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ABSTRACT Decomposition-based evolutionary algorithms, especially the branch based on objective space
division using a set of uniformly distributed reference vectors, are widely envisioned as a promising tech-
nique to solve many-objective optimization problems. Nevertheless, their performance deteriorates severely
when solving problems with irregular Pareto fronts (PFs), such as inverted, degenerated, and discontinuous
PF shapes. So far, there are some works trying to design reference vector adjustment approaches to make up
for such deficiencies of decomposition-based evolutionary algorithms. Unfortunately, the task of designing
effective reference vector adjustment approaches adapting to irregular PFs remains challenging. To tackle
this challenge, we propose a Two-Stage Adjustment Strategy, namely TSAS, for space division based
many-objective evolutionary optimization to deal with the irregular PFs. To be specific, the first stage
attempts to approach the boundaries of objective spaces having solutions by inserting new reference vectors
between obtained solutions and reference vectors; for achieving better diversity, the second stage adjusts
the reference vectors on the basis of both the reference vectors having solutions and the objective vectors
of solutions with better diversity, and also adds some reference vectors to explore the sparse sub-spaces.
To verify the effectiveness of the proposed TSAS, extensive experiments on benchmarks are carried out
to compare it with five recent representative algorithms using three widely-used metrics. The compared
results demonstrate the superior performance of our proposal, especially it significantly outperforms all the
five algorithms in 45 out of 65 test instances with respect to Inverted Generational Distance (IGD) metric.
Furthermore, to test the performance of TSAS in solving real-world problems, 6 test instances from agile
satellite task planning are used to compare its performance with five other algorithms. The experimental
results show that the TSAS has the best performance on 5 out of 6 test instances.

INDEX TERMS Evolutionary computation, multi/many-objective optimization, objective space division,
irregular Pareto-front, adaptive adjustment.

I. INTRODUCTION
Real-world optimization problems encountered in various
fields usually require to optimize multiple conflicting objec-
tives simultaneously. For instance, the hybrid electric vehicle
control problem requires to simultaneously optimize seven
objectives: fuel consumption, battery stress, battery state of
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charge, operation changes, emission, noise, and urban opera-
tion [1]. Besides, the workflow scheduling problem in clouds
involves optimizing uncertainty, makespan, cost and resource
efficiency [2]. These problems are called multi-objective
optimization problems (MOPs).

Relying on the advantages of obtaining multiple solu-
tions in one single run [3], population-based evolutionary
algorithms, such as differential evolution [4], [5], simulated
binary crossover [6], and memetic algorithms [7], have been
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envisioned as promising techniques to balance different opti-
mization objectives for MOPs. During the past three decades,
a large number of relevant multi-objective evolutionary algo-
rithms (MOEAs) have been reported [8], [9]. According
to their environmental selection frameworks, these algo-
rithms can be roughly classified into three categories: Pareto
dominance-based, indicator-based, and decomposition-based
frameworks [10], [11]. When solving MOPs with more than
three objectives (i.e., MaOPs), the algorithms based on the
former two frameworks (i.e., Pareto dominance-based and
indicator-based MOEAs) face the limitations of the ‘‘dom-
inance resistance’’ [12] and exponentially growing compu-
tational cost with the increase in objective number [13],
respectively.

Compared with the other two frameworks, the framework
based on decomposition has witnessed remarkable success
in solving MaOPs, and a number of relevant MOEAs have
been proposed [11], [14]. Further, theseMOEAs derived from
decomposition-based framework can be classified into two
categories. The first one decomposes an MOP into a series of
subproblems using a set of reference vectors, and then solves
them via collaborative ways [15]. The second one divides the
objective space of an MOP into a series of subspaces using a
set of reference vectors, and then co-evolve these subspaces
[16]–[19].

Although decomposition-basedMOEAs have shown supe-
rior performance in optimizing MOPs or MaOPs with
regular PFs, their performance seriously deteriorates on
MaOPs with irregular PFs, such as, inverted, degenerate,
discontinuous shapes [20], [21]. The main reason is the
unsuitable pre-defined configuration of reference vectors,
which have strong influence on the search directions of
decomposition-based MOEAs, and even the distribution of
their output population. When solving MaOPs with irreg-
ular PFs, some reference vectors fail to intersect with the
PFs, and these reference vectors correspond to the same
Pareto-optimal solution, or the corresponding subspaces have
no solution. This further leads to reduction of diversity.

An intuitive way to improve the performance of
decomposition-based MOEAs in handling irregular PFs is to
progressively adjust the reference vectors during the search
process. So far, commendable efforts have been made along
this direction, where the distribution of reference vectors
is adjusted according to obtained solutions to fit the PF
shapes of MaOPs [21]–[23]. Nevertheless, as the number of
optimization objectives of an MaOP increases, the number
of non-dominated solutions needed to fit the PF explodes
exponentially. As analyzed in work [20], to approximate the
PF of an MaOP with m objectives, the required number of
solutions is about 20m−1. Inferring from this, for an MaOP
with 10 objectives, the number of non-dominated solutions
required is up to 512 billion [20], and it is almost impossible
to obtain a dense distribution of non-dominated solutions
over the entire Pareto front of an MaOP. Therefore, the task
of developing efficient strategies adapting to complex PFs
remains challenging, and require more efforts.

In this paper, we propose a new two-stage reference vector
adjustment strategy, namely TSAS, to improve the perfor-
mance of objective space division based MOEAs in solving
the challenges of irregular PF shapes. The key technical
contributions can be summarized as follows.
• A strategy is designed for the first stage to insert new
reference vectors between obtained solutions and asso-
ciated reference vectors, such striving to push refer-
ence vectors towards the boundaries of objective spaces
having solutions.

• A strategy is developed for the second stage to adjust
the reference vectors on the basis of both the refer-
ence vectors having solutions and the objective vec-
tors of solutions with better diversity. In this strategy,
some reference vectors are added to explore the sparse
sub-spaces for a better trade-off between convergence
and diversity.

• Based on synthetic benchmarks and real-world appli-
cation problems, a large number of experiments are
conducted to verify the effectiveness of the proposal by
comparing it with other five representative algorithms.

This paper is organized as follows. The relevant works
on reference vector adjustment methods for decomposition-
based MOEA are summarized and analyzed in Section II,
followed by proposing the TSAS to make up for the short-
comings of the existing works in Section III. Then, the com-
pared experiments and analyses are reported in Section IV.
Finally, the conclusion and two future research directions are
presented in Section V.

II. RELATED WORK
In this section, we first introduce the formal representation
and basic concepts of multi-objective optimization problems.
Then, some related studies are summarized and analyzed.

A. BASIC CONCEPTS
The multi-objective optimization problems (MOPs) are gen-
erally formulated as:{

Minimize F(Ex) = [f1(Ex), f2(Ex), · · · , fm(Ex)],
S.t. Ex ∈ �,

(1)

where Ex = (x1, x2, · · · , xn) denotes a decision vector, m and
n respectively indicate the count of objectives and decision
variables, � ⊆ Rn represents the feasible area of optimiza-
tion problem. The objective function F(Ex) is to map each
n-dimensional feasiable decision vector to a m-dimensional
objective vector. Similar to the works [24]–[26], a MOP
having more than three objectives (i.e., m > 3) is deemed
as a many-objective optimization problem (MaOP).

Because of the conflicting nature in the optimization objec-
tives, improving one often comes at the expense of worsening
other ones [27]–[29]. As a consequence, there exist a series of
solutions that compromise different optimization objectives,
rather than one single solution minimizing them optimization
objectives simultaneously [17]. For two solutions Ex1, Ex2 ∈ �,
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solution Ex1 is defined to dominate Ex2 (represented as Ex1 ≺ Ex2)
if all the objective values of Ex1 is less than or equal to that of
Ex2 and at least one objective value of Ex1 is less than that of Ex2.
A solution x∗ ∈ � is defined as Pareto optimal only if there
are no other solutions dominating it. Generally speaking,
the set of all the Pareto-optimal solutions of an MOP is called
as Pareto set (PS) in decision space, i.e., PS = {Ex∗|@Ex ∈
�, Ex ≺ Ex∗}. In addition, the mapping of PS in the objective
space is called the Pareto-front (PF), i.e., PF = {F(Ex)|Ex ∈
PS}.

B. RELATED STUDIES
In recent years, the shortcomings of decomposition-based
MOEAs that their performance seriously depends on the PF
shapes of MaOPs has attracted great attention, and a series
of adjustment approaches for reference vectors have been
reported [21]. Current approaches can be roughly classified
into three categories: preference-based, neighbors-based, and
fitting-based adjustment approaches.

The preference-based adjustment approaches generally
suppose that the preference information of decision-makers
is available before or during optimization process, and then
transform the preference information into reference vectors
to direct the evolutionary algorithms to search the subspaces
of interest on the PFs. For example, Wang et al. regarded the
preference information specified by the decision-makers as
reference vectors, and constantly added random preference
points to adjust the set of reference vectors to co-evolve
the population [30]. Li et al. followed a similar path, and
tuned the uniformly distributed reference vectors to the
region of concern to decision-makers [31]. Tomczyk et al.
reported an algorithm, called cwMOEA/D, to co-evolve the
subproblems based on the relative importance of differ-
ent objectives specified by decision-makers [32]. Liu et al.
employed preference radius to construct the preference areas
by interacting with decision-makers during the optimiza-
tion process [33]. Li et al. suggested the interactive way
to direct decomposition-based MOEAs to search the solu-
tions in interested areas. During the interactive session,
the decision-makers needs to sort some candidate solutions
to construct an approximated value function, which will be
transformed into a set of reference vectors [34]. Nevertheless,
the populations of these approaches may be misled by the
reference vectors being near to the PFs and fall into local
optimum [35]. Unlike these existing approches, this paper
focuses on approximating the entire PFs.

For neighbors-based adjustment approaches, they
adjust each reference vector according to the distance or
angle between the reference vector and its nearest neigh-
bor. For instance, to adjust the reference vectors, Li et al.
designed an algorithm EMOSA, which first employed a set
of pre-defined reference vectors to direct the search of evolu-
tionary algorithms. During the search process, the EMOSA
adjusted the reference vectors to keep the associated solu-
tions away from their nearest neighbors [36]. The work
[37] reported an adjustment method that each subproblem

evolves one solution with the reference vector, which was
tuned for minimizing the subproblem fitness and maximizing
the distance from itself to the nearest neighboring reference
vector. Different from the above two approaches pushing
the reference vectors away from their neighboring ones,
Ge et al. employed an incremental learning method to delete
invalid reference vectors and generate new reference vec-
tors being near to valid reference vectors [38]. Xu et al.
reported a hierarchy-based adjustment approach, namely
MOEA/HD, to group the subproblems into different hierar-
chies, and adjust the reference vectors for lower-hierarchy
subproblems using the perpendicular bisectors between the
objective vectors of the solutions associated to the neighbor-
ing upper-hierarchy subproblems [39]. The neighbors-based
adjustment approaches are based on local tuning procedures,
and the distribution of the obtained solutions’ objective vec-
tors is not fully utilized. Besides, the approaches along this
branch tend to be high time complexity and be ineffective in
dealing with MaOPs with degenerated PFs [21].

Regarding the fitting-based adjustment approaches,
they first explore to estimate the PF shapes of MaOPs via
the fitness of the obtained solutions, and then construct a
new set of reference vectors on the basis of the estimated
PF shapes. For example, the works [40], [41] respectively
employed a piecewise linear and a cubic spline interpola-
tion on non-dominated solutions to fit the PF shapes of
MOPs. Then reference vectors are uniformly constructed
on the fitted PFs [40], [41]. Liu et al. chose a set of
diverse solutions periodically, and normalized their objec-
tive vectors as reference vectors [42]. Wu et al. employed
the gaussian process regression to estimate the population
distribution to approximate the PF shapes of MaOPs, and
then constructed reference vectors on the basis of the fitting
model [43]. Liu et al. explored to learn the PF topology
of MaOPs using the growing neural gas network, and then
adjusts the reference vectors and scalarizing functions based
on the learned topology [44]. To improve the performance
of decomposition-based many-objective evolutionary algo-
rithm, Han et al. designed two strategies to adaptively adjust
the penalty factor for each subproblem and the reference vec-
tors, respectively [45]. Elarbi et al. combined penalty-based
boundary and normal-boundary intersection directions to
handle the complex PFs [46]. But this hybrid approach still
cannot guarantee that all reference vectors intersect the irreg-
ular PFs, and resorted to decision makers for addingmore ref-
erence vectors. As stated by Ishibuchi et al. [20], the number
of non-dominated solutions required to approximate the PF
shapes of MaOPs explodes exponentially with the increase
in the number of optimization objectives. For MOPs with
many objectives, it is almost impossible to obtain a dense
distribution of non-dominated solutions over the entire PFs
for approximating their PF shapes. Unlike these existing
works, in this paper, we strive to approach the boundaries
of objective spaces having solutions, and add exploratory
reference vectors in sparse areas where the solutions may
exist.
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III. ALGORITHM DESIGN
How to adaptively adjust the reference vectors to efficiently
deal with irregular PF shapes of MOPs is still a challenge.
In this section, we design a two-stage adjustment strat-
egy to resolve this challenging task. First, a general frame-
work for embedding adaptive adjustment strategies for refer-
ence vectors is introduced. Then, an environment selection
strategy that mixing space division based mechanism with
diversity-first mechanism is proposed. Finally, the proposed
two-stage adjustment strategy for coping with irregular PF
shapes of MOPs is detailed.

A. GENERAL FRAMEWORK
Space division-based multi-objective evolutionary algo-
rithms (SD-MOEAs) are one branch of decomposition-based
MOEAs, and they decompose the objective space of an
MOP into N subspaces using N reference vectors [16], [17].
Fig. 1(a) provides a visual example to illustrate this decom-
position framework in a 2-D objective space. As shown
in Fig. 1(a), the reference vectors v1, v2, · · · , vN are char-
acterized as blue arrows, and the corresponding sub-spaces
of these reference vectors are denoted as S1, S2, · · · ,SN .
Besides, the dotted lines denote the boundaries of connected
sub-spaces.

FIGURE 1. Examples of space division and fitness calculation.

In this work, we follow the framework of SD-MOEA,
and develop a two-stage strategy to adjust the reference vec-
tors for further improving their performance in dealing with
irregular PF shapes. The framework of the proposed TSAS is
shown in Algorithm 1.
As described in Algorithm 1, the proposed TSAS requires

an user to provide three types of information: 1) the MOP
to be solved; 2) the maximum number of evaluations; 3) the
population size. After the TSAS runs, a population approxi-
mating the entire PF of theMOPwill be given to users. Before
iterative optimization, the algorithm TSAS first initializes the
following six parameters: a set of uniformly distributed ref-
erence vectors (Line 1); one population (Line 2): the number
of used fitness evaluations (Line 3); the maximal number of
generations (Line 4); the current generation (Line 5); and
switch flag of adjustment strategies (Line 6). Note that if
the flag is TRUE, the first stage adjustment strategy will be
triggered, otherwise, the second one will be triggered.

Algorithm 1: General Framework of TSAS
Input:MOP; maximum function evaluations (MFE);

the population size N ;
Output: An output population P;

1 V ← Generate a set of reference vectors;
2 P← Randomly create a population with N individuals;
3 FE ← N ;
4 Gmax ← MFE

N ;
5 Gen← 0;
6 Flag← TRUE;
7 while FE < MFE do
8 P′← OffspringGeneration(P);
9 FE ← FE + N ;
10 P← EnvironmentalSelection(V ,P′

⋃
P);

11 Gen← Gen+ 1;
12 if mod(Gen, α × Gmax)==0 then
13 if Flag then
14 V ′←FirstStageAdjustStrategy(V ,P);
15 V ← V

⋃
V ′;

16 Flag← FALSE;
17 else
18 V ←SecondStageAdjustStrategy(V ,P, N );
19 Flag← TRUE;

Then, the TSAS enters the main loop, including new popu-
lation generation (Line 8), environmental selection (Line 10),
and two-stage reference vector adjustment (Lines 12-19).
Similar to the works [15], [47], during each iteration, the sim-
ulated binary crossover is first employed to generate a new
offspring population and then the polynomial mutation is
used to modify the population. For the environmental selec-
tion strategy, it will be introduced in Algorithm 2.

During the optimization process, the two-stage adjustment
strategy is periodically triggered to adjust the reference vec-
tors to approach the boundaries of objective spaces having
solutions, and explore the sparse areas where the solutions
may exist. The parameter α in line 12 satisfies 0 < α < 1, and
is used to control the adjustment frequency. The statement in
line 12 means that the two-stage adjustment strategy is trig-
gered every α×Gmax generations. The first stage adjustment
strategy is described in Algorithm 3, and the second one is
detailed in Algorithm 4.

B. ENVIRONMENTAL SELECTION
The environmental selection operator consists of three steps.
The first step is to divide the objective space of an MaOP into
a series of sub-spaces, associate each solution to a sub-space
with the minimal acute angle. Then, a solution with the best
fitness in each sub-space is selected during the second step.
Facing an MaOP with an irregular PF shape, there exist some
sub-spaces that do not contain solutions. Thus the number
of selected solutions may be less than the population size.
During the third step, the unselected solutions with the best
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Algorithm 2: EnvironmentalSelection(V ,Q)
Input: The set of reference vectors V ; the combined

population Q; the population size N ;
Output: The selected population P;

1 Si← ∅, i = 1, 2, · · · , |V |;
2 foreach qj ∈ Q do
3 i∗← argminvi∈V Angle(qj, vi);
4 Si∗ ← Si∗

⋃
{qj};

5 P← ∅;
6 foreach i = 1 −→ |V | do
7 if Si 6= ∅ then
8 qi← Select the solution with the best fitness in

Si;
9 P← P

⋃
{qi};

10 A← Q \ P;
11 while |P| < N ∧ A 6= ∅ do
12 qi← Select one solution from A having the largest

angles with all the solutions in P;
13 P← P

⋃
{qi};

14 A← A \ {qi};

Algorithm 3: FirstStageAdjustStrategy(V ,P)
Input: The set of reference vectors V ; the population P;
Output: A set of new reference vectors V ′;

1 Si← ∅, i = 1, 2, · · · , |V |;
2 foreach pj ∈ Q do
3 i∗← argminvi∈V Angle(pj, vi);
4 Si∗ ← Si∗

⋃
{pj};

5 V ′← ∅;
6 foreach i = 1 −→ |V | do
7 if Si 6= ∅ then
8 pj∗← minpj∈Si Angle(pj, vi);
9 θ ← Angle(pj∗, vi);
10 if θ > 1 then
11 v′← [ f1(pj∗)

6m
k=1fk (pj∗)

, · · · ,
fm(pj∗)

6m
k=1fk (pj∗)

];

12 v∗ ← 0.5× (vi + v′);
13 V ′← V ′

⋃
{v∗};

diversity will be continuously selected until the number of
selected solutions reaches the population size. The pseu-
docode of the environmental selection strategy is given in
Algorithm 2.

As shown in Algorithm 2, the input parameters of the envi-
ronmental selection operator are the set of reference vectors,
the combined population, and the population size. After the
operation, a selected population will be outputted. For space
divison-based MOEA, each reference vector defines a sub-
space. The set Si (i = 1, 2, · · · , |V |) is used to record the
solutions in the sub-space defined by the i-th reference vector,
and initialized as empty (Line 1). Then, each solution in the

Algorithm 4: SecondStageAdjustStrategy(V ,P,N )
Input: The set of reference vectors V ; the population

P; the population size N ;
Output: A set of new reference vectors V ;

1 Si← ∅, i = 1, 2, · · · , |V |;
2 foreach pj ∈ Q do
3 i∗← argminvi∈V Angle(pj, vi);
4 Si∗ ← Si∗

⋃
{pj};

5 V ′← ∅;
6 foreach i = 1 −→ |V | do
7 if Si 6= ∅ then
8 V ′← V ′

⋃
{vi};

9 foreach pj ∈ P do
10 v′← [ f1(pj)

6m
k=1fk (pj)

, · · · ,
fm(pj)

6m
k=1fk (pj)

];

11 V ′← V ′
⋃
{vi};

12 V ← Select the extreme reference vectors from V ′;
13 RV ← V ′ \ V ;
14 while |V | < N ∧ RV 6= ∅ do
15 rv∗ ← argminrv∈RV ,v∈V Angle(rv, v);
16 V ← V

⋃
{rv∗};

17 RV ← RV \ {rv∗};

18 while |V | < (1+ β)× N do
19 [vi, vj]← Select two adjacent reference vectors

having the largest angles from V ;
20 v′← 0.5× (vi + vj);
21 V ← V

⋃
{v′};

combined population Q is associated to a reference vector
with the minimal acute angle (Lines 2-4). After that, one
solution with the best fitness in a sub-space is selected and
added into P (Lines 6-9). When a solution pj is associated to
the sub-space defined by the reference vector vi, its fitness is
defined as Fit(pj, vi) = ||F(pj)|| × {cos(pj, vi) + sin(pj, vi)}.
An instance in Fig. 1(b) is used to illustrated the fitness of
a solution. Assuming that the solution B is associated to the
sub-space defined by reference vector vl and the projection
point of solution B on vl is A, its fitness is the sum of the
segments OA and AB.
Next, the unselected solutions are separated from the com-

bined population, and recorded in A (Line 10). Before the
number of selected solutions reaches the population size or all
the solutions are selected, during each iteration, one solution
in A with the largest acute angle to all the solutions in P is
selected and added into P (Lines 12-13). The operator in line
14 is to remove the selected solution from the set A.

C. ADAPTIVE ADJUSTMENT STRATEGY
As illustrated in line 11 of Algorithm 1, the adjustment
strategy of first stage will be periodically triggered to
add new reference vectors between the reference vec-
tors and associated solutions to approach the boundaries
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of areas having solutions. The pseudocode of function
FirstStageAdjustStrategy() is shown in Algorithm 3.

From Algorithm 3, we can see that the inputs of this func-
tion are a set of reference vectors and the current popultion.
The output of this function is a set of new reference vectors.

This function associates each solution in the current popu-
lation P to a reference vector (Lines 1-4). After that, for each
reference vector (Line 6), if it has associated solutions (Line
7), the acute angle between it and the objective vectors of
these solutions will be calculated, and the solution having
the minimal acute angle to this reference vector is selected
(Line 8). Note that the formula Angle(pj, vi) represents the
acute angle between the objective vector of solution pj and
the reference vector vi. Hereafter, if the minimal acute angle
θ is larger than a threshold 1 (Line 10), the midpoint of the
objective vector of selected solution and the reference vector
is added as a new reference vector (Lines 11-13).

For space division-based evolutionary optimization, each
reference vector directs some solutions forward to the PF
along its opposite direction. If the acute angles between a
reference vector and its associated solutions are very large,
this generally means this reference vector does not intersect
with the PF of anMaOP. Adding new reference vectors by the
first stage adjustment strategy is conducive to continuously
approaching the boundaries of PF.

In this work, the active reference vectors refer to these
ones with associated solutions. The second stage adjust-
ment strategy is to construct a set of active reference vec-
tors having better diversity, and add exploratory reference
vectors in sparse areas where the solutions may exist. The
pseudocode of function SecondStageAdjustStrategy() is given
in Algorithm 4.
As illustrated in Algorithm 4, the inputs of the second

stage adjustment strategy are the set of reference vectors,
the current population, and the population size. Its output is
a set of new reference vectors. This strategy mainly includes
four steps.

Step 1. The purpose of this step is to separate active and
inactive reference vectors, which first associates each solu-
tion to a reference vector (Lines 1-4). Then, the reference
vectors with associated solutions are regarded as active and
added into the set V ′ (Lines 5-8).
Step 2. The objective vectors of solutions in the current

population are normalized as candidate reference vectors
(Lines 9-10), which are added into the set V ′ (Line 11).

Step 3. The reference vectors with the better diversities
in V ′ are gradually selected. The extreme reference vectors
are defined as the ones with minimum values in at least one
dimension, and first selected (Line 12). Afterwards, the uns-
elected reference vectors with the largest acute angle to all
the selected ones are constantly selected until the number of
selected ones reaches the population size or the unselected
ones are empty (Lines 13-17).

Step 4. Its purpose is to add a proportion of exploratory
reference vectors in the regions where solutions may exist.
The proportion is represented by the parameter β (Line 18).

In this step, two adjacent reference vectors with the largest
angle are first selected (Line 19). Hereafter, the midpoint
of these two selected reference vectors is added as a new
exploratory reference vector (Lines 20-21).

IV. EXPERIMENTAL STUDIES
In this section, extensive comparative experiments are con-
ducted to testify the effectiveness of our proposed TSAS. The
five representative peer competitors are: A-NSGA-III [47],
MOEA/D-AM2M [42], MOEA/D [15], MOEA/D-AWA [22],
and RVEA [17]. The brief descriptions of these algorithms
are shown as follows.
A-NSGA-III: It is an improved version of the classic

MaOEA, NSGA-III. This algorithm first discriminates the
inactive reference vectors, and then adjust them according to
the distribution of current population.
MOEA/D-AM2M: It is a representative MOEA based on

space division, and an adjustment strategy is integrated for
adjusting the reference vectors. In this approach, the distribu-
tion of obtained population is used to estimate the PF shape
of an MaOP, and periodically update the reference vectors.
Then, the search efforts are adaptively assigned to promising
subspaces.
MOEA/D: It decomposes an MaOP into a series of single

objective sub-problems, and co-evolves these sub-problems
in a collaborative way. For MOEA/D, there are three
widely-used methods, i.e., weighted sum approach, Tcheby-
cheff approach, and penalty-based boundary intersection
approach, for calculating the fitnesses of solutions. In the
experiments, the penalty-based boundary intersectionmethod
is chose for MOEA/D.
MOEA/D-AWA: This algorithm improves the MOEA/D

with an adaptive adjustment approach for weight vectors.
An external archive is employed to store non-dominated
solutions for adjusting weight vectors. Then, the adaptive
approach periodically deletes overcrowded weight vectors
and adds new weight vectors into sparse subspaces.
RVEA: In this algorithm, a set of reference vectors are used

to partition the objective space into a series of connected sub-
spaces, and the angle-penalized distance is suggested to sort
solutions in each subspace. Also, the reference vectors are
periodically adapted according to the nadir and ideal points
of obtained solutions.

Unless otherwise specified, the parameter settings of these
five algorithms directly use the recommended parameters in
the platform PlatEMO.1

A. EXPERIMENT DESIGN
1) POPULATION SIZE
Referring to existing works [42], [47], [48], the setting of
population size N only considers the number of optimiza-
tion objectives. For the 3-, 5-, 8-, 10-, and 15-objective test
instances, their population sizes are set as 91, 126, 156, 230,
and 240, respectively.

1https://github.com/BIMK/PlatEMO
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2) COMPARISON METRICS
The inverted generational distance (IGD) [49] and Hyper-
volume (HV) [50] are two widely-used metrics to assess the
performance of MOEAs with respect to both the conver-
gence and diversity. Besides, the pure diversity (PD) [51]
and Spread [52] are two popular metrics to measure the
population diversity. The experiments in this paper employ
the above four metrics to compare our proposal with other
five peer competitors.

1) IGD: Regarding a population P, the IGD value can be
calculated as follows:

IGD(P) =
∑

v∈P∗ minp∈P dist(F(v),F(p))
|P∗|

, (2)

where P∗ corresponds to a set of well-distributed solutions
on the PF, dist(F(v),F(p)) is the distance between solution v
and p in objective space. On the basis of the definition in (2),
an algorithm generating a smaller IGD value implies it per-
forms better. Similar to the works, the P∗ in the experiments
is set to contain around 8000 points for each test instance.

2) HV: It is defined as the volume of space, which consists
of a reference point and all the output solutions in objective
space. The larger HV value means the better performance of
the corresponding algorithm with respect to both the con-
vergence and diversity. For each test instance, we set the
reference point as 1.5 times of the upper bounds of its PF.

HV (P) = L(
⋃
p∈P

[f1(p), r1]× · · · × [fm(p), rm]), (3)

where L(
a
) stands for the Lebesgue measure.

3) PD: This metric for an output population P can be
calculated as follows.

PD(P) = max
p∈P

(PD(P− p)+ dis(p,P− p)), (4)

where,

dis(p,P− p) = min
q∈P

(dissimilarity(p, q)). (5)

Note that the formula dis(p,P− p) represents the dissimi-
larity of solution p to the population P.
4) For metric Spread (

a
), it measures the extent of spread

archived among non-dominated solutions in a population. For
an output population P, its Spread

a
(P) can be calculated as

follows:
i

(P) =
∑m

i=1 d(Ei,P)+
∑

p∈P |d(p,P)− d |∑m
i=1 d(Ei,P)+ (|P| − m)d

, (6)

d(p,P) = min
q∈P,p6=q

‖F(p)− F(q)‖, (7)

d =
1
|P|

∑
p∈P

d(p,P), (8)

where (E1,E2, · · · ,Em) denotes m extreme solutions in the
population P.

3) STOP CRITERIA
For fair comparisons, the maximum function evaluations are
employed as stop conditions for the six algorithms.

B. COMPARISON RESULTS ON SYNTHETIC BENCHMARKS
The test suite reported in work [53] is the new versions of
DTLZ and WFG test suites, and specially designed for eval-
uating many-objective optimization. Besides, it is embedded
with awide variety of challenging characteristics in both deci-
sion and objective spaces. From the perspective of decision
space, this test suite contains a series of tough single-objective
functions, such as the Rosenbrock’s function, Rastrigin’s
function, and Griewank’s function. For the objective spaces,
this test suite is designed with various irregular PF shapes,
such as disconnected, degenerate, inverted, and complex
geometries. To verify the effectiveness of the proposed TSAS
in dealingwith irregular PF shapes, we choose thirteen bench-
mark functions, i.e., MaF1-MaF13, from this challenging
test suite to compare TSAS with other five representative
algorithms.

Generally, a test instance is regarded as a benchmark
function with a specific objective count, for instance, the
10-objective MaF1 is a test instance. The number of opti-
mization objectives is set as m ∈ {3, 5, 8, 10, 15}. Then, for
the thirteen benchmark functions with five settings of the
objective number, there exist 65 test instances in the exper-
iments. Since the function MaF3 has a lot of local optima,
the number of maximal function evaluations for all the test
instances derived from this function is set as 400,000. For
other test intances, this parameter is set as 40,000.

For each test instance, all the six algorithms run 30 times
independently. Similar to the works [29], [48], [54]–[56],
we use the Wilcoxon Ranksum test with 5% confidence
level to test the significant differences between each com-
pared algorithm and the proposed TSAS. The symbols +,
−, and ≈ mean that the compared algorithm performs better
than, worse than, and similar to the propsed TSAS.

With respect to the four metrics, the statistical comparison
results of the six algorithms are summarized in the Table 1.
For each metric, the results in the three rows indicate the
ratio of test instances that the corresponding algorithm is
superior, inferior and similar to the TSAS, respectively. Take
the first three values (i.e., 15/65, 44/65, and 6/65) in the first
column as an example, they corrspond to the ratio of test
instances that the compared algorithm A-NSGA-III performs
better than, worse than, and similar to the TSAS with respect
to the metric PD.

From the results highlighted with the blue background,
we can observe that the proposed TSAS prevails over the
five comparison algorithms on the four metrics. For the met-
ric PD, among the 65 test instances, the algorithm TSEA
significantly performs better than A-NSGA-III, MOEA/D-
AM2M, MOEA/D, MOEA/D-AWA, and RVEA on 44, 60, 60,
41, and 58 test instances, respectively. For the other three
metrics, i.e., HV, IGD, and Spread, the proposed TSAS also
illustrates the similar advantages. For instance, among the
five comparison algorithm, the A-NSGA-III shows the best
performance in terms of HV. The proposed TSAS still sig-
nificantly outperforms the A-NSGA-III on 40 out of 65 test
instances.
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TABLE 1. The ratio of test instances where each compared algorithm performs better than (+), worse than (−), and similar to (≈) the propsed TSAS in
terms of PD, HV, IGD, and Spread metrics.

To compare the performance of six algorithms more con-
cretely, we also report the average and variance of their
IGD values on each test instance, and the results is shown
in Table 2. For each test instance, the lowest IGD value
among the six algorithms is highlighted with grey back-
ground. As illustrated in Table 2, the proposed TSAS shows
competitive performance by generating lower IGD values
than all the five comparison algorithms on 27 out of 65 test
instances.

The algorithms A-NSGA-III and MOEA/D-AWA are two
representative MaOEAs in dealing with MaOPs with compli-
cated PF shapes, and show promising performance in the test
suites DTLZ and WFG. By comparing the proposed TSAS
and them on the challenging versions of these test suites,
the comparison results in Table 2 demonstrate the competitve
performance of the proposed TSAS in dealing with MaOPs
with challenging PF shapes.

The comparison algorithm MOEA/D-AM2M also trans-
forms the objective vectors of obtained solutions with better
diversity as reference vectors. But, the performance of the
proposed TSAS still outperforms MOEA/D-AM2M. This can
be interpreted as that the proposed TSAS employs mecha-
nisms of approaching boundaries of subspaces having solu-
tions and adding exploratory reference vectors to explore the
sparse areas.

Compared with PBI-based MOEA/D, the main difference
of the proposed TSAS is the adaptive strategy for adjusting the
reference vectors. From their comparison results, the effec-
tiveness of the two-stage adjustment strategy in the proposed
TSAS is verified.

The algorithm RVEA dynamically adjusts the reference
vectors on the basis of the scales of objective values and
employs the angle-penalized distance to sort solutions in each
subspace. As the comparison results in Table 2, the proposed
TSAS produces significantly lower IGD values than the RVEA
on 46 out of 65 test instances.

The parallel coordinate [57] has been used to transform
high-dimensional vectors into a two-dimensional graph. In a
two-dimensional graph, each dimension of high-dimensional
vectors is plotted on a vertical axis, then the polyline

connecting the points on each axis corresponds to a high-
dimensional vector. It has been frequently employed to visu-
alize the distributions of output populations in evolutionary
many-objective optimization community.

To visually compare the features of different algorithms,
the parallel coordinate is adopted to illustrate the output pop-
ulation of each algorithm with the lowest IGD value among
the 30 runs on 10-objective MaF1, MaF6, and MaF8. These
functions have irregular PF shapes, such as inverted and
degenerate, which are challenging for decomposition-based
multi-objective optimization algorithms. The relevant results
are shown in Figs. 2-4.
The MaF1 is designed for testing the capabilities of

MaOEAs in dealing with inverted PFs, and the value range
of its PF is between 0 and 1 in each dimension [53]. As illus-
trated in As shown in Figs. 2(a), (c), and (e), the algo-
rithms A-NSGA-III, MOEA/D, and RVEA perform better
in convergence, but there is still much room for improve-
ment in their diversity. Among the five comparison algo-
rithms, theMOEA/D-AM2M andMOEA/D-AWA exhibit good
performance in both convergence and diversity. Compar-
ing the Fig. 2(b) with Fig. 2(f), we can observe that the
proposed TSAS shows the similarity to the convergence of
MOEA/D-AM2M. Also, the diversity of TSAS is much better
than MOEA/D-AM2M, especially in the third, fifth, eighth,
ninth, and tenth objectives. These results are basically con-
sistent with the IGD values in the fourth row of Table 2. The
Fig. 2(d) illustrates that the MOEA/D-AWA has good conver-
gence and diversity. But, the objective values of some solu-
tions coming from MOEA/D-AWA is larger than 1. Besides,
the diversity ofMOEA/D-AWA in the second and ninth objec-
tives is insufficient. The above two reasons can explain why
the proposed TSAS has lower IGD value thanMOEA/D-AWA
on 10-objective MaF1.

The benchmark function MaF6 is a classical MaOP having
degenerate PF shape, and we also choose it with 10 objectives
to compare the six algorithms in handling such irregular PF.
For test instance 10-objective MaF6, the value ranges of the
ninth and tenth objectives on the PF are around [0,0.71] and
[0,1.0], respectively. FromFig. 3(a) and Fig. 3(e), it is obvious
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TABLE 2. The IGD values of the 6 algorithms on solving benchmarks MaF1-MaF13 with 3, 5, 8, 10, and 15 objectives.

that the output populations of algorithms A-NSGA-III and
RVEA are far from the PF. Although the two comparison

algorithms, i.e., MOEA/D and MOEA/D-AM2M, have good
convergence, their diversity is a bit poor. Among the six
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FIGURE 2. Performance comparison of the six algorithms on 10-objective MaF1.

FIGURE 3. Performance comparison of the six algorithms on 10-objective MaF6.

comparison algorithms, the MOEA/D-AWA shows the best
performance in both convergence and diversity. Comparing
Fig. 3(d) and Fig. 3(f), we can see that the distribution of
output population of the proposed TSAS is similar to that

of MOEA/D-AWA. According to the IGD values in Table 2,
we can know that the proposed TSAS is better thanMOEA/D-
AWA in terms of convergence and diversity. The comparison
results in Fig. 3 illustrate the competitive performance of
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FIGURE 4. Performance comparison of the six algorithms on 10-objective MaF8.

FIGURE 5. Downward trend of IGD values of the six algorithms on 10-objective MaF1, MaF6, and MaF8.

the proposed TSAS in handling MaOPs with degenerate PF
shapes.

For benchmark function MaF8, the values of PF in each
dimension approximately range from 0 to 2. The comparison
results in Fig. 4 show that the proposed TSAS behaves com-
petitive performance in both the convergence and diversity.

In addition, the downward trends of the IGD values of the
six algorithms on 10-objective MaF1, MaF6, and MaF8 are
given in Fig. 5. For the 10-objective MaF1, as shown
in Fig. 5(a), the IGD of algorithm TSAS declines much faster
than algorithmsMOEA/D-AM2M,MOEA/D,MOEA/D-AWA,
and RVEA. In the early stage, the convergence speed of the A-
NSGA-III is obviously faster than that of the proposed TSAS,
but the IGD value of the A-NSGA-III does not change after
that. After 1,200 generations, the proposed TSAS generates

lower IGD values than A-NSGA-III. This can be attributed
to the two-stage adjustment strategy in TSAS to improve the
diversity of the population. Also, from Fig. 5(b) and (c),
we can observe the similar advantage of TSAS in descent
speed of IGD values.

C. COMPARISON RESULTS ON REAL-WORLD
APPLICATIONS
To test the effectiveness of the proposed TSAS in solving
real-world many-objective optimization problems. Six test
instances from agile satellite task planning [58] are employed
to compare the performance of the TSAS with the five com-
parison algorithms. Since the real PFs of these real-world
test instances are not available, the IGD metric cannot be
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FIGURE 6. HV values of the six algorithms on 5-objective agile satellite task planning.

calculated directly. In this subsection, we use the HV metric
for comparison.

In the experiments, the test instances from agile satellite
task planning involves simultaneously optimizing the fol-
lowing five objectives, i.e., profit, ratio of completed tasks,
energy consumption, balance, and timeliness. The value
range of different objectives varies greatly. For example,
the ratio of completed tasks ranges from 0 to 1, while the
energy consumption may range from 0 to 105 or even greater.
Thus, these test instances are representative MaOP with
irregular PFs. For more details about the model of these
many-objective agile satellite task planning, please refer to
the work [58].

In the experiments, we assume that there are 36 satellites
evenly distributed on 12 orbital planes. That is, the angle
between two orbital planes is 30◦, and the angle between two
satellites in one plane is 120◦. The height of each satellite is
about 975 km, and the orbital period is about 6275 seconds.

The location of satellite observation tasks is randomly set
in the area between 60◦ south latitude and 60◦ north latitude.
For each task, its observation duration is a random number
between 5 and 25 seconds, and its priority is a random integer
between 1 and 10. The visible time windows between tasks
and satellites are calculated by Systems Tool Kit,2 and the
simulation time is 8 hours.

The number of tasks is denoted as TaskNum, andwe change
the parameter as one of {100, 200, 300, 400, 500, 600} to

2https://www.agi.com/products/stk/

construct 6 test instances. To set the reference point for cal-
culating HV values, 5000 solutions are randomly generated,
and the maximum value of each objective is used to construct
the reference point. On the context of the six test instances,
the HV values obtained by the six algorithms are plotted as
boxplots, which are shown in Fig. 6.
As shown in Fig. 6, the HV values of some algorithms

are zero. The reason is that all the output solutions of these
algorithms cannot dominate the reference point. From the
Fig. 6, we can observe that the proposed TSAS outperforms all
the five comparison algorithm on 5 out of the 6 test instances
with respect to the mean HV values. When the number of
satellite observation task is 400, themeanHV value generated
by the proposal is smaller than the algorithmMOEA/D-AWA,
but still larger than the other four comparison algorithms. The
comparison results demonstrate that the proposal has com-
petitive performance in solving real-world many-objective
optimization problems.

V. CONCLUSION AND FUTURE WORK
This work mainly focuses on the many-objective optimiza-
tion problems having irregular PF shapes, such as inverted,
degenerate, discontinuous, and badly scaled. To resolve this
challenging task, we design a two-stage adjustment strat-
egy to improve the performance of the space division based
MOEAs. This strategy first strives to approach the bound-
aries of objective spaces having solutions, and then adds
exploratory reference vectors to explore the sparse areas
where the solutions may exist. To assess the effectiveness
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of the proposed TSAS, on the basis of three metrics, exten-
sive comparison experiments are carried out. The numeri-
cal results demonstrate the advantages of TSAS in solving
MaOPs, especially the ones with complicated PF shapes.

How to solve MaOPs with complex PSs is also an ongo-
ing challenge in the multi-objective evolutionary optimiza-
tion community. Up to now, there are few MOEAs being
able to solve these MaOPs very well. Thus, it is an inter-
esting and meaningful research direction. In addition, with
the increase in decision variables, the objective spaces of
MaOPs often explode exponentially. This phenomenon seri-
ously challenges the existing MOEAs. Developing efficient
MOEAs forMaOPswith large-scale decision variables is also
a future direction.
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