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ABSTRACT Likelihood-based generative frameworks are receiving increasing attention in the deep learning
community, mostly on account of their strong probabilistic foundation. Among them, Variational Autoen-
coders (VAEs) are reputed for their fast and tractable sampling and relatively stable training, but if not
properly tuned they may easily produce poor generative performances. The loss function of Variational
Autoencoders is the sum of two components, with somehow contrasting effects: the reconstruction loss,
improving the quality of the resulting images, and the Kullback-Leibler divergence, acting as a regularizer
of the latent space. Correctly balancing these two components is a delicate issue, and one of the major
problems of VAEs. Recent techniques address the problem by allowing the network to learn the balancing
factor during training, according to a suitable loss function. In this article, we show that learning can be
replaced by a simple deterministic computation, expressing the balancing factor in terms of a running average
of the reconstruction error over the last minibatches. As a result, we keep a constant balance between the
two components along training: as reconstruction improves, we proportionally decrease KL-divergence in
order to prevent its prevalence, that would forbid further improvements of the quality of reconstructions. Our
technique is simple and effective: it clarifies the learning objective for the balancing factor, and it produces
faster and more accurate behaviours. On typical datasets such as Cifar10 and CelebA, our technique sensibly
outperforms all previous VAE architectures with comparable parameter capacity.

INDEX TERMS Generative models, likelilhood-based frameworks, Kullback-Leibler divergence, two-stage

generation, variational autoencoders.

I. INTRODUCTION
Generative models address the challenging task of captur-
ing the probabilistic distribution of high-dimensional data,
in order to gain insight in their characteristic manifold, and
ultimately paving the way to the possibility of synthesizing
new data samples.

The main frameworks of generative models that have
been investigated so far are Generative Adversarial Networks
(GAN) [13] and Variational Autoencoders (VAE) [17], [21],
both of which generated an enormous amount of works,
addressing variants, theoretical investigations, or practical
applications.

The main feature of Variational Autoencoders is that they
offer a strongly principled probabilistic approach to genera-
tive modeling. The key insight is the idea of addressing the
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problem of learning representations as a variational inference
problem, coupling the generative model P(X|z) for X given
the latent variable z, with an inference model Q(z|X) synthe-
sizing the latent representation of the given data.

The loss function of VAEs is composed of two parts: one is
just the log-likelihood of the reconstruction, while the second
one is a term aimed to enforce a known prior distribution P(z)
of the latent space - typically a spherical normal distribution.
Technically, this is achieved by minimizing the Kullbach-
Leibler distance between Q(z|X) and the prior distribution
P(z); as a side effect, this will also improve the similarity of
the aggregate inference distribution Q(z) = ExQ(z|Z) with
the desired prior, that is our final objective.

Ez~o(1x)l0g(P(X|2)) —A - KL(Q(z]X)||P(2)) ey
log—likelihood

KL—divergence

Loglikelihood and KL-divergence are typically balanced
by a suitable A-parameter (called 8 in the terminology of
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B-VAE [8], [14]), since they have somewhat contrasting
effects: the former will try to improve the quality of the
reconstruction, neglecting the shape of the latent space; on the
other side, KL-divergence is normalizing and smoothing the
latent space, possibly at the cost of some additional “overlap-
ping” between latent variables, eventually resulting in a more
noisy encoding [1]. If not properly tuned, KL-divergence can
also easily induce a sub-optimal use of network capacity,
where only a limited number of latent variables are exploited
for generation: this is the so called overpruning/variable-
collapse/sparsity phenomenon [7], [20], [26].

Tuning down A typically reduces the number of collapsed
variables and improves the quality of reconstructed images.
However, this may not result in a better quality of generated
samples, since we loose control on the shape of the latent
space, that becomes harder to be exploited by a random
generator.

On the other side, tuning up A may have beneficial effects
on the disentanglement of the latent representation [11], [19],
but typically produces a larger variance loss [4] for recon-
structed data, finally resulting in more blurried images.

Several techniques have been considered for the correct
calibration of y, comprising an annealed optimization sched-
ule [6] or a policy enforcing minimum KL contribution from
subsets of latent units [16]. Most of these schemes require
hand-tuning and, quoting [26], they easily risk to “‘take away
the principled regularization scheme that is built into VAE.”

An interesting alternative that has been recently introduced
in [9] consists in learning the correct value for the balancing
parameter during training, that also allows its automatic cali-
bration along the training process. The parameter is called y,
in this context, and it is considered as a normalizing factor for
the reconstruction loss.

Measuring the trend of the loss function and of the learned
lambda parameter during training, it becomes evident that
the parameter is proportional to the reconstruction error, with
the result that the relevance of the KL-component inside the
whole loss function becomes independent from the current
error.

Considering the shape of the loss function, it is easy to give
a theoretical justification for this behavior. As a consequence,
there is no need for learning, that can be replaced by a simple
deterministic computation, eventually resulting in a faster and
more accurate behaviour.

The structure of the article is the following. In Section II,
we give a quick introduction to Variational Autoencoders,
with particular emphasis on generative issues (Section II-A).
In Section III, we discuss our approach to the problem of
balancing reconstruction error and Kullback-Leibler diver-
gence in the VAE loss function; this is obtained from a
simple theoretical investigation of the loss function in [9], and
essentially amounts to keeping a constant balance between
the two components along training. Experimental results are
provided in Section IV, relative to standard datasets such as
CIFAR-10 (Section I'V-A) and CelebA (Section IV-B): up to
our knowledge, we get the best generative scores in terms
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of Frechet Inception Distance ever obtained by means of
Variational Autoencoders. In Section V, we try to investigate
the reasons why our technique seems to be more effective than
previous approaches, by considering the evolution of latent
variables along training. Concluding remarks and ideas for
future investigations are offered in Section VI.

Il. VARIATIONAL AUTOENCODERS

In a generative setting, we are interested to express the proba-
bility of a data point X through marginalization over a vector
of latent variables:

PX) = / P(X|2)P(2)dz ~ Bz~ p) P(X |2) @

For most values of z, P(X|z) is likely to be close to zero,
contributing in a negligible way in the estimation of P(X), and
hence making this kind of sampling in the latent space practi-
cally unfeasible. The variational approach exploits sampling
from an auxiliary ‘“inference’ distribution Q(z|X), hopefully
producing values for z more likely to effectively contribute
to the (re)generation of X. The relation between P(X) and
E;~oz1x)P(X|z) is given by the following equation, where KL
denotes the Kullback-Leibler divergence:

log(P(X)) — KL(Q(z|X)||P(z]X))
= Ezvo@x)log(P(X|2) — KL(QGEIX)[IP()  (3)

KL-divergence is always positive, so the term on the right
provides a lower bound to the loglikelihood P(X), known as
Evidence Lower Bound (ELBO).

If O(z|X) is a reasonable approximation of P(z|X), the
quantity KL(Q(z)||P(z]X)) is small; in this case the loglikeli-
hood P(X) is close to the Evidence Lower Bound: the learning
objective of VAEs is the maximization of the ELBO.

In traditional implementations, we additionally assume
that Q(z|X) is normally distributed around an encoding func-
tion g (X), with variance 092 (X); similarly P(X|z) is normally
distributed around a decoder function dg(z). The functions
"o, 092 and dy are approximated by deep neural networks.
Knowing the variance of latent variables allows sampling
during training.

Provided the model for the decoder function dy(z) is suffi-
ciently expressive, the shape of the prior distribution P(z) for
latent variables can be arbitrary, and for simplicity we may
assume it is a normal distribution P(z) = G(0, 1). The term
KL(Q(z|X)||P(z) is hence the KL-divergence between two
Gaussian distributions G(ug(X), 092(X )) and G(1, 0) which
can be computed in closed form:

KL(G(no(X), 09(X)), G(O, 1))
1
= 5(#0002 +05(X) — loglog(X) — 1) (4)

As for the term E,~gqx)log(P(X|z), under the Gaussian
assumption, the logarithm of P(X|z) is just the quadratic
distance between X and its reconstruction dy(z); the A param-
eter balancing reconstruction error and KL-divergence can be
understood in terms of the variance of this Gaussian [10].
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The problem of integrating sampling with backprop-
agation, is solved by the well known reparametrization
trick [17], [21].

A. GENERATION OF NEW SAMPLES
The whole point of VAEs is to force the generator to pro-
duce a marginal distribution' Q(z) = ExQ(z|X) close
to the prior P(z). If we average the Kullback-Leibler reg-
ularizer KL(Q(z|X)||P(z)) on all input data, and expand
KL-divergence in terms of entropy, we get:
ExKL(Q(z|X)||P(2))

= —ExH(QIX)) + ExH(Q(z]X), P(2))
—ExH(Q(zlX)) + ExEz~o(x)logP(2)
—ExH(Q(zX)) + E;~ o) logP(z)
— ExH(Q(z|X)) + H(Q(2), P(2)) )

Avg. Entropy  Cross-entropy
of 0(zIX) of 0X) V8 P(2)

The cross-entropy between two distributions is minimal when
they coincide, so we are pushing Q(z) towards P(z). At the
same time, we try to augment the entropy of each Q(z|X);
under the assumption that Q(z|X) is Gaussian, this amounts
to enlarge the variance, further improving the coverage of
the latent space, essential for generative sampling (at the cost
of more overlapping, and hence more confusion between the
encoding of different datapoints).

Since our prior distribution is a Gaussian, we expect Q(z)
to be normally distributed too, so the mean p should be 0 and
the variance o2 should be 1. If Q(z|X) = N(u(X), 02(X)),
we may look at Q(z) = ExQ(z|X) as a Gaussian Mixture
Model (GMM). Then, we expect

ExuX)=0 (6)

and especially, assuming the previous equation (see [2] for
details),

02 = Exu(X)* + Exo(X) = 1 (7

This rule, that we call variance law, provides a simple sanity
check to test if the regularization effect of the KL-divergence
is properly working.

The fact that the two first moments of the marginal infer-
ence distribution are 0 and 1, does not imply that it should
look like a Normal. The possible mismatching between Q(z)
and the expected prior P(z) is indeed a problematic aspect
of VAEs that, as observed in several works [2], [15], [23]
could compromise the whole generative framework. To fix
this, some works extend the VAE objective by encouraging
the aggregated posterior to match P(z) [24] or by exploiting
more complex priors [5], [16], [25].

In [9] (that is the current state of the art), a second VAE is
trained to learn an accurate approximation of Q(z); samples
from a Normal distribution are first used to generate samples
of O(z), that are then fed to the actual generator of data points.

Lealled by some authors aggregate posterior distribution [18].

199442

Similarly, in [12], the authors try to give an ex-post estima-
tion of Q(z), e.g. imposing a distribution with a sufficient
complexity (they consider a combination of 10 Gaussians,
reflecting the ten categories of MNIST and Cifar10).

lll. THE BALANCING PROBLEM
As we already observed, the problem of correctly balancing
reconstruction error and KL-divergence in the loss function
has been the object of several investigations. Most of the
approaches were based on empirical evaluation, and often
required manual hand-tuning of the relevant parameters.
A more theoretical approach has been recently pursued in [9]
The generative loss (GL), to be summed with the
KL-divergence, is defined by the following expression
(directly borrowed from the public code?):

mse Ll n log2m
=— +1lo
2y2 &Y 2

where mse is the mean square error on the minibatch under
consideration and y is a parameter of the model, learned
during training. The previous loss is derived in [9] by a
complex analysis of the VAE objective function behavior,
assuming the decoder has a gaussian error with variance y2,
and investigating the case of arbitrarily small but explicitly
nonzero values of y2.

Since y has no additional constraints, we can explicitly
minimize it in equation 8. The derivative GL’ of GL is

GL ®)

, mse 1
GL' = —— + = ©)
I 4
having a zero for:
y2 = mse (10)

corresponding to a minimum for equation 8.

This suggests a very simple deterministic policy for com-
puting y instead of learning it: just use the current estimation
of the mean square error. This can be easily computed as
a discounted combination of the mse relative to the current
minibatch with the previous approximation: in our imple-
mentation, we just take the minimum between these two
values, in order to have a monotically decreasing value for
y (we work with minibatches of size 100, that is sufficiently
large to provide a reasonable approximation of the real mse).
Updating is done at every minibatch of samples.

Compared with the original approach in [9], the resulting
technique is both faster and more accurate.

An additional contribution of our approach is to bring
some light on the effect of the balancing technique in [9].
Neglecting constant addends, that have no role in the loss
function, the total loss function for the VAE is simply:

mse
GL = — +KL an

2y2
So, computing gamma according to the previous estima-
tion of mse has essentially the effect of keeping a constant

2https:// github.com/daib13/TwoStageVAE.
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balance between reconstruction error and KL-divergence dur-
ing the whole training: as mse is decreasing, we normalize
it in order to prevent a prevalence of the KL-component,
that would forbid further improvements of the quality of
reconstructions.

Our approach shares some analogies with [22], where a
Generalized ELBO with Constrained Optimization (GECO)
is introduced following a similar thinking; however, while
they also use a running average of the mse, they target a
“desired mse”’, and more generally a desired performance.
They then tune the y parameter by backpropagating directly
through the mse, learning the optimal value of the coefficient
as a function of a “tolerance hyper-parameter’’; this hyper-
parameter is explicitly defined by the user to specify the
required performance according to a particular constraint.

While both approaches address the issue of balancing the
VAE’s objective, our model does so by directly adjusting the
“weight” of the reconstruction loss, with no additional hyper-
parameters; moreover, as shown in Equation 11, the model
is not optimized according to a desired performance, instead
balancing the loss function by simply computing y as the mse
changes.

IV. EMPIRICAL EVALUATION

We compared our proposed Two Stage VAE with computed
y against the original model with learned y using the same
network architectures. In particular, we worked with many
different variants of the so called ResNet version, schemati-
cally described in Figure 1 (pictures are borrowed from [9]).
In all our experiments, we used a batch size of 100, and
adopted Adam with default TensorFlow’s hyperparameters as
optimizer. Other hyperparameters, as well as additional archi-
tectural details will be described below, where we discuss the
cases of Cifar and CelebA separately. The main results are
summarized in Table 2 for Cifar and Table 4 for CelebA.

In general, in all our experiments, we observed a high
sensibility of Fid scores to the learning rate, and to the deploy-
ment of auxiliary regularization techniques. As we shall dis-
cuss in Section V, modifying these training configurations
may easily result in a different number of inactive® latent
variables at the end of training. Having both too few or too
many active variables may eventually compromise generative
sampling, for opposite reasons: few active variables usually
compromise reconstruction quality, but an excessive number
of active variables makes controlling the shape of the latent
space sensbibly harder.

The code is available on GitHub.* Checkpoints for Cifar10
and CelebA are available at the project’s page.’

A. CIFART0
For Cifarl0, we got relatively good results with the basic
ResNet architecture with 3 Scale Blocks, a single Resblock

3for the purposes of this work, we consider a variable inactive when
Exo2(X) > .8

4https://github.com/asperti/BalancingVAE.git

5 http://www.cs.unibo.it/~asperti/balancingVAE
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(B) Encoder (C) decoder

(A) Scale block

FIGURE 1. “Resnet” architecture. (A) Scale block: a sequence of residual
blocks. We mostly worked with a single residual block; two or more
blocks makes the architecture sensibly heavier and slower to train, with
no remarkable improvement. (B) Encoder: the input is first transformed
by a convolutional layer into and then passed to a chain of Scale blocks;
after each Scale block, input is downsampled with a a convolutional layer
with stride 2 channels are doubled. After N Scale blocks, the feature map
is flattened to a vector. and then fed to another Scale Block composed by
fully connected layers of dimension 512. The output of this Scale Block is
used to produce mean and variances of the k latent variables. Following
[9], N = 3 and k = 64 for CIFAR-10. For CelebA, we tested many different
configurations. (C) Decoder: the latent representation z is first passed
through a fully connected layer, reshaped to 2D, and then passed through
a sequence of deconvolutions halving the number of channels at the
same.

for every Scaleblock, and 64 latent variables. We trained our
model for 700 epochs on the first VAE and 1400 epochs on
the second VAE; the initial learning rate was 0.0001, halving
it every 200 epochs on the first VAE and every 100 epochs on
the second VAE. Details about the evolution of reconstruction
and generative error during training are provided in Figure 2
and Table 1.

— REC

140
— GEN-2

120

FID scores

100

804

60 4

160 260 360 460 560 660 760
Epochs
FIGURE 2. Evolution during 700 epochs of training on the CIFAR-10
dataset of the FID scores for reconstructed images (blue), first-stage
generated images (orange), and second-stage generated images. The
number of epochs refer to the first VAE, and it is doubled for the second
VAE. The filled region around the line corresponds to the standard

deviation from the expected value. Mean and variances have been
estimated over 10 different trainings.

The data refer to ten different but “uniform” trainings
ending with the same number of active latent variables, (17
in this case). Few pathological trainings resulting in less or
higher sparsity (and worse FID scores) have been removed
from the statistic.
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TABLE 1. Evolution during training on the CIFAR-10 dataset of several different metrics. REC, GEN-1 and GEN-2 are FID scores relative to reconstructed
images (REC), images generated by the first stage VAE (GEN-1) and images generated using the additional second stage (GEN-2); mse is the mean square

error, and the variance low has been defined in Section II-A.

epochs REC GEN-1 GEN-2 mse variance law
50 | 120.9+5.8 | 134.9+£5.9 | 143.8£9.7 | .0089 £ .0002 | 1.012 £ .012
100 | 86.6£2.5 | 101.8£3.1 | 103.5£3.2 | .0071 & .0001 | .969 £ .010
150 | 76.5+2.3 95.9+ 2.8 93.3+2.8 | .0062 £ .0001 | .939 £+ .011
200 | 69.3+2.1 91.44+2.5 84.0£2.5 | .0056 £.0001 | .918 4+.012
250 | 64.6 =2.0 88.9 2.3 80.1 £2.2 | .0052 £.0001 | .922 4+ .013
300 | 61.9£1.8 87.0+2.1 77.1£2.0 | .0049 £.0001 | .925+£.012
350 | 60.1£1.7 85.5 1.9 75.0 £ 1.8 | .0047 +.0001 | .928 £ .010
400 | 58.8+1.5 84.44+1.8 73.8+ 1.7 | .0046 +.0001 | .930 £ .008
450 | 57.2+1.3 83.3+ 1.7 72.7+1.6 | .0045+.0001 | .937 £ .007
500 | 56.1+1.2 82.3+1.6 71.8+£1.5 | .0044 £.0001 | .942 £ .007
550 | 55.3+1.1 81.7+ 1.5 71.2+£1.4 | .0043+£.0001 | .946 £ .007
600 | 54.8+ 1.1 81.2+1.4 70.6 £ 1.3 | .0043 +.0001 | .950 £ .006
650 | 54.2+1.0 80.7+ 1.4 70.2+£1.2 | .0042 £ .0001 | .954 £ .005
700 | 53.8+0.9 80.2+1.3 69.8 1.1 | .0041 £.0001 | .957 & .005
TABLE 2. CIFAR-10: summary of results; see Table 1 for the definition of the metrics.
model epochs REC GEN-1 GEN-2
RAE-12 [12] (128 vars) 100 32.2447 80.8+7 74.247

2S-VAE, learned ~ [9] 1000 76.7£0.8 | 72.9+0.9

2S-VAE, learned +, replicated 1000 54.1+09 | 76.8+1.2 | 73.1+1.2

2S-VAE, computed y 700 53.8+09 | 80.2+13 | 69.8+1.1

In Table 2), we compare our approach with the original
version with learned y [9]. Since some people had problems
in replicating the results in [9] (see the discussion on OpenRe-
view®), we repeated the experiment (also in order to compute
the reconstruction FID). Using the learning configuration
suggested by the authors, namely 1000 epochs for the first
VAE, 2000 epochs for the second one, initial learning rate
equal to 0.0001, halved every 300 and 600 epochs for the two
stages, respectively, we obtained results essentially in line
with those declared in [9].

For the sake of completeness, we also compare with the
FID scores for the recent RAE-12 model [12] (variance was
not provided by authors). In this case, the comparison is
purely indicative, since in [12] they work, in the CIFAR-10
case, with a latent space of dimension 128. This also explains
their particularly good reconstruction error, and the few train-
ing epochs.

B. CelebA
In the case of CelebA, we had more trouble in replicating the
results of [9], although we were working with their own code.
This was partly due to a mistake on our side (see Appendix),
but this pushed us to an extensive investigation of different
architectures, and different hyperparameters settings.

In Table 3 we summarize some of the results we obtained,
over a large variety of different network configurations. The
metrics given in the table refer to the following models:

e Model 1: This is our base model, with 4 scale blocks in
the first stage, 64 latent variables, and dense layers with
inner dimension 4096 in the second stage.

6https://ope:nreview.net/forum?id:B16:0 x 3CotQ
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e Model 2: As Model 1 with 12 regularizer added in
upsampling and scale layers in the decoder.

« Model 3: Two resblocks for every scale block, 12 regu-
larizer added in downsampling layers in the encoder.

e Model 4: As Model 1 with 128 latent variables,
and 3 scale blocks.

All models have been trained with Adam, with an initial
learning rate of 0.0001, halved every 48 epochs in the first
stage and every 120 epochs in the second stage.

According to the results in Table 3, we can do a few
noteworthy observations:

1) for a given model, the technique computing y sys-
tematically outperforms the version learning it, both in
reconstruction and generation on both stages;

2) after the first 40 epochs, FID scores (comprising recon-
struction FID) do not seem to improve any further,
and can even get worse, in spite of the fact that the
mean square error keep decreasing; this is in contrast
with the intuitive idea that FID REC score should be
proportional to mse;

3) the variance law is far from one, that seems to suggest
Kl is too weak, in this case; this justifies the mediocre
generative scores of the first stage, and the sensible
improvement obtained with the second stage;

4) 12-regularization, as advocated in [12], seems indeed to
have some beneficial effect.

Similarly to the case of Cifarl0O, the correct balance
between reconstruction error and KL-divergence seems to be
crucial to improve the generative performance. As observed
above, in the case of CelebA the KL-divergence seems too
weak, as clearly testified by the moments of latent variables
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TABLE 3. CelebA: effect of the new balancing technique. Using the metrics described in Table 1, we compare the performance during training of different
models, just replacing the learned balancing factor y of [9], with our variant exploiting an explicitly computed y. The models investigated are the
following: (1) base model, with 4 scale blocks in the first stage, 64 latent variables, and dense layers with inner dimension 4096 in the second stage;

(2) as model 1 with additional 12 regularization in upsampling and scale layers of the decoder; (3) two resblocks for every scale block, and additional 12
regularization in downsampling layers of the encoder; (4) as model 1 with 128 latent variables, and 3 scale blocks.

learned ~y computed y
Model epochs REC | GEN-1 | GEN-2 mse var.law REC | GEN-1 | GEN-2 mse var.law
1 40/120 53.8 66.0 59.3 .0059 1.024 45.8 56.9 57.1 .0056 0.805
1 80/210 543 65.9 59.8 .0049 0.803 46.0 61.1 58.1 .0047 0.688
1 120/300 549 66.5 60.4 .0044 0.775 48.1 63.8 59.9 .0043 0.687
2 40/120 48.5 58.2 545 .0059 0.985 41.5 58.7 53.7 .0058 1.024
2 80/210 48.8 60.7 555 .0048 0.889 42.0 58.8 55.1 .0048 0.877
2 120/300 49.1 62.8 56.9 .0043 0.880 43.0 60.2 56.2 .0043 0.863
3 40/120 59.4 74.3 63.4 .0050 | 0.893 56.3 74.0 63.9 .0049 0.637
3 80/210 55.6 72.6 62.2 .0039 0.840 54.4 72.3 61.8 .0038 0.621
3 120/300 55.2 72.0 62.1 .0037 0.785 544 71.3 62.0 .0036 0.744
4 40/120 52.8 68.2 60.4 .0072 0.789 48.0 65.0 57.7 .0072 0.742
4 80/210 49.4 67.9 58.5 .0060 | 0.822 453 65.0 53.4 .0059 0.785
4 120/300 49.1 68.0 58.4 .0053 0.844 44.4 65.4 54.0 .0053 0.804
TABLE 4. CelebA: summary of results.
model epochs REC GEN-1 GEN-2
RAE-SN [12] 70 36.0£7 44.7£7 40.917
2S-VAE, learned ~y [9] 120 60.5 £+ 0.6 44.4+£0.7
2S-VAE, computed v 2*70 2*%*33.9+0.8 | 2¥43.6 £1.3 | 42.7+1.0
with latent space norm. 386+1.0

expressed by the variance law. Actually, in the loss function
of [9], both mse and KL-divergence are computed as reduced
sums, respectively over pixels and latent variables. Now,
passing from CIFAR-10 to CelebA, we multiplied the number
of pixels by four, passing from 32 x 32 to 64 x 64, but kept a
constant number of latent variables. So, in order to keep the
same balance we used for CIFAR-10, we should multiply the
KL-divergence by a factor 4.

Finally, learning seems to proceed quite fast in the case of
CelebA, that suggests to work with a lower initial learning
rate: 0.00005. We also kept 12 regularization on downsam-
pling and upsampling layers.

With these simple expedients, we were already able to
improve on generative scores in [9], (see Table 4), but not
with respect to [12].

Analyzing the moments of the distribution of latent vari-
ables generated during the second stage, we observed that
the actual variance was sensibly below the expected unitary
variance (around.85). The simplest solution consists in nor-
malizing the generated latent variables, to meet the expected
variance. This point is a bit outside the scope of this contri-
bution, and we refer the interested reader to [4] for further
details.

This final precaution caused a sudden burst in the FID
score for generated images, permitting to obtain, to the best
of our knowledge, the best generative scores ever produced
for CelebA with a variational approach (for models with
comparable parameter capacity).

In Figure 3 we provide examples of randomly generated
faces. Note the particularly sharp quality of the images,
so unusual for variational approaches.
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V. DISCUSSION

The reason why the balancing policy between reconstruction
error and KL-regularization addressed in [9] and revisited in
this article is so effective seems to rely on its laziness in the
choice of the latent representation.

A Variational Autoencoder computes, for each latent vari-
able z and each sample X, an expected value ©,(X) and a
variance O’ZZ (X) around it. During training, the variance 022 X)
usually drops very fast to values close to 0, reflecting the fact
that the network is highly confident in its choice of 1,(X). The
KL-component in the loss function can be understood as a
mechanism aimed to reduce this confidence, by forcing a not
negligible variance. By effect of the KL-regularization, some
latent variables may be even neglected by the VAE, inducing
sparsity in the resulting encoding [3]. The “collapsed’” vari-
ables have, for any X, a value of u,(X) close to 0 and a mean
variance O'ZZ(X ) close 1. So, typically, at a relatively early
stage of training, the mean variance ExGZZ(X ) of each latent
variable z gets either close to 0, if the variable is exploited,
of close to 1 if the variable is neglected (see Figure 4).

Traditional balancing policies addressed in the literature
start with a low value for the KL-regularization, increasing
it during training. The general idea is to start privileging
the quality of reconstruction, and then try to induce a better
coverage of the latent space. Unfortunately, this reshaping ex
post of the latent space looks hard to achieve, in practice.

The balancing property discussed in this article does the
opposite: it starts attributing a relatively high importance
to KL-divergence, to balance the high initial reconstruction
error, progressively reducing its relevance in a way propor-
tional to the improvement of the reconstruction. In this way,
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FIGURE 3. Examples of generated faces. The resulting images do not
show the blurred appearance so typical of variational approaches,
sensibly improving their perceptive quality.
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FIGURE 4. Typical evolution of the mean variance Eyo2(X) of latent
variables during training in a variational autoencoder. Relevant variables
have a variance close to 0, while inactive variables have a variance going
to 1. The picture was borrowed from [3] and is relative to the first epoch
of training for a dense VAE over the MNIST data set.

the relative importance between the two components of the
loss function remains constant during training.

The practical effect is that latent variables are kept for a
long time in a sort of limbo from which, one at a time, they
are retrieved and put to work by the autoencoder, as soon as
it realizes how they can contribute to the reconstruction.

The previous behaviour is evident by looking at the evo-
lution of the mean variance IEXGZZ(X ) of latent variables
during training (not to be confused with the variance of the
mean values u.(X), that according to the variance law should
approximately be the complement to 1 of the former).

In Figure 5 we see the evolution of the variance of
the 64 latent variables during the first epoch of training on
the Cifarl0 data set: even after a full epoch, the ““status’ of
most latent variables is still uncertain.
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FIGURE 5. Evolution of the mean variance of the 64 latent variables
during the first epoch of training on Cifar10. Due to the “lazy” balancing
technique, even after a full epoch, the destiny of most latent variables is
still uncertain: they could collapse or be exploited for reconstruction.
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FIGURE 6. Evolution of the mean variance of the 64 latent variables
first 50 epochs of training on Cifar10. One by one, latent variables are
retrieved from the limbo (variance around 0.8), and put to work by the
autoencoder.

TABLE 5. Effect of the learning rate on sparsity and different metrics. A
high learning rate reduces sparsity and improves on reconstruction.
However, this does not result in a better generative score. With a low rate,
too many variables remains inactive.

Lr. inact. | REC | GEN-1 GEN-2 mse
.00020 13 53.0 80.6 74.5 .0039
.00015 15 53.3 79.9 71.8 .0040
.00010 17 53.8 80.2 68.8 .0041
.00005 19 58.2 83.2 75.8 .0047

During the next 50 epochs, in a very slow process, some of
the “dormient” latent variables are woken up by the autoen-
coder, causing their mean variance to move towards O: see
Figure 6.

With the progress of training, less and less variables change
their status, until the process finally stabilizes.

It would be nice to think, as hinted to in [9], that the number
of active latent variables at the end of training corresponds to
the actual dimensionality of the data manifold. Unfortunately,
this number still depends on too many external factors to
justify such a claim. For instance, a mere modification of
the learning rate is sensibly affecting the sparsity of the
resulting latent space, as shown in Table 5 where we compare,
for different initial learning rates (L.r.), the final number of
inactive variables, FID scores, and mean square error.
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Specifically, a high learning rate appears to be in conflict
with the lazy way we would like latent variables to be chosen
for activation; this typically results in less sparsity, that is
not always beneficial for generative purposes. The annoying
point is that with respect to the dimensionality of the latent
space with the best generative FID, activating more variables
can result in a lower reconstruction error, that should not be
the case if we correctly identified the datafold dimensionality.

So, while the balancing strategy discussed in this article
(similarly to the one in [9]) is eventually beneficial, still could
take advantage of some tuning.

VI. CONCLUSION

In this article, we stressed the importance of keeping a con-
stant balance between reconstruction error and Kullback-
Leibler divergence during training of Variational Autoen-
coders. We did so by normalizing the reconstruction error
by an estimation of its current value, computed as a run-
ning average over minibatches. We developed the technique
by an investigation of the loss function used in [9], where
the balancing parameter was instead learned during training.
Our technique seems to outperform all previous variational
approaches, permitting us to obtain - over traditional datasets
such as CIFAR-10 and CelebA - unprecedented FID scores
for this class of generative models with comparable model
capacity.

In spite of its relevance, the politics of keeping a constant
balance does not seem to entirely solve the balancing issue,
that still seems to depend from many additional factors, such
as the network architecture, the complexity and resolution of
the dataset, or training parameters such as the learning rate.

Also, the regularization effect of the KL-component must
be better understood, since it frequently fails to induce the
expected distribution of latent variables, possibly requiring
and justifying ex-post adjustments.

Most of the ideas and results contained in this article are
to be credited to the first author. The second author mainly
contributed on the experimental side.

APPENDIX

IMPACT OF THE RESIZING MODE ON THE MODEL
PERFORMANCE

There is a significant discrepancy between our observations
in Table 3 and the results claimed in [9].

Investigating this phenomenon, we inspected the elements
of the dataset with worse reconstruction errors and remarked
a particularly bad quality of some of the images, resulting
from the resizing of the face crop of dimension 128 x 128 to
the canonical dimension 64 x 64 expected from the neural
network. The resizing function used in the source code of
[9] available at was the deprecated imresize function of
the scipy library.” Following the suggestion in the docu-
mentation, we replaced the call to imresize with a call to

7 scipy imresize: https://docs.scipy.org/doc/scipy-1.2.1/reference/
generated/scipy.misc.imresize.html
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FIGURE 7. Effect of resizing mode on a few CelebA samples. Nearest
neighbours produces bad staircase effects; bilinear, that is the common
choice, is particularly smooth, suiting well to VAEs; bicubic is sligtly
sharper. According to our experience, resizing the dataset with bilinear or
bicubic interpolation makes little difference in terms of generative FID.

PILLOW: numpy.array (Image.fromarray (arr) .
resize ()) Unfortunately, and surprisingly, the default
resizing mode of PILLOW is Nearest Neighbours that,
as described in Figure 7, introduces annoying jaggies that
sensibly deteriorate the quality of images. This probably also
explains the anomalous behaviour of FID REC with respect
to mean squared error. The Variational Autoencoder fails to
reconstruct images with high frequency jaggies, while keep
improving on smoother images. This can be experimentally
confirmed by the fact that while the minimum mse keeps
decreasing during training, the maximum, after a while, sta-
bilizes. So, in spite of the fact that the average mse decreases,
the overall distribution of reconstructed images may remain
far from the distribution of real images, and possibly get even
more distant.

Resizing images with the traditional bilinear interpolation
produces a substantial improvement, but not sufficient to
obtain the generative scores claimed in [9].
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