1 and F2 are
only allowed to manifest themselves (i.e., substitute signal
values) when γ = 1.
We now show that g is false in F2. First, it is sufficient

to assume that σ1 has γ = 0 (otherwise, we may take
the corresponding state with γ = 0, from which f is still
unreachable). Second, we consider the same state σ2 in F2,
also with γ = 0. Due to failures being disabled, f is again
unreachable from this state. Intuitively, in F2, the failures
may drive the checked moduleM to a potentially larger set of
states, but, once γ becomes 0, reachability of f in F2 and F1
from the same state becomes equivalent.

In addition, we compare a model with refined failures F ′2
with the same model with usual nondeterministic failures F ′1.
Again, if g is false in F ′2, it will be false in F ′1: we take the
same state σ1 in F ′1 that witnesses the unreachability of f ,
then look at the corresponding state σ2 in F2 with γ = 0
(σ2 can be reached by mimicking the path to it in F1 with
γ = 1, and setting γ = 0 on the last transition) and see
that f is unreachable from σ2. Thus, model checking global
reachability properties with refined failures not only adheres
to symmetry breaking, but also yields more reliable results.

Note that this refinement of the way of adding failures does
not affect LTL model checking. At the same time, it increases
resource consumption of model checking and thus we do not
use this refinement when checking LTL properties.

F. SUPPORTED REQUIREMENT CLASSES
According to the aforementioned assumptions, temporal
properties that are compatible with the proposed approach
refer to a particular module of interest M (u, i), called the
viewpoint, while having access also to the variables of all
upstream modules of M (u, i). When specifying such proper-
ties, i is replaced with a placeholder for the chosen division,
which will be substituted with a concrete division should it
be chosen for verification.

We consider the following classes of temporal properties:

1) Common LTL properties adhere to the aforementioned
constraints and are checked under the chosen failure
tolerance criteria. They correspond to request-response
or absence of spurious actuation requirements.

2) Isolated LTL properties are similar to common LTL
ones but only involve the variables of M (u, i) and thus
are unaffected by the failure tolerance criteria. In addi-
tion, they can correspond to invariants over the outputs
of this unit.

3) Global possibility (Section III-C) properties are
checked under the chosen failure tolerance crite-
ria with the failure injection technique presented in
Section IV-E.

By contrast, the following property classes are incompatible
with the proposed approach:

1) Properties that inquire into the joint behavior of at
least two modules that are not upstream/downstream
with respect to each other. These properties do not
correspond to any viewpoints.

2) Properties that distinguish the divisions of units other
than u (e.g., require the values of variables in two
particular modules rather than the variables of two
arbitrary modules to be true). Configuration domina-
tion and equivalence reasoning is inapplicable for such
properties.

3) Properties that refer to internal components of modules
other than M (u, i) if these modules can be affected by
failures according to the chosen failure criterion. This
is a technical limitation caused by failures being only
injected to connections and can be avoided by wiring
the queried variables to extra outputs added to their
modules.

In [11], we introduced the class of so-called black-box
properties. They do not violate the assumptions above, but
some of the assumptions of black-box properties, such as
the prohibition of any references to internal variables, can be
relaxed.

V. EXPERIMENTAL EVALUATION
A. CASE STUDY
Our case study is based on the U.S. EPR NPP materials [23],
[24], our previous case study [11] and our own invention.
As in [11], it includes three fault-tolerant subsystems: the
4-redundant protection system (PS), the 2-redundant safety
automation system (SAS), and the 4-redundant priority and
actuator control system (PACS). These systems implement

VOLUME 8, 2020 197689



I. Buzhinsky, A. Pakonen: Symmetry Breaking in Model Checking of Fault-Tolerant Nuclear I&C Systems

FIGURE 2. Structure of the case study.

two safety functions: preventive protection and reactor pro-
tection. Due to the PS and the PACS being jointly responsible
for reactor protection, we view them as parts of a single
unit group. The PS and the SAS are decomposed into units
of two types: acquisition and processing units (APUs) and
actuation logic units (ALUs). APUs of each subsystem are
connected to the ALUs of the same subsystem in an all-to-all
fashion. One more component that we add to this case
study in this work is the process automation system (PAS),
which is responsible for the normal operation of the NPP, a
non-safety function. Accordingly, the PAS has only one
division. Note that, to mimic the practical impossibility of
following DiD principles perfectly, we have deliberately
added many connections across the DiD levels (we do not
claim such design choices would be justifiable in real-world
systems).

The structure of the case study is shown in Fig. 2. The
internal structure of the PAS is shown in Fig. 3. The imple-
mentations of some other subsystems can be found in our
previous work [11].7

B. FUNCTIONAL REQUIREMENTS
According to the Finnish regulatory guides [1] (item 442),
the failure criterion is applied to the complete set of systems
needed to execute a safety function (associated with a DiD
level). A failure in a ‘‘lower’’ DiD level shall not prevent the
function in a ‘‘higher’’ DiD level from bringing the plant to
controlled/safe state, even if the failure is total (CCF). We
therefore subdivide the functional requirements to be checked
into several scenarios according to the functions towhich they
are related:

1) Level 1 function: normal operation. The PAS is
solely responsible for this function. There is no failure

7In the present work, some of the implementations were insignificantly
modified to account for the introduction of the PAS.

FIGURE 3. Implementation of the PAS as a function block diagram. The
‘‘Permitted power’’ block calculates a limit for the allowed reactor power
based on the cooling capacity (number of running reactor coolant
pumps). The PID block controls the rods based on the difference between
the measured power level and the permitted power.

criterion, i.e., the PS, from which PAS receives inputs,
is assumed to be fault-free.

2) Level 2 function: preventive protection. SAS and
PACS shall together satisfy the single failure criterion,
i.e., a single failure in either SAS or PACS (but not
both) shall not prevent the function from operating. The
function shall also tolerate a simultaneous CCF of PAS.
During verification, however, this failure criterion can
be simplified by assuming a single failure in SAS only:
if the viewpoint is in SAS, then it is not affected by the
outputs of PACS (see Fig. 2) and if the viewpoint is in
PACS, then it is not affected by other PACS units.

197690 VOLUME 8, 2020



I. Buzhinsky, A. Pakonen: Symmetry Breaking in Model Checking of Fault-Tolerant Nuclear I&C Systems

FIGURE 4. Considered verification scenarios (three columns) and the corresponding failure tolerance criteria (shown in bold red).

3) Level 3 function: reactor protection. PS and PACS
shall together satisfy the single failure criterion, mean-
ing that a single failure is allowed in the same divisions
of PS and PACS. A single failure in, e.g., the shared
SC2 power supply might cause a simultaneous failure
in the same division of both PS and PACS (a con-
sequential failure). The function shall also tolerate a
simultaneous CCF in SAS and/or PAS.

The considered verification scenarios and the corresponding
failure tolerance criteria are summarized in Fig. 4. In addition,
we consider one more scenario:
4) Artificial scenario. The single failure criterion is

applied to all subsystems independently (with PS and
PACS still having failures in the same divisions), not
accounting for DiD levels. This scenario is included
to compare this work with our previous work [11].
As requirements, we use common LTL and universal
reachability properties for SAS and PACS from scenar-
ios 2 and 3 above.

C. EXPERIMENTAL SETUP
The techniques presented in this article were implemented in
Java and Prolog as a part of the HW-SW-builder tool [11],
which is available online.8 The models and requirements
that we used for our case study can also be found there.
Experiments were performed on a single core of 2 GHz Intel
Core i7-4510U CPU.

We enhanced HW-SW-builder with support of requirement
annotations with viewpoints and allowed numbers of failures
in each unit group (in either none, one, or all divisions).
Once the tool encounters a new combination of a viewpoint
and a failure assignment, it performs symmetry analysis as
described in Section IV. Configurations with failures at the
viewpoint are excluded from consideration. A separate Prolog
query is made for each pair of verification configurations,
except for the cases that can be deduced automatically based
on transitivity and reflexivity of ≥. Then, the property is ver-
ified for configurations that were found to be sufficient. We
use LTL and CTL model checking based on binary decision

8https://github.com/igor-buzhinsky/hw-sw-model-builder

FIGURE 5. Examples of identified domination relations. In each relation
matrix, each row and column corresponds to a configuration, which are
shown for the rows on the right. Annotations for columns are not shown,
but their order is the same as the one of the rows. A cell is black if the
configuration of the current row dominates the configuration of the
current column and white otherwise. Accordingly, black rows correspond
to configurations that dominate all other configurations.

diagrams (BDDs) and run nuXmvwith command line options
‘‘-dynamic -df -coi’’.

D. RESULTS
We separately examined each failure scenario and each view-
point, so the symmetry analysis phase is performed once per
this combination. In Fig. 5, several examples of domination
relation matrices are shown with annotations. The full list of
scenario/viewpoint combinations and their relation matrices

VOLUME 8, 2020 197691



I. Buzhinsky, A. Pakonen: Symmetry Breaking in Model Checking of Fault-Tolerant Nuclear I&C Systems

TABLE 1. Results of symmetry analysis and model checking. For each scenario-viewpoint pair, the matrix of the domination relation is given. The notation
is the same as in Fig. 5.

is given in Table 1 together with times spent on symmetry
analysis and model checking. In all failure scenarios, there
exist configurations that dominate all other configurations.
Our tool selects the topmost of such configurations for actual
verification.

Although the analysis includes checks over various
permutations of symmetric connections, as visible from the
table, symmetry analysis times on our case study are negli-
gible. The minimum analysis time is 0.4 s, which is the time
spent to create the Prolog model of the system.

Each considered temporal property was model-checked
within five minutes. Average model checking times are often
at most several seconds, except for three LTL verification
cases where we disabled the COI reduction as otherwise we
encountered a nuXmv bug. Our tool does remove unused
model components (e.g., divisions of the PACS other that the
viewpoint) automatically, but since our failure blocks benefit
from COI reduction (namely, downstream modules of the
failure blocks can be optimized out), this somewhat impacts
model checking time.

E. COMPARISON WITH PREVIOUS WORK
The idea of fault tolerance verification of a modular nuclear
I&C systemwas introduced in [11]. The difference of our case
study and experimental setup from [11] are:

1) the case study was extended by adding the PAS;
2) failure modules were improved so that they do not take

the signal to be altered into account and thus benefit
more from COI reduction;

3) in addition, failure modules were altered while check-
ing universal reachability properties as explained in
Section IV-E;

4) in this work, we do not report in detail the results
of model checking without failures, with communica-
tion delays, and with BMC (some comments regarding
these cases are nonetheless given below).

A brief comparison of model checking times if possible:
the configurations CPS, CSAS and CPAC from [11] roughly
correspond to reactor protection verification for PS and the
artificial scenario for SAS and PACS, respectively. Notably,
now verification of universal reachability (CTL) properties
always terminates and is faster (several seconds instead of
several minutes for SAS and PACS). This change is due to
the enhancement of failure modules. As before, no violations
of universal reachability were found, even with the failure
module enhancement. Finally, the identified domination rela-
tions for the artificial scenario fully comply with the manual
reasoning in [11], paragraphs 5–6 of Section IV-B.

To mimic more experiments from [11], we also consid-
ered the cases of BMC, fault-free verification and verifica-
tion with bounded communication delays. We did not find
notable discrepancies from our previous results. In particular,
verification with delays is still a computational challenge
and is often possible only with BMC. However, we were
also unable to verify three LTL properties for the PACS
with BDD-based model checking in the fault-free, no-delay
scenario, but these cases are affected by the disabled COI
reduction.

197692 VOLUME 8, 2020



I. Buzhinsky, A. Pakonen: Symmetry Breaking in Model Checking of Fault-Tolerant Nuclear I&C Systems

VI. RELATED WORK
Discovery and utilization of symmetries is a rather gen-
eral idea in formal verification. Partial order reduction [25]
is a technique to reduce the state space in verification
of distributed systems. Full and partial symmetries in dis-
tributed systems were used to reduce formal models in [26].
Symmetry reduction for programs specified in the B language
and the CSP process algebra was considered in [27] and [28]
respectively. Symmetry breaking techniques for propositional
encoding of transitions systems were proposed in [29].

Fault tolerance in redundant safety-critical systems was
previously addressed in [18], [30]–[36]. The paper [11] gives
a brief overview of some of these works, which, unlike our
work, mostly consider detailed fault models. Tolerance to
single faults was verified in [30]. CCFswere addressed in [37]
from the point of view of probabilistic safety assessment
(PSA). Our approach, by contrast, only considers possibility
but not probability of fault scenarios. Probabilistic analysis of
fault-tolerant redundant systems was also considered in [35],
[36]. In particular, work [35] focuses on overcoming the com-
binatorial explosion caused by multiple system components
protected with redundancies. Our work is motivated by a
similar idea but applied to the explosion of the number of
verification configurations.

Modular nuclear I&C systems can be viewed as a class
of computer networks. In verification of computer net-
works, however, the properties to be verified usually con-
cern delivery of packets rather than the functioning of the
algorithm implemented by the network. Symmetries in com-
puter networks were used to simplify formal verification in
[38]–[40]. In [40], fault tolerance of computer networks was
considered.

VII. CONCLUSION
In this work, we have advanced our previous approach [11] of
model-checking nuclear I&C systems under failure tolerance
assumptions. Our key contribution is the formal method to
automatically determine how the symmetries and redundan-
cies existing in the system under verification can be used to
reduce the number of scenarios to be considered during veri-
fication. Although we used such reasoning also in [11], only
in the present work it is automated. The value of automatic
reasoning is emphasized by using a case study that is larger
than the one in [11], has a complex structure and is pairedwith
specifications that must be checked under different failure
assumptions, which now also include CCFs in addition to
single failures. Symmetry analysis for this case study takes
less than a second and speeds up model checking in up to
24 times (compared to the naive approach of verifying all
possible configurations; this number is reached on the most
complex artificial scenario). Finally, we amended the way
of checking AGEF CTL properties with failure assumptions
to make it compatible with the proposed approach and also
cover more scenarios.

The proposed approach has several limitations, which
might be addressed in future work:

1) We do not consider asynchrony and communication
delays. In Section V-E, we shortly comment on follow-
ing the delay modeling approach from [11]. A more
advanced approach [19] has not yet been considered.

2) We require that the modules of the I&C model are
described by an acyclic graph (see Section III-A).
Although we did not include cycles into our case study,
they are possible and may be needed to, e.g., imple-
ment periodic tests. To support cycles, domination of
configuration can be proven in terms of inclusion of
finite behavior sets. If this is proven for all bounds k on
behavior lengths, then it is easy to see that this inclusion
also holds for infinite behaviors. Reasoning over finite
behaviors can be done inductively, with separate proofs
for induction base and step. When proving the base,
a cycle will vanish since at least one unit on it has not
yet communicated its outputs to other modules, and this
output will be substituted by some default value. When
proving the step, we can use the proof for k − 1 in the
same places.

3) Temporal properties that can be checked with the
proposed approach are constrained as described in
Section IV-F. We are aware of properties that violate
these constraints, but they are meaningful to check for
our case study only in the fault-free scenario.

REFERENCES
[1] STUK. (2019). YVL B.1 Safety Design of a Nuclear Power Plant. [Online].

Available: https://www.stuklex.fi/en/ohje/YVLB-1
[2] K. Björkman, J. Frits, J. Valkonen, J. Lahtinen, K. Heljanko, I. Niemelä,

and J. J. Hämäläinen, ‘‘Verification of safety logic designs by model
checking,’’ in Proc. 6th Amer. Nucl. Soc. Int. Topical Meeting Nucl. Plant
Instrum., Control, Hum.-Mach. Interface Technol. (NPIC HMIT), 2009,
pp. 5–9.

[3] J. Lahtinen, J. Valkonen, K. Björkman, J. Frits, I. Niemelä, and
K. Heljanko, ‘‘Model checking of safety-critical software in the nuclear
engineering domain,’’ Rel. Eng. Syst. Saf., vol. 105, pp. 104–113,
Sep. 2012.

[4] A. Pakonen, T. Tahvonen, M. Hartikainen, and M. Pihlanko, ‘‘Practical
applications of model checking in the Finnish nuclear industry,’’ in Proc.
10th Int. Topical Meeting Nucl. Plant Instrum., Control Hum. Mach. Inter-
face Technol. (NPIC HMIT), La Grange Park, IL, USA: American Nuclear
Society, 2017, pp. 1342–1352.

[5] A. Pakonen, I. Buzhinsky, and K. Björkman, ‘‘Model checking reveals
design issues leading to spurious actuation of nuclear instrumentation and
control systems,’’ Rel. Eng. Syst. Saf., vol. 205, Jan. 2021, Art. no. 107237.

[6] E. M. Clarke, O. Grumberg, and D. Peled, Model Checking. Cambridge,
MA, USA: MIT Press, 1999.

[7] C. Baier and J.-P. Katoen, Principles of Model Checking. Cambridge, MA,
USA: MIT Press, 2008.

[8] J. R. Burch, E. M. Clarke, K. L. McMillan, D. L. Dill, and L.-J. Hwang,
‘‘Symbolicmodel checking: 1020 states and beyond,’’ Inf. Comput., vol. 98,
no. 2, pp. 142–170, 1992.

[9] A. Biere, A. Cimatti, E. M. Clarke, O. Strichman, and Y. Zhu, ‘‘Bounded
model checking,’’ Adv. Comput., vol. 58, pp. 117–148, 2003.

[10] A. Cimatti and A. Griggio, ‘‘Software model checking via IC3,’’ in Proc.
Int. Conf. Comput. Aided Verification. Berlin, Germany: Springer, 2012,
pp. 277–293.

[11] I. Buzhinsky and A. Pakonen, ‘‘Model-checking detailed fault-
tolerant nuclear power plant safety functions,’’ IEEE Access, vol. 7,
pp. 162139–162156, 2019.

[12] J. Yoo, S. Cha, and E. Jee, ‘‘A verification framework for FBD based
software in nuclear power plants,’’ in Proc. 15th Asia–Pacific Softw. Eng.
Conf., Dec. 2008, pp. 385–392.

VOLUME 8, 2020 197693



I. Buzhinsky, A. Pakonen: Symmetry Breaking in Model Checking of Fault-Tolerant Nuclear I&C Systems

[13] M. Lin, D. Hou, P. Liu, Z. Yang, and Y. Yang, ‘‘Main control system
verification and validation of NPP digital I&C system based on engineering
simulator,’’ Nucl. Eng. Des., vol. 240, no. 7, pp. 1887–1896, Jul. 2010.

[14] E. Németh and T. Bartha, ‘‘Formal verification of safety functions by rein-
terpretation of functional block based specifications,’’ in Formal Methods
for Industrial Critical Systems, D. Cofer and A. Fantechi, Eds. Berlin,
Germany: Springer, 2009, pp. 199–214.

[15] B. Fernández Adiego, D. Darvas, E. Blanco Viñuela, J.-C. Tournier,
S. Bliudze, J. Olaf Blech, and V. Manuel González Suárez, ‘‘Applying
model checking to industrial-sized PLC programs,’’ IEEE Trans. Ind.
Informat., vol. 11, no. 6, pp. 1400–1410, Dec. 2015.

[16] IAEA. (2018). Approaches for Overall Instrumentation and Control
Architectures of Nuclear Power Plants. International Atomic Energy
Agency, Nuclear Energy Series NP-T-2.1. [Online]. Available: http://www-
pub.iaea.org/MTCD/Publications/PDF/PUB1821_web.pdf

[17] WENRA Reactor Harmonization Working Group. (2013). Safety of New
NPPDesigns. Western European Nuclear Regulators’ Association, Report.
[Online]. Available: http://www.wenra.org/media/filer_public/2013/08/
23/rhwg_safety_of_new_npp_designs.pdf

[18] J. Lahtinen, ‘‘Hardware failure modelling methodology for model check-
ing,’’ VTT, Espoo, Finland, Tech. Rep. VTT-R-00213-14, 2014.

[19] I. Buzhinsky and A. Pakonen, ‘‘Timed model checking of fault-tolerant
nuclear I&C systems,’’ in Proc. IEEE Int. Conf. Ind. Informat. (INDIN),
Jul. 2020, pp. 159–164.

[20] A. Cimatti, E. Clarke, E. Giunchiglia, F. Giunchiglia, M. Pistore,
M. Roveri, R. Sebastiani, and A. Tacchella, ‘‘NuSMV 2: An opensource
tool for symbolic model checking,’’ in Proc. Int. Conf. Comput. Aided
Verification. Berlin, Germany: Springer, 2002, pp. 359–364.

[21] R. Cavada, A. Cimatti, M. Dorigatti, A. Griggio, A. Mariotti, A. Micheli,
S. Mover, M. Roveri, and S. Tonetta, ‘‘The nuXmv symbolic model
checker,’’ in Proc. CAV, in Lecture Notes in Computer Science, vol. 8559,
A. Biere and R. Bloem, Eds. Cham, Switzerland: Springer, 2014,
pp. 334–342.

[22] A. Pakonen, T. Matasniemi, J. Lahtinen, and T. Karhela, ‘‘A toolset for
model checking of PLC software,’’ in Proc. IEEE 18th Conf. Emerg.
Technol. Factory Autom. (ETFA), Sep. 2013, pp. 1–6.

[23] Areva NP. (2012). U.S. EPR Protection System, Technical Report
ANP-10309NP, Revision 4. [Online]. Available: https://www.nrc.gov/
docs/ML1216/ML121660317.html

[24] reva NP. (2013). U.S. EPR Final Safety Analysis Report. [Online].
Available: https://www.nrc.gov/reactors/new-reactors/design-cert/epr/
reports.html

[25] D. Peled, ‘‘Ten years of partial order reduction,’’ in Proc. Int. Conf.
Comput. Aided Verification. Berlin, Germany: Springer, 1998, pp. 17–28.

[26] E. A. Emerson and R. J. Trefler, ‘‘From asymmetry to full symmetry: New
techniques for symmetry reduction in model checking,’’ in Proc. Adv. Res.
Working Conf. Correct Hardware Design Verification Methods. Berlin,
Germany: Springer, 1999, pp. 142–157.

[27] E. Turner, M. Leuschel, C. Spermann, and M. Butler, ‘‘Symmetry reduced
model checking for B,’’ in Proc. 1st Joint IEEE/IFIP Symp. Theor. Aspects
Softw. Eng. (TASE ), Jun. 2007, pp. 25–34.

[28] T. Gibson-Robinson and G. Lowe, ‘‘Symmetry reduction in CSP model
checking,’’ Int. J. Softw. Tools Technol. Transf., vol. 21, no. 5, pp. 567–605,
Oct. 2019.

[29] J. Rintanen, ‘‘Symmetry reduction for SAT representations of transition
systems,’’ in Proc. Int. Conf. Automated Planning Scheduling (ICAPS),
2003, pp. 32–41.

[30] M. Zhang, Z. Liu, C. Morisset, and A. P. Ravn, ‘‘Design and verification of
fault-tolerant components,’’ inMethods, Models Tools for Fault Tolerance,
M. Butler, C. Jones, A. Romanovsky, and E. Troubitsyna, Eds. Berlin,
Germany: Springer, 2009, pp. 57–84.

[31] A. Joshi andM. P. E. Heimdahl, ‘‘Model-based safety analysis of Simulink
models using SCADE design verifier,’’ inComputer Safety, Reliability, and
Security, R. Winther, B. A. Gran, and G. Dahll, Eds. Berlin, Germany:
Springer, 2005, pp. 122–135.

[32] M. P. E. Heimdahl, Y. Choi, and M. W. Whalen, ‘‘Deviation analysis:
A new use of model checking,’’ Automated Softw. Eng., vol. 12, no. 3,
pp. 321–347, Jul. 2005.

[33] F. Schneider, S. M. Easterbrook, J. R. Callahan, and G. J. Holzmann,
‘‘Validating requirements for fault tolerant systems using model check-
ing,’’ in Proc. IEEE Int. Symp. Requirements Eng., RE, Apr. 1998,
pp. 4–13.

[34] C. Bernardeschi, A. Fantechi, and S. Gnesi, ‘‘Model checking fault toler-
ant systems,’’ Softw. Test., Verification Rel., vol. 12, no. 4, pp. 251–275,
Dec. 2002.

[35] C. Dubslaff, K. Ding, A. Morozov, C. Baier, and K. Janschek, ‘‘Break-
ing the limits of redundancy systems analysis,’’ 2019, arXiv:1912.05364.
[Online]. Available: http://arxiv.org/abs/1912.05364

[36] C. Dubslaff, A. Morozov, C. Baier, and K. Janschek, ‘‘Reduction
methods on probabilistic control-flow programs for reliability anal-
ysis,’’ 2020, arXiv:2004.06637. [Online]. Available: http://arxiv.org/
abs/2004.06637

[37] J. K. Vaurio, ‘‘Common cause failure probabilities in standby safety system
fault tree analysis with testing—Scheme and timing dependencies,’’ Rel.
Eng. Syst. Saf., vol. 79, no. 1, pp. 43–57, Jan. 2003.

[38] G. D. Plotkin, N. Bjørner, N. P. Lopes, A. Rybalchenko, and G. Varghese,
‘‘Scaling network verification using symmetry and surgery,’’ ACM SIG-
PLAN Notices, vol. 51, no. 1, pp. 69–83, Apr. 2016.

[39] R. Beckett, A. Gupta, R. Mahajan, and D. Walker, ‘‘Control plane com-
pression,’’ in Proc. Conf. ACM Special Interest Group Data Commun.,
Aug. 2018, pp. 476–489.

[40] N. Giannarakis, R. Beckett, R. Mahajan, and D. Walker, ‘‘Efficient ver-
ification of network fault tolerance via counterexample-guided refine-
ment,’’ in Proc. Int. Conf. Comput. Aided Verification. Cham, Switzerland:
Springer, 2019, pp. 305–323.

IGOR BUZHINSKYwas born in 1992. He received
the B.Sc. and M.Sc. degrees in applied mathe-
matics and computer science from ITMO Univer-
sity, Saint Petersburg, Russia, in 2013 and 2015,
respectively, the second M.Sc. degree in software
engineering and service design from theUniversity
of Jyväskylä, Jyväskylä, Finland, in 2015, and the
D.Sc.(Tech.) degree fromAalto University, Espoo,
Finland, in 2019.

He is currently a Postdoctoral Researcher with
Aalto University and a Research Fellow with ITMOUniversity. His research
interests include formal verification, synthesis of finite-state models, and
reliability of deep learning.

ANTTI PAKONEN was born in 1979. He received
the M.Sc.(Tech.) degree in I&C systems from the
Helsinki University of Technology, Espoo, Fin-
land, in 2004.

He is currently a Senior Scientist and a Project
Manager with VTT Technical Research Centre of
Finland Ltd., Espoo, where he has been employed
since 2002. His research interests include I&C
software engineering, I&C architecture evalua-
tion, practical application of model checking in

industrial applications, and knowledge management.

197694 VOLUME 8, 2020


