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ABSTRACT Channel state information (CSI)-based human activity recognition plays an essential role in
various application domains, such as security, healthcare, and Internet of Things. Most existing CSI-based
activity recognition approaches rely on manually designed features that are classified using traditional
classification methods. Furthermore, the use of deep learning methods for CSI-based activity recognition
is still at its infancy with most of the existing approaches focus on recognizing single-human activities.
The current study explores the feasibility of utilizing deep learning methods to recognize human-to-human
interactions (HHIs) using CSI signals. Particularly, we introduce an end-to-end deep learning framework
that comprises three phases, which are the input, feature extraction, and recognition phases. The input phase
converts the raw CSI signals into CSI images that comprise time, frequency, and spatial information. In the
feature extraction phase, a novel convolutional neural network (CNN) is designed to automatically extract
deep features from the CSI images. Finally, the extracted features are fed to the recognition phase to identify
the class of the HHI associated with each CSI image. The performance of our proposed framework is assessed
using a publicly available CSI dataset that was acquired from 40 different pairs of subjects while performing
13 HHIs. Our proposed framework achieved an average recognition accuracy of 86.3% across all HHIs.
Moreover, the experiments indicate that our proposed framework enabled significant improvements over
the results achieved using three state-of-the-art pre-trained CNNs as well as the results obtained using four
different conventional classifiers that employs traditional handcrafted features.

INDEX TERMS Two-person interaction, channel state information (CSI), human activity recognition,
convolutional neural networks (CNNs), Wi-Fi, deep learning.

I. INTRODUCTION
Human activity recognition has many applications in several
domains [1], such as human-computer interaction, security
and surveillance, and healthcare. Traditional human activ-
ity recognition approaches employ different sensing tech-
nologies, such as cameras [2], wearable sensors [3], and
radars [4]. Despite the favorable results achieved by the tra-
ditional approaches, there are several factors that can limit
their performance. For example, camera-based approaches
can be affected by the illumination condition, the camera
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view-angle, and the level of occlusions [5], [6]. Besides,
camera-based approaches are considered privacy invasion
systems [7]. The approaches that rely on wearable sensors,
such as gyroscopes and accelerometers, require the individ-
uals to wear sensing devices all the time to monitor their
motions, which might be obstructive and impractical for the
users [5], [8], [9]. Radar-based approaches utilize special
devices to acquire the signals, such as universal software
radio peripheral [10], [11], that have a limited range of cov-
erage.

Recently, researchers have shown that human activities
can affect the characteristics of the pervasive Wi-Fi sig-
nals in indoor environments [12]–[15]. Therefore, human
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activities can be recognized by analyzing the variations in
the Wi-Fi signals surrounding the users. In fact, the use of
Wi-Fi signals can alleviate the limitations associated with
traditional sensing technologies [1], [16]. This is due to the
following attractive properties of the Wi-Fi signals. First,
Wi-Fi signals have a better range of coverage compared with
traditional sensing technologies, such as cameras, wearable
sensors, and radars. Second,Wi-Fi signals have a noninvasive
nature that preserves the privacy of the users. Third, human
activity recognition approaches that rely on Wi-Fi signals are
device-free approaches that do not require the users to wear
any sensing devices.

Literature reveals that the channel state information (CSI),
which is a fine-grained metric that captures the variations
in the amplitude and phase information associated with dif-
ferent subcarrier frequencies of a Wi-Fi channel, has been
widely used to develop human activity recognition sys-
tems [5], [16], [17]. The majority of the existing CSI-based
human activity recognition approaches rely on extracting
handcrafted features from the CSI signals using various sig-
nal processing techniques [18]. These handcrafted features
are processed using a classifier, such as hidden Markov
model (HMM) and support vector machine (SVM), to iden-
tify the human activity associated with the CSI signals.
Notwithstanding the favorable results achieved using the
handcrafted features, the task of manually designing new
features that describe the information encapsulated in the
time, frequency, and spatial domains of the CSI signals is
considered challenging [7], [16], [19].

To avoid the process of manually designing features,
researchers have utilized deep learning (DL) methods, such
as the convolutional neural networks (CNNs), to learn deep
features from the input signals. In fact, DL methods have
been successfully employed in several fields, such as signal
and image classification [20] and computer vision [21], [22].
Motivated by the great success of DL methods in differ-
ent fields, researchers have recently started to explore the
feasibility of utilizing DL methods to develop CSI-based
human activity recognition approaches [7], [16], [17], [19],
[23]–[25]. The results obtained by these approaches indi-
cate that the use of DL methods has significantly improved
the recognition accuracy compared to other human activity
recognition approaches that utilize manually designed fea-
tures [7], [16], [19].

In spite of the remarkable results achieved by the
existing CSI-based human activity recognition approaches,
these approaches were mainly focused on recognizing
single-human activities that are performed by one individual.
This can limit the potentials of using these approaches in
real-world scenarios that involve more than one human [7],
[16], [17]. In this regard, previous studies have indicated
that the problem of recognizing human-to-human interac-
tions (HHIs), which involve two interacting humans (e.g.,
handshaking and hugging interactions), is considered more
challenging than the problem of recognizing single-human
activities (e.g., walking and falling activities) [26], [27].

This stems from the following factors. First, HHIs involve
causal relationships and interdependencies among the mov-
ing body-parts of the two interacting humans. Second, HHIs
comprise large inter- and intra-personal variations in the
performed interactions. Third, different HHIs may involve
similar movements that are performed by the two interacting
humans.

In light of this, the current study proposes an end-to-end
deep learning framework (E2EDLF) for recognizing HHIs
using CSI signals. The proposed framework comprises three
phases, which are the input, feature extraction, and recogni-
tion phases. The input phase converts the raw CSI signals
into a set of two-dimensional (2D) gray-scale CSI images
that comprise the time, frequency, and spatial information
encapsulated in the raw CSI data. The feature extraction
and recognition phases are implemented using a novel CNN
architecture that comprises three blocks of layers. Particu-
larly, in the feature extraction phase, the first two blocks
of layers within our proposed CNN architecture are utilized
to automatically extract data-driven features from the CSI
images. Specifically, the first block of layers extracts joint
time-frequency features from the CSI signals associated with
each transmit-receive pair of antennas, while the second block
of layers extracts spatial features from the different pairs of
transmit-receive antennas. In the recognition phase, the joint
time, frequency, and spatial features, which are extracted at
the feature extraction phase, are fed to the third block of
layers within our proposed CNN architecture to recognize the
performed HHI within each CSI image.

The performance of our proposed E2EDLF is assessed
using a publicly available CSI dataset [28] that was intro-
duced by our research group. This dataset contains the
raw CSI signals recorded for 40 different pairs of sub-
jects while performing 13 HHIs. Moreover, we compare the
results obtained by our proposed E2EDLF with the results
obtained using three state-of-the-art pre-trained CNNs.
Besides, we compare the results achieved by our proposed
E2EDLF with the results achieved by traditional handcrafted
features that are extracted from the CSI signals and classi-
fied using four different conventional classifiers, including
a multi-class support vector machine (mcSVM) classifier,
k-NN classifier, naive Bayes classifier, and decision tree clas-
sifier. In fact, the results indicate that the performance of our
proposed E2EDLF outperforms the performances achieved
using the pre-trained CNNs and the traditional handcrafted
features, respectively. Moreover, the results provided in our
study demonstrate the feasibility of recognizing HHIs by
analyzing the CSI signals using DL technology.

The main contributions of the current study can be summa-
rized as follows:
• For the first time, this study investigates the possibility
of recognizing HHIs by analyzing CSI signals.

• We propose a novel E2EDLF for recognizing HHIs that
can extract features from the time, frequency, and spatial
domains of the CSI signals. To the best of our knowl-
edge, this is the first study that explores the feasibility
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of utilizing CNNs to learn features from the time, fre-
quency, and spatial domains of the CSI signals with the
goal of distinguishing between HHIs.

• Extensive experiments are performed using our publicly
available CSI dataset to demonstrate the capability of the
proposed framework for recognizing HHIs.

The remainder of this paper is structured as follows.
Section II provides a review about the previous studies that
were conducted in the field of CSI-based human activity
recognition. Section III provides a background knowledge
about the CSI of a Wi-Fi system. Section IV presents our
proposed E2EDLF for recognizingHHIs. SectionV describes
the publicly available CSI dataset employed in the current
study, presents the experimental results, and discusses the
performance of the proposed framework. Finally, the conclu-
sion is provided in Section VI.

II. RELATED WORK
Over the past few years, researchers have proposed numer-
ous CSI-based approaches for recognizing human activities.
These approaches can be generally grouped into two cate-
gories, namely fine-grained and coarse-grained human activ-
ity recognition approaches.

A. FINE-GRAINED ACTIVITY RECOGNITION APPROACHES
The approaches within this category focus on recognizing
primitive movements of human body-parts that are in the
range of millimeters [7], [18], [29], such as keystroke recog-
nition, vital sign monitoring, and gesture recognition.

In this regard, researchers have recently explored the pos-
sibility of recognizing keystrokes using CSI signals. For
example, Ali et al. [30] proposed a CSI-based keystroke
recognition system called WiKey. Particularly, WiKey can
distinguish between the CSI variants that correspond to dif-
ferent hands and fingers movements of a user while pressing
various buttons on the keyboard. Li et al. [31] introduced a
CSI-based approach that can infer keystrokes on a mobile
device.

Another group of researchers has utilized the CSI signals
to track human’s vital signs. For instance, Liu et al. [32]
proposed a CSI-based system for sleep monitoring called
Wi-Sleep. The Wi-Sleep system analyzes the CSI values to
extract sleep-related information, such as the respiration of
the user and sleeping postures. Liu et al. [33] developed a sys-
tem that can track human vital signs, such as heart rates and
breathing, using CSI signals. Niu et al. [29] utilized the CSI
signals to detect the human respiration rate. Zhao et al. [34]
employed the CSI signals to detect the heartbeats of indi-
viduals. The detected heartbeats are used to infer the user’s
emotional state.

Others studies were focused on recognizing hand and
finger gestures using CSI signals. In this vein, Abdel-
nasser et al. [35] proposed WiGest, which employs the CSI
signals to recognize hand gestures. Li et al. [36] introduced
WiFinger, which is a CSI-based system that can recognize
finger gestures. Pu et al. [10] presentedWiSee, which utilizes
the CSI signals to recognize hand gestures.

B. COARSE-GRAINED ACTIVITY RECOGNITION
APPROACHES
The approaches within this category focus on recogniz-
ing single-human activities that involve movements of dif-
ferent body-parts, such as walking, running, and falling.
Coarse-grained human activity recognition approaches can be
generally organized into two groups as per the employed clas-
sification schemes [18]: conventional approaches and deep
leaning-based approaches.

Conventional approaches rely on manually designing and
extracting features from the time and frequency domains
of the CSI signals. Then, the manually extracted features
are used to construct standard classification models, such
as the SVM classifier, to recognize human activities. For
instance, Wang et al. [1] developed CARM, which is a
CSI-based system that can recognize nine daily human activ-
ities. The proposed system comprises two models, namely
the CSI-speed model and the CSI-activity model, that are
used to quantify the correlation between the CSI dynamics
and a particular human activity. Palpana et al. [37] pro-
posed a CSI-based fall detection system called FallDeFi.
The FallDeFi system utilizes the short-time Fourier trans-
form to extract time-frequency features from the CSI mea-
surements. The extracted features were used to construct
a SVM classifier that can recognize the following four
types of falls: loss of balance, tripping, loss of conscious-
ness, and slipping. Wang et al. [38] designed a CSI-based
location-oriented activity recognition system called E-eyes.
Particularly, the E-eyes system utilizes a moving variance
thresholding method to distinguish between walking activity
and nine in-place daily human activities. Then, human activi-
ties are recognized using a matching algorithm that computes
the similarity between the CSI measurements and a set of
pre-constructed activity profiles. Xiao et al. [39] proposed
SEARE, which is a CSI-based system that can recognize
exercise activities. Specifically, the SEARE system extracts
features from the time and frequency domains of the CSI
measurements, and then utilizes the dynamic time warping
technique to quantify the distance between feature vectors to
recognize the performed exercise.

In contrast to the conventional approaches, DL-based
approaches can automatically extract latent features from the
CSImeasurements, which canminimize the necessity toman-
ually design the features. Recently, researchers have started
to explore the possibility of utilizing DL methods to develop
CSI-based human activity recognition approaches [18]. In
this vein, Yousefi et al. [16] proposed a CSI-based DL
approach that utilizes a long short-term memory (LSTM)
network to recognize six daily human activities. Feng et al [7]
presented a DL approach for human activity recognition that
is based on LSTM networks. The approach can automatically
extract time and frequency features from the raw CSI signals
to recognize three types of human activities. Sheng et al. [19]
presented a DL approach for activity recognition that can
automatically learn temporal-spatial features from the CSI
data. The approach integrates the spatial features extracted
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using a CNN into the temporal model which is realized
using a bidirectional LSTM network. In another study, Gao
et al [25] converted the CSI measurements associated with
multiple channels into radio images and employed a sparse
auto-encoder to extract deep optimized features from the
radio images and recognize human activities.

The aforementioned studies indicate that the use of DL
methods have obtained remarkable performance improve-
ments compared with conventional classification methods
that utilize manually designed features [16], [19]. Nonethe-
less, the use of DL methods to analyze the CSI signals and
recognize human activities is still at its early stages with most
of the existing approaches focus on recognizing single-human
activities. Having that said, our work contributes to the con-
tinuing studies in the area of CSI-based human activity recog-
nition by presenting a novel DL framework that can auto-
matically extract effective features from the time, frequency,
and spatial domains of the CSI signals and recognize thirteen
HHIs with high accuracy.

III. BACKGROUND OF CHANNEL STATE INFORMATION
Commercial off-the-shelf Wi-Fi devices that run accord-
ing to the IEEE 802.11n standard utilize the multiple-input
multiple-output (MIMO) technology with the orthogo-
nal frequency-division multiplexing (OFDM) scheme to
send and receive different Wi-Fi signals over multiple
transmit-receive antenna pairs [18]. Specifically, the OFDM
scheme divides the bandwidth of a MIMO channel into a
set of orthogonal subcarrier frequencies that are transmit-
ted in parallel [12]. The propagation of wireless signals
between a transmit-receive antenna pair is characterized by
the CSI metric [16], which represents the channel frequency
response (CFR) measured for a transmit-receive antenna pair
and a particular OFDM subcarrier frequency [5]. In particu-
lar, a Wi-Fi system that utilizes the MIMO-OFDM scheme
can be modeled as follows [12], [16]:

Bs(i) = Hs(i)As(i)+ N , (1)

where s ∈ [1, · · · ,NS ] represents the index of the OFDM
subcarrier frequency, NS is the number of the OFDM sub-
carrier frequencies, i represents the index of the transmitted
and received packets, As(i) and Bs(i) are the ith transmitted
and received packets associated with the OFDM subcarrier
frequency s, respectively, NT and NR represent the num-
ber of transmitting and receiving antennas, respectively, N
represents noise, and Hs(i) is a complex-valued matrix of
dimensions NT × NR that comprises the CSI measurements
of the MIMO channel for the OFDM subcarrier frequency s.
The structure of the CSI matrix Hs(i) is shown below:

Hs(i) =


h(T1,R1)(s,i) · · · h

(T1,RNR )
(s,i)

... h
(Tx ,Ry)
(s,i)

...

h
(TNT ,R1)
(s,i) · · · h

(TNT ,RNR )
(s,i)

 , (2)

where h
(Tx ,Ry)
(s,i) represents the CFR value measured for the

OFDM subcarrier frequency s at the ith packet between the x th

transmitting antenna, denoted as Tx where x ∈ [1, · · · ,NT ],
and the yth receiving antenna, denoted as Ry where y ∈
[1, · · · ,NR]. In this work, the employed CSI dataset was
acquired using the Linux 802.11n CSI tool [40] which allows
the recording of NS = 30 OFMD subcarrier frequencies for
each transmit-receive antenna pair. Moreover, the number of
transmitting and receiving antennas of the equipment used to
collect our dataset are NT = 2 and NR = 3, respectively.

IV. OUR PROPOSED E2EDLF FOR RECOGNIZING HHIs
This section presents our proposed CSI-based E2EDLF for
recognizing HHIs. The proposed E2EDLF comprises three
phases, namely the input, feature extraction, and recognition
phases. In the input phase, the raw CSI data are converted into
a set of 2D gray-scale CSI images. Section IV-A provides
detailed description of the conversion procedure employed
in the input phase. The feature extraction and recognition
phases are implemented using a novel CNN architecture that
comprises three blocks of layers. Particularly, in the feature
extraction phase, the first two blocks of layers within our pro-
posed CNN architecture are utilized to automatically analyze
and extract salient features from the CSI images obtained in
the input phase. Section IV-B provides detailed description
of the feature extraction phase of the proposed E2EDLF. In
the recognition phase, the features extracted at the feature
extraction phase are fed to the third block of layers within
our proposed CNN architecture to recognize the class of the
HHI associated with each CSI image. Section IV-C provides
detailed description of the recognition phase of the proposed
E2EDLF. The structure of our proposed CSI-based E2EDLF
for recognizing HHIs is shown in Fig. 1(B).

A. THE INPUT PHASE
The raw CSI data can be viewed as a four-dimensional
(4D) tensor that characterizes the variations of the CFR
values measured for a Wi-Fi system over the time domain
(i.e., packet index), frequency domain (i.e., OFDM sub-
carrier frequencies), and the spatial domain (i.e., pairs of
transmit-receive antennas). Figure 2(A) shows the structure
of the recorded raw CSI signals included in the publicly avail-
able dataset included in this study [28]. The amplitude and
phase information comprised within the raw CSI signals are
affected by several factors, including the multi-path effects
and the existence of moving objects and humans in the signal
propagation path [18]. In this regard, literature reveals that
the amplitude information of the CSI signals has been widely
used to recognize human activities [16]. This is due to the
fact that the changes in the amplitude of the CSI signals are
relatively more stable than the deteriorations in the phase
information [16], [41]. Therefore, in this study, we employ
the amplitude of the CSI values to design an E2EDLF for
HHIs recognition.
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FIGURE 1. The structure of the proposed E2EDLF: (A) the layout of the room used to record the raw CSI signals included in the CSI dataset [28], and
(B) the three phases comprised within our proposed E2EDLF along with the three blocks of layers that are comprised within the CNN used to implement
the feature extraction and recognition phases.

The objective of the input phase is to convert the original
4D raw CSI signals into a set of 2D CSI images that preserve
the time, frequency, and spatial information comprised within
the original raw CSI signals. To construct the CSI images,
we compute the amplitude (i.e., the magnitude) of the raw
CSI signals acquired in each recorded trial included in the
CSI dataset [28]. Each trial in the dataset comprises the CSI
signals recorded for a pair of subjects while performing a
particular HHI. Furthermore, the computed amplitude of the
CSI signals included in each trial are arranged into a 2D
matrix of dimensions M × I , where M = NP × NS , NP =
NT × NR represents the number of transmit-receive antenna
pairs in the Wi-Fi system, and I represents the number of
packets recorded in a particular trial.

A sliding window is utilized to divide the CSI signals
comprised within the computed 2D matrix of each trial into
a set of overlapped segments. The size of each segment is
set to W = 256 packets and the overlap between each two
consecutive segments is set to W/2. Particularly, the CSI
signals associated with the OFDM subcarrier frequencies of
each transmit-receive antenna pair (Tx ,Ry) are divided into
overlapped segments. We refer to each segment as CSI

(Tx ,Ry)
(s,ω) ,

where s ∈ [1,NS ] represents the index of the OFDM sub-
carrier frequency and ω represents the index of the packet
located at the center of the current position of the utilized
sliding window. The size of the CSI segment CSI

(Tx ,Ry)
(s,ω) is

NS × W . Then, the CSI segments obtained at each window
position are normalized to be in the range of [0, 255] and
converted into 2D gray-scale sub-images. We denote each of
the 2D gray-scale sub-images obtained at a particular position
of the utilized sliding window as C̃SI

(Tx ,Ry)
(s,ω) . Finally, at each

position of the utilized sliding window, we vertically combine
the sub-images C̃SI

(Tx ,Ry)
(s,ω) constructed for all x ∈ [1,NT ]

and y ∈ [1,NR] to construct a new image, denoted as CSIω,
with dimensionsM×W . Figure 2 illustrates the construction
procedure of the imageCSIω using the raw CSI signals of one
trial in the CSI dataset that was recorded for a pair of subjects
while performing the handshaking interaction.

B. THE FEATURE EXTRACTION PHASE
The 2D CSI images generated in the input phase characterize
the variations in the amplitude of the CSI signals that are com-
prised within each window position in the time, frequency,
and spatial domains. This implies the necessity to analyze
the changes in the CSI signals in the time and frequency
domains for each transmit-receive antenna pair as well as
across different pairs of transmit-receive antennas. Therefore,
the objective of the feature extraction phase is to automati-
cally learn latent features from each CSIω that can be used to
recognize different HHIs.

In this work, the feature extraction phase is implemented
using the first two blocks of layers within our proposed
CNN architecture as depicted in Fig. 1(B). The first block,
denoted by block 1, consists of three layers: convolutional
layer (L1,1), batch normalization layer (L1,2), and rectified
linear unit layer (L1,3). The objective of the first block of
layers is to extract time-frequency features from the CSI
images associated with each transmit-receive antenna pair.
The second block, denoted by block 2, consists of three
layers: convolutional layer (L2,1), batch normalization layer
(L2,2), and rectified linear unit layer (L2,3). The objective of
the second block of layers is to extract spatial features from
all pairs of transmit-receive antennas.

In block 1, L1,1 is a 2D convolutional layer with neurons
that are connected to subregions of the input imageCSIω. This
layer learns the features localized within these subregions
while scanning the input image along the horizontal and
vertical dimensions using a set of 2D filters. We refer to the
number of 2D filters in L1,1 as N

L1,1
F . The height and width

of each of the 2D filters in L1,1 are denoted by D
L1,1
1 and

D
L1,1
2 , respectively. The 2D filters in L1,1 are shifted along

the horizontal and vertical directions to scan the input image
CSIω. The shift amount performed along the horizontal and
vertical directions is determined based on the value of the
stride parameter associated with L1,1, denoted as SL1,1 =
[S
L1,1
1 , S

L1,1
2 ], where S

L1,1
1 and S

L1,1
2 represent the value of the

shift along the horizontal and vertical directions, respectively.
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FIGURE 2. Graphical illustration of the procedure used to construct the 2D CSI images. (A) The structure of the recorded raw CSI signals included in the
CSI dataset [28], where I represents the number of CSI packets recorded during each trial of a particular HHI. (B) A mesh plot that shows the amplitudes
computed for the raw CSI signals presented in Fig.2(A). The red rectangular represents the employed sliding window at position ω. (C) The 2D CSI image
constructed for the CSI values comprised within the sliding window at position ω, namely CSIω .

The height of the 2D filters and the stride parameter along
the vertical direction in L1,1 are selected to be D

L1,1
1 = NS

and S
L1,1
2 = NS . Furthermore, the width of the 2D filters,

the stride parameter along the horizontal direction, and the
number of 2D filters in L1,1 are selected experimentally to
be D

L1,1
2 = 32, S

L1,1
1 = 16, and N

L1,1
F = 160, respectively.
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FIGURE 3. The time-frequency convolution applied at the layer L1,1 to the input CSI image CSIω . The number of sub-images comprised within the input
CSI image CSIω is equal to NP , where each sub-image corresponds to a transmit-receive antenna pair. The red and yellow rectangles represent the current
and next positions of a particular 2D filter, respectively.

As described earlier, the input CSI image CSIω consists of
NP sub-images, where each sub-image is associated with a
particular transmit-receive antenna pair and has a size of
NS × W . In light of this, the aforementioned parameter
selection scheme enables the analysis of each of the NP
sub-images comprised within the input image CSIω along
the horizontal axis, which corresponds to the packet index
(i.e., time domain), and the vertical axis, which represents
the indices of the OFDM subcarrier frequencies associated
with a particular transmit-receive antenna pair (i.e., frequency
domain). Therefore, L1,1 can be viewed as a time-frequency
convolutional layer that analyzes the CSI sub-images asso-
ciated with each transmit-receive antenna pair in the input
CSI image CSIω and produces a set of time-frequency feature
maps (FMs). The number of time-frequency FMs obtained at
the output of layer L1,1 is equal to the number of 2D filters
employed in this layer. In addition, the height and width of
each time-frequency FM are FM

L1,1
1 = NP and FM

L1,1
2 =

15, respectively. Figure 3 demonstrates the time-frequency
convolution applied in the layer L1,1 to the input CSI
image CSIω.

The time-frequency FMs generated at the output of layer
L1,1 are propagated to the next layer in block 1, which is
layer L1,2. Layer L1,2 normalizes the FMs to simplify the
training of the CNN and reduces the potential occurrence
of overfitting [42]. The performed normalization at the layer
L1,2 does not affect the number and size of the FMs obtained
at the output of layer L1,1. Therefore, the height and width of
each FM generated at the output of layer L1,2 are FM

L1,2
1 =

NP and FM
L1,2
2 = 15, respectively. The FMs produced at the

output of layer L1,2 are propagated to the last layer in block 1,
which is layer L1,3. Layer L1,3 performs a threshold operation
to each value in the FMs obtained from layer L1,2, where any
value less than zero is set to zero [42]. Similar to layer L1,2,
the performed threshold operation at layer L1,3 does not affect

the number and size of the FMs obtained at the output of layer
L1,2. Therefore, the height and width of each FM generated at
the output of layer L1,3 are FM

L1,3
1 = NP and FM

L1,3
2 = 15,

respectively.
Figure 4 shows the structure of the FMs produced at the

output of layer L1,3. Particularly, the number of rows in each
FM is equal to NP. We refer to each row in each FM as
sub − mapp, where p ∈ [1,NP]. Each sub-map contains the
features extracted from a particular sub-image in the input
CSI image CSIω. Specifically, the sub-maps within each FM
are arranged from top to bottom according to the following
order: the top sub-map, denoted as sub− map1, contains the
time-frequency features extracted from the CSI signals asso-
ciated with the transmit-receive antenna pair T1 − R1, while
the bottom sub-map, denoted as sub − mapNP , contains the
time-frequency features extracted from the CSI signals asso-
ciated with the transmit-receive antenna pair TNT −RNR . This
implies that the FMs generated at the output of the first block
of layers characterize the time-frequency variations of the
CSI signals associated with each individual transmit-receive
antenna pair without taking into consideration the variations
in the CSI signals across different pairs of transmit-receive
antennas.

To analyze the variations of the CSI signals across different
pairs of transmit-receive antennas, we passed on the FMs gen-
erated at the output of layer L1,3 to the first layer in block 2,
namely L2,1. In particular, layer L2,1 is a 2D convolutional
layer with neurons that are connected to subregions of the
FMs generated at the output of layer L1,3. This layer learns
the features localized within these subregions while scanning
the FMs along the horizontal and vertical dimensions using
a set of 2D filters. We refer to the number of 2D filters in
L2,1 as N

L2,1
F . The height and width of every 2D filter in

L2,1 are denoted by D
L2,1
1 and D

L2,1
2 , respectively. The 2D

filters in L2,1 are shifted along the horizontal and vertical
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FIGURE 4. Graphical illustration of the structure of the FMs generated at the output of the layer L1,3.

directions to scan the FMs. The shift amount performed along
the horizontal and vertical directions is determined based on
the value of the stride parameter associated with L2,1, denoted
as SL2,1 = [S

L2,1
1 , S

L2,1
2 ], where S

L2,1
1 and S

L2,1
2 represent the

values of the shifts along the horizontal and vertical direc-
tions, respectively.

The height of the 2D filters and the stride parameter along
the vertical direction in L2,1 are selected to beD

L2,1
1 = NP and

S
L2,1
2 = 0. Furthermore, the width of the 2D filters, the stride
parameter along the horizontal direction, and the number
of 2D filters in L2,1 are selected experimentally as follows:
D
L2,1
2 = 32, S

L2,1
1 = 2, and N

L2,1
F = 160. As described earlier,

each of the FMs obtained at the output of layer L3,1 consists
of NP sub-maps, each of which is associated with a particular
transmit-receive antenna pair. Hence, the selected values of
the parameters associated with layer L2,1 enable the analysis
of all sub-maps comprised within each FM, which are asso-
ciated with different pairs of transmit-receive antennas, over
time. Thus, layer L2,1 can be viewed as a spatial convolutional
layer that analyzes all the sub-maps associated with all the
pairs of transmit-receive antennas in the FMs obtained at the
output of the layer L1,3 to generate a new set of FMs. The
number of FMs obtained at the output of layer L2,1 is equal
to the number of 2D filters employed in this layer. In addition,
the height and width of each FM generated at the output of
layer L2,1 are FM

L2,1
1 = 1 and FM

L2,1
2 = 6, respectively.

Figure 5 demonstrates the spatial convolution applied in layer
L2,1 to each of the time-frequency FMs obtained at the output
of layer L1,3.

The FMs generated at the output of layer L2,1 are passed
on to the next layer in block 2, namely layer L2,2. Layer
L2,2 normalizes the FMs and propagates its values to the next
layer, namely layer L2,3. In layer L2,3, a threshold operation
is applied to the values of the normalized FMs, which are
obtained at the output of layer L2,2, by setting the negative
values to zero. The performed normalization and threshold

operation in layers L2,2 and L2,3, respectively, do not affect
the number and size of the FMs generated at the output of
layer L2,1. Hence, the size of the FMs generated at the output
of layer L2,3 is 1×6. The FMs generated at the output of layer
L2,3 represent the features extracted from the input CSI image
CSIω. These FMs are propagated to the recognition phase to
recognize the class of the HHI associated with the input CSI
image CSIω.

C. THE RECOGNITION PHASE
In this phase, the FMs learned at the feature extraction phase
are further analyzed to recognize the class of the HHI asso-
ciated with the input CSI image CSIω, where the number of
HHI classes considered in the current study is thirteen classes,
as described in SectionV-A. The recognition phase is imple-
mented using the third block of layers within our proposed
CNN architecture, denoted as block 3, which comprises four
layers, namely the flatten layer (L3,1), fully connected layer
(L3,2), softmax layer (L3,3), and classification layer (L3,4).
Figure 6 illustrates the structure of the recognition phase.
In layer L3,1, the FMs obtained at the output of layer L2,3

are rearranged into a column vector of dimensions D
L3,1
1 × 1,

where D
L3,1
1 = FM

L2,1
1 × FM

L2,1
2 ×N

L2,1
F . The column vector

obtained at the output of layer L3,1 is propagated to the
next layer of the recognition phase, namely layer L3,2. Layer
L3,2 consists of neurons that are connected to all features in
the column vector at the output of layer L3,1. The number
of neurons in layer L3,2 is selected to be the same as the
number of HHI classes, which is equal to 13. Moreover,
layer L3,2 has a set of parameters, namely a weight matrix
and a bias vector, that are learned during the training of the
CNN. After that, the outputs of layer L3,2 are passed on to
the next layer of the recognition phase, namely layer L3,3.
Layer L3,3 normalizes the outputs of layer L3,2, such that
all the values obtained at the output of layer L3,3 are greater
than zero and their sum is equal to one. Each of the thirteen
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FIGURE 5. The spatial convolution applied at layer L2,1 to the FMs obtained at the output of layer L1,3. The red and yellow rectangles represent the
current and next positions of a particular 2D filter, respectively.

FIGURE 6. Graphical illustration of the structure of the recognition phase.

normalized values obtained at the output of layer L3,3 repre-
sents the classification probability that the input CSI image
CSIω belongs to one of the thirteen HHI classes. Finally,
the normalized values obtained at the output of layer L3,3 are
passed on to the last layer in the recognition phase, namely
layer L3,4. Layer L3,4 assigns the input CSI image CSIω to
the HHI class that has the highest classification probability.
Table 1 summarizes the details of the layers comprised within

the proposed CNN architecture that is used to implement
the feature extraction and recognition phase in our proposed
E2EDLF.

V. EXPERIMENTAL RESULTS AND DISCUSSION
In this section, we present the publicly available CSI dataset
of HHIs that was previously published by our research
group [28] and used in this work to assess the performance
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TABLE 1. Summary of the details of the layers comprised within the proposed CNN architecture that is used to implement the feature extraction and
recognition phases of our proposed E2EDLF.

of our proposed E2EDLF. Furthermore, we describe the
procedure used to train and test our proposed E2EDLF.
After that, we describe and discuss the results achieved by
our proposed E2EDLF based on the CSI dataset. Moreover,
we present and discuss the runtime of our proposed E2EDLF.
Finally, we compare the results achieved by our proposed
E2EDLF with the results achieved using different pre-trained
CNNs and the results achieved using traditional handcrafted
features that are extracted from the CSI signals and classified
using a mcSVM classifier.

A. THE CSI DATASET OF HHI
A publicly available CSI dataset of HHIs [28] is used to
validate the performance of our proposed E2EDLF. The
dataset contains the CSI packets that were recorded for forty
distinct pairs of subjects while performing different HHIs
inside an office with dimensions 5.3 m× 5.3 m, as illustrated
in Fig. 1(A). Each pair of subjects performed ten different
trials of the following HHIs: approaching, departing, hand-
shaking, high five, hugging, kicking with the left leg, kicking
with the right leg, pointing with the left hand, pointing with
the right hand, punching with the left hand, punching with
the right hand, and pushing. In addition, each of the recorded
trials comprises two interludes, namely the steady state and
the interaction interludes. Specifically, throughout the steady
state interlude, the pair of subjects were confronting each
other without doing any action. During the interaction inter-
val, the pair of subjects perform one of the aforementioned
HHIs. Therefore, the total number of HHI classes incorpo-
rated in the CSI dataset is equal to thirteen classes, which
include the steady state interaction as well as the twelve HHIs
described above.

The publicly available Linux 802.11n CSI tool [40] was
utilized to record the Wi-Fi signals transmitted from a
commercial off-the-shelf access point (AP), namely the
Sagemcom 2704, to a desktop computer that is equipped
with an Intel 5300 network interface card (NIC). The con-
structed MIMO system comprises six different pairs of
transmit-receive antennas (i.e., NP = 6). Thus, for our
MIMO-OFDM system, the number of CSI values contained
within each packet is equal to 180 values. Detailed description
of the CSI dataset is provided in [28].

B. TRAINING AND TESTING OUR PROPOSED E2EDLF
To train and test the proposed E2EDLF, we have employed
a 10-fold cross-validation (CV) procedure. Particularly, for
all pairs of subjects, we apply the procedure described in
subsection IV-A to transform the CSI signals recorded during
each trial in the CSI dataset into a set of labeled CSI images,
where the label of each CSI image can be one of the thirteen
HHI classes described in subsection V-A.
The labeled CSI images obtained from all pairs of subjects,

all trials, and all HHI classes are divided into ten different
folds. Particularly, nine folds of the CSI images associated
with the thirteenHHI classes are randomly chosen and used to
train the feature extraction and recognition phases of our pro-
posed framework, while the remaining fold of the CSI images
is used for testing. The 10-fold CV procedure is repeated ten
times, and the overall recognition performance is computed
for each of the thirteen HHI classes by averaging the results
obtained from each repetition [1], [19], [24]. During each rep-
etition of the 10-fold CV procedure, the stochastic gradient
decent (SGD) algorithm was employed to learn the weights
and biases of the convolutional layers of the feature extraction
phase as well as the weights and biases of the fully connected
layer in the recognition phase by minimizing the categorical
cross-entropy loss function. The training process was run for
50 epochs and the learning rate of the SGD algorithm was
experimentally selected to be 0.001.

1) RESULTS OF OUR PROPOSED E2EDLF
The proposed E2EDLF achieved an average recognition
accuracy of 86.3% across the thirteen HHI classes. Figure 7
shows the confusion matrix of our proposed framework com-
puted over the ten repetitions of the employed 10-fold CV
procedure. The average recognition accuracies computed for
each of the thirteen HHI classes, which are shown along the
main diagonal of the confusion matrix presented in Fig. 7,
are substantially higher than the random classification rate,
which is equal to 7.7% (i.e., the reciprocal of the number of
HHI classes).

The results presented in Fig. 7 show some confusion
between the kicking with the left leg and kicking with the
right leg interactions. Similarly, one can observe a confusion
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FIGURE 7. The confusion matrix computed for our proposed E2EDLF.

between the punching with the left hand and punching with
the right hand interactions. These confusions can be attributed
to the large similarity between the two kicking interactions
and the two punching interactions. In addition, the confusion
matrix indicates the existence of some confusion between the
steady state interaction and some HHIs, such as the hand-
shaking, high five, pointing with the left hand, and pointing
with the right hand. This can be attributed to the relatively
large similarity between the steady state interaction and the
beginning and end of each of the previously mentioned HHIs.
Particularly, at the beginning and end of the aforementioned
HHIs, the pairs of subjects are standing still against each
other, which is similar to the behavior performed by the
subjects during the steady state interaction.

We also compute the F1 − Score for each of the thirteen
HHI classes. The F1−Score is a harmonic mean of the recall
and precision that attains its best value at 1 and theworst value
at 0. The F1 − Score can be used to evaluate the recognition
performance when the numbers of samples associated with
different classes are imbalanced [43]–[45]. In this regard,
Fig. 8 shows the number of CSI images extracted from the
recorded trials of each of the thirteen interactions across all
pairs of subjects in our dataset. Figure 8 illustrates that the
number of constructed CSI images varies substantially across
the thirteen interactions. This is due to the variation in the
lengths of the trials recorded for the different interactions
in our dataset. To evaluate the impact of the CSI dataset
imbalance on the recognition performance of our proposed
E2EDLF, we have computed the F1 − Score for each of the
thirteen HHI classes.

FIGURE 8. The number of CSI images extracted from the recorded trials
associated with each of the thirteen HHIs across all pairs of subjects in
our dataset.

The blue bars presented in Fig. 9 show the mean F1 −
Score values computed for each of the thirteen HHI classes
across the ten repetitions of the 10-fold CV procedure. The
F1−Score values obtained using our proposed framework for
each of the thirteen HHI classes are higher than 0.8. In fact,
the average F1−Score value computed across all interactions
is equal to 0.86.

To further analyze the recognition performance obtained
using our proposed framework, we have computed the
Cohen’s kappa score [46], [47] for each of the thirteen HHI
classes. The Cohen’s kappa score is used to measure the
agreement between the classes of the CSI images predicted
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FIGURE 9. The F1 − Score and κ − Score values obtained using our
proposed E2EDLF for each of the thirteen HHI classes.

by the proposed E2EDLF and the matching true classes of
these images after removing the agreements occurring by
chance. Particularly, the Cohen’s kappa score enables us to
compare the recognition performance obtained by our pro-
posed E2EDLF with the recognition performance obtained
by random guessing according to the number of samples of
each class. According to Landis et al. [48], the value of the
Cohen’s kappa score (κ−Score) can be interpreted as follows
to determine the strength of agreement: (κ − Score ≤ 0)
poor agreement, (0 < κ − Score ≤ 0.2) slight agreement,
(0.2 < κ − Score ≤ 0.4) fair agreement, (0.4 < κ − Score ≤
0.6) moderate agreement, (0.6 < κ − Score ≤ 0.8) substan-
tial agreement, and (0.8 < κ − Score ≤ 1) almost perfect
agreement.

The red bars in Fig. 9 show the κ−Score values computed
for each of the thirteen HHI classes over the ten repetitions
of the 10-fold CV procedure. The κ − Score values pre-
sented in Fig. 9 indicate that the strength of agreement of
the recognition accuracies computed for the kicking with
the left leg, kicking with the right leg, punching with the
left hand, and punching with the right hand interactions are
within the substantial agreement range. Furthermore, the κ−
Score values that are computed for the remaining interactions
are within the perfect agreement range. In fact, the average
κ − Score value computed across all interactions using our
proposed framework is equal to 0.85. Therefore, the strength
of agreement of the recognition accuracy computed across all
interactions is within the perfect agreement range. The results
presented in Figs. 7 and 9 illustrate the ability of our proposed
E2EDLF to accurately recognize HHIs.

2) RUNTIME OF OUR PROPOSED E2EDLF
The proposed E2EDLF was executed on a workstation with
an Intel Xeon Silver-4110 2.1GHz 16 cores CPU, 64 GB
RAM, and Nvidia Quadro P6000 GPU. The runtime of our
proposed framework is quantified in terms of the following
three different metrics: (1) The average ± standard deviation
value of the time required to train the proposed framework
computed over the ten repetitions of the employed 10-fold

CV procedure, and we refer to this metric as the training
time. (2) The average ± standard deviation value of the time
required to construct the input CSI image associated with
a particular window position at the input phase computed
across the thirteen HHI classes, and we refer to this metric as
the CSI image construction time. (3) The average± standard
deviation value of the time required to recognize the class of
an input CSI image at the recognition phase computed across
the ten repetitions of the 10-fold CV procedure, and we refer
to this metric as the CSI image recognition time.

The average± standard deviation values of the training
time, CSI image construction time, and CSI image recog-
nition time computed for our proposed framework were
934.27± 3.56 s, 0.00051± 0.000042 s, 0.00022± 0.000018
s, respectively. Despite the relatively large training time
required to train our proposed framework, the training process
is performed offline and the trained framework is used to
recognize the testing CSI images online. The average time
required to construct and recognize an input CSI image using
our trained E2EDLF is equal to 0.00073 s. We refer to the
average time required to construct and recognize an input
CSI image as the framework response time. The proportion
between the response time of our proposed E2EDLF and
the length of each window position, where the later time is
computed by dividing the number of packets in each window
position (which is equal to 256 packets) by the number of
packets received per each second (which is equal to 320
packets/s), is approximately 0.091%.

The previously described runtime analysis shows the abil-
ity of our proposed E2EDLF to recognize the class of the
input CSI image associated with a particular window position
before moving to the next window position. This indicates
the suitability of using our proposed E2EDLF for real-time
CSI-based HHI recognition.

3) COMPARISON WITH THE RESULTS OBTAINED USING
OTHER STATE-OF-THE-ART PRE-TRAINED CNNs
In this section, we compare the results obtained by our pro-
posed E2EDLF with the results obtained using three state-
of-the-art pre-trained CNNs, namely the GoogleNet [49],
ResNet-18 [50], and SqueezeNet [51]. Particularly, in this
study, we have used the implementation provided in the
MATLAB DL toolbox [52] for each of the three pre-trained
CNNs. Furthermore, we have utilized the concept of transfer-
learning [53] to tune the three pre-trained CNNs using the CSI
images extracted from the CSI dataset. A zero-padding pro-
cedure is applied to adjust the size of each input CSI image,
which is equal to 180 × 256 × 1 in our proposed E2EDLF,
to match the sizes of the input layers of the GoogleNet,
ResNet-18, and SqueezeNet, which are equal to 224×224×3,
224×224×3, and 227×227×3, respectively. Furthermore,
the number of neurons in the last fully connected layer in
each one of these three pre-trained CNNs was set to 13
(i.e., the number of HHI classes in the CSI dataset). More-
over, the initial learning rate was set to 0.001, the number
of epochs was set to 15, and the SGD with momentum
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TABLE 2. The results obtained for each of the employed three pre-trained CNNs.

algorithm was used to tune each of the three pre-trained
CNNs. To facilitate the comparison with our proposed frame-
work, we have computed the recognition performance for
each of the three pre-trained CNNs using the same training
and testing sets of CSI images that were employed to evaluate
our proposed framework, where these training and testing sets
of CSI images were obtained using the 10-fold CV procedure
described in subsection V-B.

Table 2 shows the recognition accuracy, F1 − Score, and
κ − Score values obtained for each of the thirteen HHI
classes using each each one of the three pre-trained CNNs.
In particular, the average recognition accuracies computed
across all HHI classes for the GoogleNet, ResNet-18, and
SqueezeNet are 72.1%, 77.1%, and 76.7%, respectively. The
averageF1−Score values computed across all interactions for
the GoogleNet, ResNet-18, and SqueezeNet are 0.75, 0.80,
and 0.79, respectively.Moreover, the average κ−Score values
computed across all interactions for the GoogleNet, ResNet-
18, and SqueezeNet are 0.70, 0.76, and 0.76, respectively.
This implies that the strength of agreement obtained for the
average recognition accuracies computed across all interac-
tions for each of the three pre-trained CNNs are within the
substantial agreement range. The results presented in Figs. 7
and 9 indicate that the recognition performance obtained by
our proposed framework outperforms the recognition results
obtained using each of the three pre-trained CNNs, which are
depicted in Table 2.
We also compute the runtime for each of the three

pre-trained CNNs in terms of the training time and CSI
image recognition time, as described in subsection V-B2.
Table 3 shows the runtime computed for each of the three
pre-trained CNNs. The runtime computed for our proposed
framework, which is presented in subsection V-B2, indicates
that our proposed framework required less training time and

TABLE 3. The runtime computed for each of the employed three
pre-trained CNNs.

CSI image recognition time compared with the training time
and CSI image recognition time required by each of the three
pre-trained CNNs. This can be attributed to fact that our
proposed E2EDLF comprises a relatively smaller number of
layers compared with the number of layers contained within
each of the three pre-trained CNNs. This implies that the
number of free parameters in our proposed framework is
considerably less than the free parameters in each of the three
pre-trained CNNs. As a consequence, the runtime analysis
reported in the current study suggests the feasibility of utiliz-
ing our proposed framework for developing real-time systems
that can accurately recognize HHIs.

4) COMPARISON WITH THE RESULTS ACHIEVED USING
HANDCRAFTED FEATURES AND CONVENTIONAL
CLASSIFIERS
This section presents a comparison between the results
achieved by our proposed E2EDLF and the results achieved
using traditional handcrafted features that are extracted from
the CSI signals. Specifically, the sliding window approach,
which was described in subsection IV-A, is used to divide the
CSI signals into a set of overlapped segments, where each
segment contains 256 packets and the overlap between any
two consecutive window positions is equal to 128 packets.
At each window position, we extract a set of commonly used
handcrafted features that are computed from the time- and
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TABLE 4. The results obtained using the handcrafted features and the four conventional classifiers described in subsection V-B4.

TABLE 5. Summary of the average recognition accuracies computed
across all interactions using each of the four conventional classifiers
described in subsection V-B4, each of the three pre-trained CNNs
described in subsection V-B3, and our proposed E2EDLF.

frequency-domains of the CSI signals [7], [54], including the
mean, minimum value, standard deviation, maximum value,
skewness, kurtosis, entropy, fast Fourier transform (FFT)
peak, energy, and domain frequency ratio. The extracted fea-
tures at each window position are combined to form a fea-
ture vector. The constructed feature vectors are used to train
and test four conventional classifiers, including a mcSVM
classifier with the radial basis function kernel [55], k-NN
classifier [56] with k = 5, naive Bayes classifier [56], and
decision tree classifier [56], to recognize the HHI class asso-
ciated with each feature vector. To evaluate the performance
of each one of the four conventional classifiers, we have
utilized the 10-fold CV procedure described in subsection V-
B. Table 4 shows the recognition accuracy, F1 − Score, and
κ− Score values obtained using each one of the four conven-
tional classifiers for each of the thirteen interactions. Specif-
ically, the average recognition accuracy computed across all
interactions using the mcSVM, k-NN, naive Bayes, and deci-
sion tree classifiers are 58.3%, 43.9%, 24.3%, and 30.5%,
respectively. Moreover, the average F1 − Score / κ − Score
values computed across all interactions using the mcSVM, k-
NN, naive Bayes, and decision tree classifiers are 0.63/0.57,
0.48/0.42, 0.26/0.2, and 0.31/0.26, respectively.

Table 5 shows the average recognition accuracies com-
puted across all interactions using each of the four

conventional classifiers in this subsection, each of the three
pre-trained CNNs described in subsection V-B3, and our pro-
posed E2EDLF. The results presented in Table 5 indicate that
the performance of our proposed E2EDLF outperforms sig-
nificantly the performances obtained using the handcrafted
features combined with each one of the four conventional
classifiers as well as the performances achieved using each
of the three pre-trained CNNs.

VI. CONCLUSION
In this paper, we explored the feasibility of recognizing
HHIs based on the CSI signals. Particularly, we presented a
new E2EDLF that analyzes the time, frequency, and spatial
domains of the CSI signals to recognize the class of the
performed HHI. A publicly available CSI dataset of HHI
was utilized to validate the performance of our proposed
E2EDLF. Moreover, we have compared the results of our
proposed E2EDLF with the results achieved using three
well-known pre-trained CNNs and the performance obtained
using commonly used handcrafted features that were classi-
fied using four different conventional classifiers. The exper-
imental results depicted in this study illustrate the ability of
our proposed E2EDLF to accurately recognize HHIs based on
CSI signals analysis. Furthermore, the recognition accuracies
achieved by our proposed E2EDLF are considerably higher
than the accuracies achieved using the pre-trained CNNs and
the achieved using the traditional handcrafted features.

In the future, we aim to extend our proposed E2EDLF to
recognize group activities that involvemore than two interact-
ing persons. Furthermore, we intend to explore the potential
of applying our proposed E2EDLF to recognize HHIs that are
performed in a non-line-of-sight configuration. In addition,
we plan to investigate the use of our proposed E2EDLF to
recognize different types of fine-grained single-human activ-
ities, such as hand gestures and sign language. Moreover,
we plan to investigate the possibility of developing CNN
architectures that can directly analyze the raw CSI signals
without converting it into another representation.
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