IEEE Access

Multidisciplinary : Rapid Review : Open Access Journal

Received October 13, 2020, accepted October 21, 2020, date of publication October 29, 2020, date of current version November 10, 2020.

Digital Object Identifier 10.1109/ACCESS.2020.3034566

Two Derivative Algorithms of Gradient Boosting
Decision Tree for Silicon Content in Blast Furnace
System Prediction

SHIHUA LUO = AND TIANXIN CHEN

School of Statistics, Jiangxi University of Finance and Economics, Nanchang 330013, China

Corresponding author: Tianxin Chen (526971826 @qq.com)

This work was supported in part by the Natural Science Foundation of China under Grant 61973145, and in part by the Foundation of the
Education Department of Jiangxi Province under Grant GJJ180247.

ABSTRACT The background of the present study complies with silicon content prediction in hot metal in
the blast furnace system. The blast furnace system is a highly complex industrial reactor in the conventional
process. The system is subject to several problems (e.g., system automation, the thermal state of the blast
furnace, and the life prediction of blast furnace) that should be addressed by professionals. To determine
the prediction state of the heat in the blast furnace, the silicon content in the blast furnace molten iron
commonly acts as a key indicator. Based on the assumption that the blast furnace system exhibits a stable
state, the accuracy of hot metal silicon is analyzed by using a range of machine learning algorithms. In the
present study, two derivative algorithms of gradient boosting decision tree are adopted to develop a strong
boosting predictor based on the extreme gradient boosting (XGBoost) algorithm and the light gradient
boosting machine (LightGBM) algorithm for prediction. Compared with the conventional algorithms (e.g.,
lasso, random forest, support vector machine and gradient boosting decision tree), the prediction by using the
two boosting algorithms is capable of more effectively guiding and determining the state of the blast furnace.
As revealed from experimentally simulated results, the mentioned two boosting algorithms exhibit better
comprehensive prediction performance than the conventional algorithms on the datasets of two practical
blast furnace systems, demonstrating that the R-square of the two blast furnaces in the training set is over
0.7. The mentioned two algorithms are of certain guiding significance for exploring blast furnace problems.

INDEX TERMS XGBoost, LightGBM, gradient boosting decision tree, silicon content, blast furnace system.

I. INTRODUCTION

The Blast furnace (BF) ironmaking process, an essential
process in the iron and steel industry, refers to a complex
physical and chemical process extensively applied for pig
iron production. BF temperature refers to a vital index to
reflect the operation state. The responsibility of a BF operator
is to ensure the stable operation of the BF for high-quality
and low-cost molten iron production. For this purpose, the BF
temperature should be maintained in a reasonable range. Oth-
erwise, the unexpected fluctuation of temperature will result
in a series of problems (e.g., unnecessary heat loss, in-furnace
cooling and abnormal nodulation). However, in practical pro-
ductions, the thermal state of BF cannot be directly measured
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as impacted by the harsh conditions (e.g., high temperature
and high pressure) [1]. Thus, BF temperature prediction and
control have been overall a hot and difficult issue in this
field [2], [3]. The content of silicon in molten iron refers
to a vital and easy-to-detect index extensively adopted to
measure the internal thermal state of a BF in smelting process
control. Accordingly, the silicon content is required to be
accurately predicted to help BF operators take corresponding
actions.

The critical significance and difficulty of modeling BF
smelting process are reflected by the aim to accurately predict
the BF temperature and the relationship between temper-
ature, coal injection amount, air volume, air temperature,
as well as coke load. Since the beginning of the 21% century,
studies on BF temperature prediction and control by adopt-
ing intelligent algorithms have also been leaping forward.
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Liu built a Bayesian network model for silicon content pre-
diction in molten iron [4]. In 2005, Liu and Gong initially
adopted fuzzy clustering algorithm to divide the samples.
Then, they applied Bayesian network model to predict the
silicon content in molten iron [5]. In 2005, Gao published
one study on silicon content in BF molten iron in accordance
with chaos theory on Acta Physica Sinica [6]. Subsequently,
in his doctoral dissertation, he built a combination model
by complying with chaos theory, i.e., the modified chaotic
weighted local prediction model for silicon content prediction
[7]. Gao et al. developed a chaotic prediction method based
on Volterra expansion. By conducting the grid search for
reconstruction parameters, the linear Volterra filter based on
chaos overall outperformed the chaotic predictor based on
Taylor expansion to predict the silicon content of BF molten
iron [8]. Chen et al. developed a hybrid method, in which
genetic algorithm evolutionary neural network was adopted
for silicon content prediction in BF molten iron [9]. Wang
mentioned the wavelet analysis method in her master thesis
in 2005 [10], [11]. In 2014, she further proposed the model
for silicon content prediction in molten iron by adopting
the random forest algorithm [12], and the predicting effect
was significantly improved. As an abstract mathematical
model built by complying with the Artificial Neural Net-
works, such algorithm is capable of effectively establishing
a nonlinear complex system and dealing with nonlinear data
to a certain extent. The mentioned algorithm has now been
extensively applied in researching the silicon content in BF
molten iron [13]-[16]. In terms of the prediction model based
on time series analysis, Henrik and Matias put forward a
nonlinear time series model in 2002 [17]. In 2005, Uusi
adopted a multivariate time series model for the analysis
of the silicon content in molten iron [18]. Bhattacharya
employed a partial least squares algorithm to conduct the
silicon content prediction, and the observed input and output
were split into the principal components [19]. In 2009, Liu
and Zeng et al. carried out dimensionality reduction on vari-
ables by conducting principal component analysis, selected
the parameters with a cumulative variance contribution rate
over 85%, and then built a partial least squares model [20].
Zeng et al. exploited data-driven algorithms to establish
multivariate time series models in 2011 and 2013 [21], [1].
Zhou et al. developed a nonlinear subspace identification
method, i.e., Hammerstein model, by complying with least
squares support vector machine (SVM) for silicon content
prediction in BF molten iron [22]. Zeng et al. built a linear
input and output model for the prediction of the silicon con-
tent in BF molten iron with the use of subspace identification
method. They further adopted this model to achieve silicon
content prediction and control in BF molten iron [21]. Jian
applied the radial basis function (RBF) method and the SVM
algorithm for silicon content classification and prediction
in BF molten iron [23]-[25]. Moreover, he drew upon least
squares SVM in 2008 to study the silicon content of BF
molten iron in-depth [26]. Not before long, in 2011, Jian
used the smooth support vector machine regression (SVR)
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method for silicon content prediction in molten iron [27].
Such method is capable of effectively determining the trend
of the silicon content and further analyzing the variations in
furnace temperature. Besides the direct regression prediction
of silicon content in BF molten iron, SVMs can be adopted
to predict the trend of silicon content in BF molten iron as
well [28]-[30], [35]-[38]. To be specific, Gao et al. proposed
an algorithm for the determination of the control limits of
silicon content in BF molten iron with the use of fuzzy SVMs.
They further converted the mentioned prediction problem
into a multi-classification problem [28]. In 2020, with the
use of Mimo-TS fuzzy model, Li er al. put forward the
assessment of BF system [33]. Moreover, Luo et al. proposed
the algorithm integrating AdaBoost and the support vector
machine to achieve the aim of predicting the molten iron
silicon content of BF [34]. The mentioned models have
achieved satisfactory results in a range of aspects, whereas the
presented algorithms and models still have their defects. For
instance, neural network consumes a considerable amount
of time in modeling, and it exhibits more sensitivity to the
dimensionality of nonlinear data; chaotic model will cause
poor prediction as impacted by time lag; time series model
only exploits historical data of BF smelting and requires the
stable conditions of a BF system; SVM model has an overly
sophisticated process of parameter selection.

To address the problems in the above models, the present
study proposes two derivative algorithms based on gradi-
ent boosting decision tree (GBDT), i.e., Extreme Gradient
Boosting (XGBoost) algorithm and Light Gradient Boosting
Machine (LightGBM) algorithm, for silicon content predic-
tion in BF molten iron [31], [32], [39]-[47]. The core idea
of GBDT is to iterate multiple decision trees by altering
the sample label, and finally form a strong learner. Thus,
the predicted value is close to the actual data. The XGBoost
algorithm follows the GBDT algorithm to add regulariza-
tion terms to prevent the model from overfitting. Moreover,
the LightGBM algorithm is based on the GBDT algorithm to
simplify the model and expedite the calculation by gradient-
based one-side sampling and exclusive feature bundling. The
main contribution of this study is to propose two potential
alternatives to predict the internal thermal state of BF, i.e.,
XGBoost predictor and LightGBM predictor. Furthermore,
the predicted results can fundamentally guide the operators
to judge the thermal state of BF.

The innovation of the present study mainly embodies two
points. First, XGBoost algorithm and LightGBM algorithm
are new algorithms proposed in recent five years, demon-
strating that the former was proposed in 2016, the latter was
proposed in 2017. The mentioned two methods are relatively
new. Secondly, XGBoost algorithm and LightGBM algorithm
are initially adopted to analyze the silicon content of hot
metal from industrial data of BF. Based on these two points
of innovation, it is necessary and feasible to select these two
algorithms to study the state of BF.

The rest of the present study is organized as follows.
In Section 2, the theoretical models of GBDT algorithm,
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XGBoost algorithm and LightGBM algorithm are presented.
In Section 3, an empirical assessment is conducted on the
real datasets of two BFs to reveal the advantages of the two
derivative algorithms. Lastly, the conclusions are drawn in
Section 4.

Il. REVIEW OF RELATED METHODS
A. EXTREME GRADIENT BOOSTING (XGBoost)
1) INTRODUCTION OF XGBoost
XGBoost algorithm, a derivative algorithm of GBDT algo-
rithm, was proposed by Chen Tianqi in his doctoral disserta-
tion [27]. Since GBDT algorithm is easy to cause overfitting,
the idea of XGBoost algorithm is to introduce regulariza-
tion terms into the original GBDT algorithm. In comparison
with other algorithms, XGBoost has been comprehensively
optimized, as reflected by the significantly improved training
speed and accuracy. The algorithm steps are clarified below:
Suppose x; is the input of the iy, sample and y; is the output
value of the iy sample, )7[(.’) is the predicted value of by t-
time. If the initial prediction value of the model is assumed
as 0, the  models obtained by 7-times integrated learning are
expressed by:

59— ¢

~(1 0
y( ) = yf )+ filx)
~(2 1
5P =30 4 pix)

A~ 1
3 = yﬁ’ )+ fix) (1)

where f denotes the weak learner. The loss function of
XGBoost model consists of two parts, i.e., the empirical loss
of the model and the regularization term, as expressed below:

n t
loss = Z 1(y;, )A/Et)) + Z Q) 2)

i=1

where Y7, 1(yi, 51( )) is the empirical loss of the model. The
regularization term is Q2(f) = yT + %)L ZJT=1 wjz, where T
denotes the number of leaf nodes in the model, w; represents
the value on each leaf node. y, A are the corresponding coeffi-
cients. By rewriting the objective function of Eq. (2), it yields:

t—1

loss = Zl(y,, D 4 fi) + Z Q)+ Q) 3

i=1

where Zi;l Q(f;) is the regular term of the preceding t-
1 term, Q(f;) stands for the regular term of t term. By taking
5}5’7 D ~+f;(x;) in the error function as a whole, the second-order
Taylor expansion is conducted at &Etil) to solve the whole
value. Then, the objective function becomes:

loss—Zl(y,, D) 4 gihix) + Shuf? )

t—1

+Y QR+ Q) @)

i=1
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where gi = a1y, 37, by = 95,27 D10, 3 7). gy is
the first derivative of the loss function and #; is the second
derivative of the loss function. The constant terms in the
objective function are deleted to yield:

n 1 )
loss ~ 3 _[gifi(xi) + Shif?(x)] + Q(f) )
i=1

Furthermore, each data point x; will eventually fall on a
leaf node. Besides, for the data points falling on the same leaf
node, the output will be identical. If j leaf nodes are yielded
in total, and the corresponding output of each leaf node is wj,

and the objective function is rewritten as:

n T
1 1
loss ~ ) " [giwj + Ehiw}] +yT + 54 > w6
i=1 j=1
The sample set on each leaf node j is defined as /;:
[ = {ilg(x;) ==} N

By transforming the sample accumulation operation to the
leaf node operation, the final objective function is defined as:

T
loss ~ Z [(Z giwj + %(Z h; + K)WJZ] +yT

j=1 i€l i€l;
a 1
= 2 [Gpwi+ S (H; + bwjl +yT ®
j=1

where G; = Zielj gi-Hj = Zielj h;. G; represents the sum of
the first derivatives on all leaf nodes, while H; stands for the
second derivatives on all leaf nodes. If the structure of the tree
is determined, to minimize the objective function, the deriva-
tive can be 0, the optimal w can be acquired, and the final loss
can be obtained by substituting w into the objective function:

N G;
w: =
I H + A
1 T
o —
loss™ = ) _E H +A O]

With the objective function, to split a leaf node, a sim-
ple decision can be employed as the judgment criterion of
whether the splitting can be conducted, i.e., whether the sum
of the objective functions on both sides after the splitting can
be greater than that without the splitting. The information
acquired before and after the splitting is expressed as:

2 2 2

Gam—l[ G + Ok (GL+Gr) 11—y (10)

2 Hp+X Hp+X (HL+HR)+A
where G; and Hj denote the G value and H value of the
left subtree, respectively, and Gg and Hg represent the G
value and H value of the right subtree, respectively. The
larger the gain value, the greater the loss value will be. Thus,
when a leaf node is split, the gain values corresponding to all
candidate features are calculated, and the feature representing

the maximum gain value is taken for splitting.
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Algorithm 1: Exact Greedy Algorithm for Split Finding
Input: /. instance set of current node
Input: d, feature dimension
gain < 0
G +— Z,F., gi, H «— ngl h;
for k=1 tom do
(1'1_ +«— 0, H]_ +~— 0

for j in sorted(l, by x;i) do
GL +— G +gj, HL « Hp + h;
Gr+— G- G, H’p,’<—H—H'lv7

score <— max(score, ﬁl—\ - T(,,._.L\' — ﬁ)
end
end
Output: Split with max score

FIGURE 1. Accurate Algorithm.

Algorithm 2: Approximate Algorithm for Split Finding

for k=1 tom do
Propose Si. = {sk1, sk2, -

sk} by percentiles on feature k.

Proposal can be done per tree (global), or per split(local).

end
for k=1 tom do
G = Z_/E{f\-t- Se S92 ) I 9i
Hio = Z’E{lL"i..r 2Kk >Skv-1} h;
end
Follow same step as in previous section to find max

score only among proposed splits.

FIGURE 2. Approximate Algorithm.

2) TREE NODE SPLITTING METHOD
Two types of splitting methods can be adopted for splitting
the tree nodes, i.e., accurate algorithm and approximate algo-
rithm. The algorithm steps are illustrated in Fig. 1 and 2,
respectively.

Method 1: Accurate Algorithm

All possible splitting points of all features are traversed,
the gain value is calculated, and the feature corresponding to
the maximal gain value is selected for splitting.

Method 2: Approximate Algorithm

For each feature, only fractiles are considered ion to sim-
plify the calculation.

3) XGBoost ADVANTAGES
The advantages of the XGBoost algorithm are as summarized
below:

[1] Column subsampling. Using the method of the random
forest for reference, column sampling is supported, which can
reduce overfitting while simplifying the calculation;

[2] XGBoost supports the automatic processing of missing
values. XGBoost can learn the splitting direction automati-
cally for the samples with missing feature values;

[3] XGBoost supports parallelism. The parallelism of
XGBoost refers to feature granularity. When calculating the
gain value of features, the execution is performed in parallel,
whereas it remains serial building in the process of tree
building;

[4] The regularization term is substituted to XGBoost algo-
rithm to reduce the complexity of the model, and the final
model is less likely to cause overfitting;
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TABLE 1. Memory consumption of the three algorithms for a range of
datasets (unit: GB).

Data XGBoost XGBoost-hist LightGBM
Higgs 4.853GB 3.784GB 0.868GB
Yahoo-LTR 1.907GB 1.468GB 0.831GB
MS-LTR 5.469GB 3.654GB 0.886GB
Expo 1.553GB 1.393GB 0.543GB
Allstate 6.237GB 4.990GB 1.027GB

TABLE 2. Time consumption of the three algorithms for a range of
datasets (unit: s).

Data XGBoost XGBoost-hist LightGBM
Higgs 3794.34s 551.90s 238.51s
Yahoo-LTR 674.32s 265.30s 150.19s
MS-LTR 1251.27s 385.20s 215.32s
Expo 1607.35s 588.25s 138.50s
Allstate 2867.22s 1355.71s 348.08s

[5]1 XGBoost-based learners support cart, linear regression
and logistic regression;

[6] XGBoost supports user-defined loss function (the
second-order derivative of the loss function is required).

4) XGBoost DEFECTS
The XGBoost algorithm also has defects, which largely con-
sist of:

[1] XGBoost follows a pre-sorting strategy. Before iterat-
ing, it pre-sorts the features of nodes and traverses to select
the optimal splitting point. In the presence of a large scale of
data, such greedy splitting method is time-consuming.

[2] XGBoost complies with the level-wise strategy to
generate a decision tree, and splits the leaves of the same
layer simultaneously, as an attempt to perform multi-thread
optimization. Accordingly, overfitting can be largely avoided,
whereas many leaf nodes achieve a low splitting gain, and
no further splitting is required, which results in unnecessary
consumption.

To remedy the defects brought by XGBoost algorithm,
another derivative algorithm of GBDT, i.e., LightGBM algo-
rithm, is further proposed.

B. LIGHT GRADIENT BOOSTING MACHINE (LightGBM)
1) INTRODUCTION OF LightGBM
LightGBM refers to another derivative algorithm of GBDT,
and it was proposed by Microsoft in 2017 [28]. Compared
with XGBoost algorithm, LightGBM algorithm has the char-
acteristics of fast training speed and low memory consump-
tion. Table 1 and 2 list the comparison of memory and training
time between XGBoost, XGBoost-hist (the XGBoost with
gradient histogram) and LightGBM for a range of datasets:
Conventional boosting algorithms (e.g., GBDT and
XGBoost) already have quite a good efficiency, whereas they
are suggested to be not capable of satisfying the requirements
for efficiency and scalability in the environment of large-
scale and high-dimensional data. This is primarily explained
as the conventional boosting algorithms are required to scan
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Algorithm 2: Gradient-based One-Side Sampling
Input: /: training data, d: iterations

Input: a: sampling ratio of large gradient data
Input: b: sampling ratio of small gradient data
Input: loss: loss function, L: weak learner

models < {}, fact + 1;“’

topN < a x len(J) , randN < b x len([)

fori = 1to ddo

preds <— models.predict(])

g + loss(I, preds), w < {1,1,...}

sorted <— GetSortedIndices(abs(g))

topSet <— sorted[1:topN]

randSet <— RandomPick(sorted[topN:len(I)],
randN)

usedSet +— topSet + randSet

w([randSet] x = fact > Assign weight fact to the
small gradient data.

newModel <— L([/[usedSet], — g[usedSet],
wlusedSet])

models.append(newModel)

FIGURE 3. Gradient-based One-Side Sampling algorithm.

all the sample points for the respective feature to select the
optimal splitting point, which consumes considerable time.
To reduce the time consumed in processing large samples
of high-dimensional data, LightGBM uses the following two
strategies. One is gradient-based one-side sampling (GOSS),
carrying out the calculation of the gradient by sampling
the samples, instead of employing all the sample points.
The other refers to exclusive feature bundling (EFB) which
determines the optimal splitting point by bundling certain
features jointly to the dimension reduction of the features
rather than scanning all features, which reduce the cost for
finding the optimal splitting point. This significantly reduces
the time complexity of processing samples, while keeping
or even increasing the accuracy as verified by considerable
experiments that use LightGBM on certain datasets. In brief,
the GBDT with the use of the GOSS and EFB algorithms is
termed as LightGBM. The following sections will introduce
the mentioned two algorithms.

2) INTRODUCTION OF GRADIENT-BASED ONE-SIDE
SAMPLING ALGORITHM (GOSS)

The gradient size of the GBDT algorithm is capable of indi-
cating the weight of the sample. The smaller the gradient,
the better the model fitting effect will achieve. The Gradient-
based One-Side Sampling (GOSS) algorithm employs this
information for sampling, thereby reducing considerable
samples exhibiting small gradients. Thus, only the samples
with high gradients need to be considered in the further
calculation, which significantly reduces the amount of cal-
culation. The GOSS algorithm retains the samples exhibiting
large gradients and randomly conducts sampling with small
gradients. To keep the data distribution of the samples not
changed, a constant is introduced for the samples exhibiting
small gradients to balance when calculating the gain. The
specific algorithm steps are illustrated in Fig. 3.
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The specific steps of the GOSS algorithm are elucidated as
follows:

Input: training data, iteration steps d, the sampling rate of
large-gradient data is a, sampling rate of small-gradient data
is expressed as b, loss function and type of weak learner (the
decision tree on the whole);

Output: trained strong learner;

[1] Sort the sample points in descending order in accor-
dance with their absolute values;

[2] Select the first ax 100% samples of the sorted results
to yield a subset of large-gradient sample points;

[3] For the remaining sample set (/-a)x 100% samples,
randomly select bx(1-a)x100% sample points to yield a set
of small-gradient sample points;

[4] Conduct the integration of the large-gradient sample
with the sampled small-gradient samples;

[5] Multiply the small-gradient samples through a weight
coefficient;

[6] Use the mentioned sampled samples to learn a new
weak learner;

[7] Repeat Steps [1] to [6] continuously until the specified
number of iterations or convergence is reached.

The presented algorithm can significantly reduce the
model learning rate while keeping the accuracy of the learner
without altering the data distribution.

The above description indicates that when a = 0, the GOSS
algorithm degenerates into a random sampling algorithm;
when a = I, the GOSS algorithm becomes an algorithm that
takes all the samples. In a large number of cases, the accuracy
of the model trained by the GOSS algorithm is higher than
that by the random sampling algorithm. Besides, sampling
will also increase the diversity of weak learners, thereby
potentially improving the generalization ability of the trained
model.

3) INTRODUCTION OF EXCLUSIVE FEATURE BUNDLING
ALGORITHM (EFB)

When LightGBM algorithm is being implemented, both data
sampling and feature sampling are carried out, thereby fur-
ther decreasing the training speed of the model. However,
this type of feature sampling is a range of from the general
feature sampling, which bundles exclusive features together
to reduce the feature dimension. The main idea is that in
practical applications, high-dimensional data is often sparse
data (e.g., one-hot encoding), which makes it possible to
design an almost lossless method to reduce the number of
effective features. It is noteworthy that many features in the
sparse feature space are mutually exclusive (for instance, non-
zero values rarely occur simultaneously). This allows us to
safely bundle mutually exclusive features together to form
one feature, thereby reducing feature dimensions.

Since the features are divided into smaller numbers of
mutually exclusive bundles, this is an NP-hard problem, that
is, it is not likely to find an accurate solution in polynomial
time. For the mentioned reason, an approximate solution is
adopted here, i.e., there are a few sample points between
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Algorithm 3: Greedy Bundling

Algorithm 4: Merge Exclusive Features

Input: F': features, /': max conflict count
Construct graph G
searchOrder < G .sortByDegree()
bundles < {}, bundlesConflict - {}
for i in searchOrder do
needNew <— True
for j = 1 to len(bundles) do
cnt < ConflictCnt(bundles(j], F[i])
if cnr + bundlesConflict{i] < K then
bundles[j].add(F[i]), needNew < False
break

if needNew then
| Add F[i] as a new bundle to bundles

O_utput: bundles

FIGURE 4. Exclusive Feature Bundling algorithm.

features not mutually exclusive (e.g., there are some corre-
sponding sample points that are not non-zero values simul-
taneously). Allowing a small part of conflict can obtain a
smaller number of feature bundles, thereby further enhancing
the effectiveness of the calculation. It can be theoretically
proved that by allowing a small part of conflict, the accuracy
of the model is affected. This refers to the maximum conflict
rate of the respective bundling. Accordingly, when it has a
limited choice, it is capable of achieving a good balance
between accuracy and efficiency. The algorithm steps of the
Exclusive Feature Bundling (EFB) algorithm are illustrated
in Fig. 4.

There are two issues to be addressed. In Fig.4, Algorithm 3
is to determine which features should be bundled together,
while Algorithm 4 is how to construct the bundle. The steps
of the EFB algorithm are elucidated as follows:

Input: feature F, maximum conflict number K, graph G;

Output: feature bundles;

[1] A graph with weights on its edges is constructed, whose
weights correspond to the total conflicts between features;

[2] Sort features in descending order by their degree in the
graph;

[3] Check the respective feature in the ordered list and
assign it to the existing bundling with minor conflicts (con-
trolled by y), or create a novel bundling.

The time complexity of the presented algorithm is
O(#features?), and it can be processed only once before
undergoing model training. Such complexity is acceptable
when the feature dimension is not significantly large. How-
ever, this method is particularly inefficient when the sam-
ple dimension is high. Thus, this study proposes another
more efficient algorithm: sorting by counting the non-zero
value, which is similar to sorting by degree, since more non-
zero values cause higher conflict probability commonly. This
only alters the sorting strategy of the mentioned algorithm,
so it only modifies the sorting by the degree to the sort-
ing by counting the non-zero value, and the other remains
unchanged.

4) INTRODUCTION OF HISTOGRAM
LightGBM adopts the histogram algorithm for the bundling
of exclusive features. The basic idea of histogram algorithm is
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Input: numData: number of data
Input: [: One bundle of exclusive features
binRanges +— {0}, totalBin < 0
for fin I do

totalBin += f.numBin

binRanges.append(totalBin)
newBin < new Bin(numData)
for i = 1 fo numData do

newBin[i] + 0

for j = 1to len(F) do

L if °[j].bin[i] # O then
| newBin[i] «— F'[j].bin[i] + binRanges[j]

Output: new Bin, bin Ranges

1

salnjea.
|

salinieal

ftdata

dills
A

#bins
FIGURE 5. Histogram algorithm.

to discretize successive eigenvalues into k integers and build
a histogram of width k. When traversing the data, the dis-
cretized value acts as an index to accumulate the statistics in
the histogram. After traversing the data once, the histogram
accumulates the required statistics and subsequently traverses
again to seek out the optimal splitting point.

Given that histogram-based algorithm stores discrete bins
instead of continuous feature values, a feature bundle can be
constructed by letting mutually exclusive features reside in
a range of bins. The mentioned process can be achieved by
increasing the offset of the original value of the feature.

Indeed, the histogram algorithm remains not perfect. Since
the features are discretized, the splitting point is not signifi-
cantly accurate, probably affecting the result. But the results
on a range of datasets show that the discretized splitting
points slightly impact the final accuracy, and the accuracy
may increase. The reason is that the decision tree is originally
a weak model, and it is not overly important whether the
splitting point is accurate; moreover, a not-so-accurate split-
ting point exerts the regularizing effect, capable of effectively
preventing overfitting; even if the training error of a single
tree is a slightly larger than that of an accurately-split algo-
rithm, it causes no significant difference under the framework
of gradient boosting. The idea of histogram algorithm is
illustrated in Fig. 5.

The histogram algorithm exhibits the advantages below:

[1] It down-regulates the calculation amount of splitting
the gain: the pre-sorted algorithm is applied by default in
XGBoost, requiring the calculation amount of O(#data),
while the histogram algorithm only requires the calculation
amount of O(#bins), and O(#bins) is significantly smaller
than O(#data).
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FIGURE 6. Histogram accelerating. (Note: the feature number of the right
leaf node is equal to the feature number of the root node minus the
feature number of the left leaf node).
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—l

Histogram (Q) = Histogram (.) — Histogram((, - \-)

Leaf-wise tree growth

FIGURE 7. Growth strategy of leaf-wise decision tree.

[2] It further expedites the model training by histogram
subtraction. According to the binary tree, the histogram
of the leaf node can be obtained by exploiting the sub-
traction of the histogram of the leaf node’s parent and
neighboring nodes. Thus, it is only required to yield a his-
togram for a leaf node (its #data smaller than its neigh-
bors) to develop the histogram of neighboring nodes through
the subtraction of the histogram, and the cost O(#bins) is
very small. Histogram accelerating can be demonstrated
by Fig. 6.

Fig.6 shows the histogram acceleration, which indicates
that the feature of the root node minus the feature of the left
leaf node is equal to the feature of the right node. Meanwhile,
when constructing the histogram of the leaf node, it can
be constructed by subtracting the histogram of parent node
from that of adjacent leaf node, to reduce half of the calcu-
lation. In the actual operation process, the leaf nodes with
small histogram can be calculated first, and the leaf nodes
with large histogram can be obtained by using histogram
difference.

5) GROWTH STRATEGY OF LEAF-WISE DECISION TREE
Overall, most decision tree learning algorithms are capable of
growing the tree by complying with the level-wise strategy,
recording the leaves that split the identical layer at a time, and
treat the leaves of the identical layer indiscriminately. Numer-
ous leaves achieve a low splitting gain, and there is no need
to split them to avoid unnecessary costs. LightGBM adopts
a leaf-wise strategy to grow trees. It means that the decision
tree does not need to be segmented by each root node. Each
time from all the current leaves, the strategy identifies the
one exhibiting the maximum splitting gain and performs the
splitting process subsequently. Accordingly, compared with
Level-wise strategy, Leaf-wise strategy is capable of reducing
more errors and achieving better accuracy when the number
of splits is the same. However, when the sample size is small,
leaf-wise strategy may cause overfitting. Thus, LightGBM
can exploit the additional parameter max_depth to limit the
tree depth and avoid overfitting. Furthermore, the leaf-wise
strategy is illustrated in Fig. 7.
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6) LightGBM ADVANTAGES
Compared with XGBoost algorithm, LightGBM algorithm
largely exhibits the following two advantages:

(1) Less memory consumption

[1] XGBoost should record the index of the feature value
and the statistical value of the corresponding sample after pre-
sorting. As opposed to the mentioned, LightGBM adopts the
histogram algorithm to convert the feature value to the bin
value without the need to record the feature to the sample
index, thereby reducing the spatial complexity from O(#data)
to O(#bins) and further significantly reducing the memory
consumption;

[2] LightGBM employs the histogram algorithm to alter
the feature value as the bins value, thereby decreasing the
memory consumption;

[3] LightGBM follows an EFB algorithm during train-
ing to down-regulate the number of features and memory
consumption.

(2) Faster speed

[1] LightGBM follows the histogram algorithm to trans-
form the way of traversing the samples into traversing the
histograms, which significantly reduces the time complexity;

[2] LightGBM employs a GOSS algorithm to remove the
samples exhibiting small gradients during the training pro-
cess, which significantly reduces the calculation amount;

[3] LightGBM adopts a growth strategy based on leaf-wise
algorithm to construct a tree, which reduces considerable
unnecessary calculations;

[4] LightGBM draws upon optimized feature parallel and
data parallel methods to speed up the calculations. When the
scale of data is significantly large, it can adopt the strategy of
voting parallel as well;

[5] LightGBM has also optimized the cache, which
increases the hit rate of Cache hit.

Ill. EMPIRICAL ANALYSIS

In the present section, experiments are performed to compare
the proposed method with six conventional algorithms (i.e.,
Lasso, Random Forest (RF), Support Vector Machine (SVM),
Gradient Boosting Decision Tree (GBDT), XGBoost and
LightGBM) on two real-world (Baotou & Nanchang Iron
and Steel Co) BF datasets. In this study, all experiments are
performed in Jupyter Notebook for Python 3.6 environment
by employing a single computer with 3.4 GHz Intel Core
17 processors and 64 GB of RAM. All the machine learning
algorithms mentioned in the present study are conducted by
virtue of sklearn.

A. ASSESSMENT CRITERIA

Overall, the performance of the algorithm model can be
revealed by the differences between the factory actual data
and the predicted value, thereby demonstrating that the
smaller the gap, the better the predicting effect of the model
will achieve. To address the issue of target attribute regression
of the samples, the R-square and mean square errors (MSE)
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FIGURE 8. Silicon content in hot metal.

have been universally employed to embody the advantages
and disadvantages of the model, as expressed below:

RR—1_ R (11)
1SS
where TSS = Y7 | (i — y)? denotes the sum of squares of
samples; RSS = Y7 | (§; — y;)* indicates the sum of squares
of residuals.

Overall, R-square indicates the fitting effect exerted by
the model. The larger the value of R-square, the higher the
fitting effect of the model will achieve. Theoretically, the
optimal value of R-square reaches 1. If the predicted value
is a random value, R-square may be negative. Besides, if the
predicted value is overall the expected value, R-square is 0.

1 & )
Mm—mgm ) (12)
where y; stands for the predicted value, y; represents the
actual value. In addition, MSE reflects the fitting degree of the
model, indicating the difference between the practical value
of the target attribute and the predicted value of the model.
The smaller the MSE, i.e., close to 0, the higher the fitting
effect of the model will exhibit.

B. SILICON CONTENT PREDICTION IN BLAST FURNACE
SYSTEM

In the present section, the performances of the proposed
XGBoost and LightGBM algorithms are assessed on the real
datasets sampled from two BFs, i.e., BF at Baotou Iron and
Steel Group Company of China and BF at Nanchang Iron
and Steel Group Company of China, respectively labeled as
BF(a) and BF(b). To be specific, BF(a) is a medium-sized BF
with an inner volume of 2500 m?, while BF(b) refers to a
small-sized BF with an inner volume of 750 m>. For the two
real BFs, the empirical study takes 7 research variables into
account, i.e., air volume, air temperature, air pressure, mate-
rial speed, top pressure, air permeability as well as oxygen
content. The research variables are measured with the use of
the data acquisition module, followed by being preprocessed
by the data processing module of BF Expert System, and used
as the model inputs. The silicon content in molten iron reveals
the sample label, as outputted to be a sample.
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A total of 800 pieces of data is obtained from the two BFs.
The sampling interval is 1.5 h for BF(a) and 1 h for BF(b).
Fig. 8 illustrates the data of silicon content obtained from the
two BFs. In the empirical analysis, the dimensions of a range
of variables are different. Since large-scale variables more
significantly impact the model than small-scale variables, the
importance of some large-scale variables may be overesti-
mated. To tackle down the mentioned problem, the input data
are processed to have the identical dimension according to:

] — p(ad)

do it
8(u})

i=1,2,---nj=1,2,---m (13)

where uf denotes the j” input parameter of the i/ sampled
data; u(ué) represents the mean of the j”’ parameter; 8(u§.)
indicates the standard deviation of the j parameter.

In the experiment, the two sampled datasets are split into
two separate parts, i.e., training set and testing set. Lastly,
640 data samples are used for training, and the rest are
adopted for testing. Since BF data are time series data, cross
validation method is not applied in the empirical analysis.

When predicting the silicon content, the proposed predictor
has three key steps. The basic steps are elucidated below:

[1] The silicon content prediction is conducted by using
six classical algorithms, i.e., Lasso, Random Forest (RF),
Support Vector Machine (SVM), Gradient Boosting Decision
Tree (GBDT), XGBoost and LightGBM.

[2] The R-square and MSE of the results achieved by the
six algorithms are calculated to compare their performances.
The R-square is close to 1, the MSE is close to 0, demonstrat-
ing that the prediction of the model is more accurate.

[3] The running time of a range of algorithm models is
determined to reflect the efficiency of the model. The shorter
the operation time, the higher computational efficiency the
model will exhibit. Accordingly, the corresponding model is
more applied in artificial intelligence data simulation.

To select model parameters, in the two BF models, Lasso,
Random Forest (RF), Support Vector Machine (SVM) and
Gradient Boosting Decision Tree (GBDT) act as the default
parameters. The two boosting algorithms derived from GBDT
(XGBoost and LightGBM) select parameters exhibiting high
accuracy for prediction. The calculation parameters of two
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FIGURE 9. Predicted results of BF(a).
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FIGURE 10. Predicted results of BF(b).

blast furnace models for silicon content prediction are briefed
below:

BF(a):

[1] lasso: L; regularity coefficient was 0.05.

[2] random forest (RF): The maximal number of decision
trees allowed reaches 100; the number of feature selection
refers to the square root of all features; the maximal depth of
the tree reaches 5.

[3] support vector machine (SVM): The default refers to
RBF kernel function, and the penalty coefficient C reaches 1;
the degree of the polynomial kernel function is 3; the epsilon
in the epsilon SVM model reaches 0.1; the independent term
in the kernel function refers to 0.

[4] gradient boosting decision tree (GBDT): Alpha coeffi-
cient is 0.9, and the loss function is LS; there are maximally
100 decision trees allowed; the maximum depth of the tree is
3; the learning rate is 0.1.

[5] XGBoost: There are maximally 100 decision trees
allowed; the maximum depth of the tree is 6, and the learning
rate reaches 0.2.

[6] LightGBM: There are maximally 100 decision trees
allowed; the maximum depth of the tree is 6, and the learning
rate reaches 0.2.

BF(b):

[1] lasso: L; regularity coefficient is 1.

[2] random forest (RF): The maximal number of decision
trees allowed refers to 100; the number of feature selection
indicates the square root of all features; the maximal depth of
the tree reaches 5.
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TABLE 3. The predicted results of BF(a).

Algorithm  R-Square ~ R-Square MSE MSE

(training set) (testing set) (training set) (testing set) Time (s)
Lasso 0.096 0.079 0.025 0.026 1.48
RF 0.516 0.417 0.014 0.017 0.147
SVM 0.475 0.405 0.015 0.017 0.018
GBDT 0.678 0.402 0.009 0.017 0.045
XGBoost 0.993 0.421 0.0001 0.016 0.74
LightGBM 0.866 0.422 0.004 0.016 0.08

[3] support vector machine (SVM): The default refers to
RBF kernel function, and the penalty coefficient C reaches 1;
the degree of the polynomial kernel function is 3; the epsilon
in the epsilon SVM model reaches 0.1; the independent term
in the kernel function is 0.

[4] gradient boosting decision tree (GBDT): Alpha coeffi-
cient is 0.9, and the loss function is LS; there are maximally
100 decision trees allowed; the maximum depth of the tree
reaches 3; the learning rate is 0.1.

[5] XGBoost: The maximum number of decision trees
allowed is 100; the maximum depth of the tree is 4, and the
learning rate is 0.1.

[6] LightGBM: There are maximally 100 decision trees
allowed; the maximum depth of the tree is 6, and the learning
rate is 0.2.

Table 3 and 4 list the simulation results of two BFs by
the algorithms. Fig. 9 and 10 illustrate the predicted results
achieved by XGBoost and LightGBM on the two BFs.

As can be seen from the above tables and figures, for the
two BF systems, the two algorithms derived from GBDT (i.e.,
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TABLE 4. Table 4. The predicted results of BF(b).

Algorithm  R-Square ~ R-Square MSE MSE

(training set) (testing set) (training set) (testing set) Time (s)
Lasso 0 —0.0006 0.026 0.024 0.027
RF 0.282 0.124 0.019 0.021 0.156
SVM 0.246 0.199 0.019 0.019 0.019
GBDT 0.573 0.138 0.011 0.02 0.051
XGBoost 0.723 0.137 0.007 0.02 0.130
LightGBM 0.784 0.026 0.006 0.022 0.109

XGBoost & LightGBM), have shown significantly better
performance than other algorithms in terms of the fitting
effect of the training set. According to the two BF models,
the empirical analysis also got different conclusions. For
BF(a), it is noteworthy that the R-square of the training
set of the mentioned two algorithms exceeds 0.85, and for
the XGBoost algorithm, the R-square even reaches up to
0.993. The MSEs of the mentioned two algorithms are both
less than 0.005, of which 0.0001 for XGBoost algorithm.
As revealed from the comparison between the two algorithms,
each exhibits its own merits. For the training set of BF(a),
XGBoost algorithm exhibits better predicting effect than
LightGBM. Moreover, the mentioned two algorithms exhibit
high performance in the testing set of BF(a), indicating the
R-square in both algorithms exceeds 0.4 on the testing set.
Notably, the proposed algorithms exhibit better performance
in terms of the medium-sized BF than on the small-size BF,
revealing that the size of the BF will impact the regression
performance. Thus, it is difficult to assess the silicon content
in the molten iron of small-sized BF. For BF(b), the prediction
accuracy of training set of BF(b) is more significant than
that of XGBoost. The prediction performance of the two
algorithms is not ideal on the testing set, i.e., even worse than
the SVM algorithm. Furthermore, the R-squares of the results
by all algorithms in the BF(b) are low on the whole, indicat-
ing that the performance on the BF(b) dataset is relatively
poor. As indicated by the time consumed, SVM algorithm
outperforms the other algorithms. Besides, for the mentioned
two BF models, it can be discovered that the time consumed
by LightGBM is lower than that by XGBoost, which further
proves the rationality of the proposed algorithm. Besides,
the two derivative algorithms proposed in the present study
consume more time than some other algorithms. Finally,
it should be noted that the tapping interval of BF is usually
1-1.5h. Accordingly, the proposed two derivative algorithms
remain sufficiently effective for the existing task of silicon
content prediction in BF system.

However, silicon content prediction in molten iron by the
mentioned algorithm model pertains to the point estimation in
statistics. Furthermore, interval estimation can also be applied
for silicon content prediction in BF molten iron. The range of
silicon content y in molten iron of BF is assessed as:

o o
ye G- Z=Us 5+ —=Us) (14)
where y denotes the mean value of silicon content of all sam-
ples; n represents sample capacity; o refers to the standard
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deviation of all samples; « shows the confidence level.
In practical research, « = 0.05, reflecting 95% confidence
level. Since the silicon content in molten iron complies with
the normal distribution, U g = 1.96. For BF(a) and BF(b),
the range of silicon content in molten iron estimated by
interval are (0.253,0.910) and (0.349,0.973), respectively.

IV. CONCLUSION

In this study, XGBoost and LightGBM algorithms based on
GBDT algorithm are proposed for silicon content prediction
in molten iron of two BF systems, which is formulated as
a regression problem. To be specific, XGBoost algorithm
introduces regular terms to the GBDT algorithm to prevent
the overfitting phenomenon, while LightGBM algorithm is
based on the GBDT algorithm as well, and it simplifies and
expedites the calculation by adopting GOSS and EFB strate-
gies. According to the experimentally achieved results on
two real BF datasets, the good performance of the mentioned
proposed two methods is verified. In comparison with the
classical algorithms of Lasso, Random Forest (RF), Support
Vector Machine (SVM) and Gradient Boosting Decision
Tree (GBDT), the proposed predictor has been significantly
optimized as indicated by the R-square and MSE. The pre-
dicted results provide guidance for controlling the complex
BF iron-making process. It is noteworthy that it is adopted
to control the temperature of BF, so BF exhibits a stable
state. The original angle of the present study is novel, both
XGBoost algorithm and LightGBM algorithm are popular
machine learning algorithms over the past five years. It is
employed initially to study in BF system, which is of certain
guiding significance.
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