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ABSTRACT Anonymous cryptocurrency is a branch of cryptocurrency designed to protect users’ privacy.
Ring Confidential Transaction (RingCT) protocol is widely used in anonymous cryptocurrencies (e.g.
Monero) to hide transaction information. However, its expensive computing and storage costs slow down
the performance of the system. In this work, we propose a high-efficient RingCT protocol which is called
aggregation ring confidential transaction (ARCT). In our protocol, we build a compact aggregation proof for
multiple accounts of the sender, which enables our protocol to linearly shorten the signature size compared to
other protocols. In addition, in order to further protect the privacy information, we first implement hiding the
amount of the sender’s accounts. Our protocol can provide cryptocurrencies with better privacy protection
and lower resource cost. Besides, it does not require a trust setting. For a typical n=2 input transaction with
the ring size of 128, the signature size of our protocol is 93% less than it used in the original protocol. ARCT
build on the techniques of inner product optimization algorithm and cryptographic accumulators. We show
that our underlying algorithm satisfies the security under the random oracle model.

INDEX TERMS Blockchain, cryptocurrency, data privacy, ringCT.

I. INTRODUCTION
Blockchain [1] was originally used as the underlying tech-
nology of Bitcoin by Satoshi Nakamoto in 2008. Blockchain
used to stored transaction ledger. Its security depends on cryp-
tographic tools, i.e., hash function, public-key encryption,
and digital signature. A blockchain can be thought of as a
distributed ledger, which is maintained by nodes that are dis-
tributed, eachwith the same complete ledger. Blockchain uses
consensus algorithms to ensure data consistency between
nodes without relying on a trusted third party, which greatly
reduces the cost of validation and audit transactions. Since
each block in the chain is connected to the previous block
through a hash pointer, no one can tamper with the contents
of the historical block, ensuring the authenticity of the data
on the chain.

Recently, blockchain-based applications have a broad
prospect in communication, finance, medical treatment, edu-
cation, and other fields, and many blockchain-based tech-
nologies have been proposed for these applications [33], [34].
However, most applications based on blockchain tech-
nology still have privacy problems. Since the user’s

The associate editor coordinating the review of this manuscript and

approving it for publication was Sedat Akleylek .

information recorded by record nodes is public, each partici-
pant can access all the transaction data. It leads to a series of
privacy protection issues of the blockchain. Although users
can hide their identities by changing their account addresses,
since every transaction’s input are all linked to the previous
transaction’s output, it is still possible to trace the identities of
users by analyzing the records of funds transferred. A study
by Princeton University in the United States [18] shows that
in the Bitcoin system, if users use Bitcoin to conduct trans-
actions with online merchants that accept digital currency,
the merchants can easily associate users’ account address
with their cookies, to find the real identity of users. [17]
indicates that account addresses can be linked to IP addresses,
then completely de-anonymizing their owners. Therefore,
somemeans are needed to break the link relationship between
the spender and receiver of one transaction, while ensuring
that the verifier verifies the transaction’s legitimacy properly.

A. OUR CONTRIBUTIONS
In this article, we propose an efficient ring confidential
transaction protocol called ARCT. Under the requirements
of privacy protection of the spender’s address and transac-
tion amount, our new design provides further privacy pro-
tection and significantly reduces the operation and storage
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costs of the algorithm. Our work can be summarized as
follows:

1) We present an implementation of a linkable ring sig-
nature protocol. The complexity of our protocol is the
lowest of its kind. The reason is that it can hide the
signer’s multiple keys in a ‘‘ring’’, rather than one key
for one ‘‘ring’’ as in other schemes (In a ring signature
algorithm, a ‘‘ring’’ usually represents a set of keys that
includes the signer’s key). Furthermore, we use inner
product optimization based on [14] to reduce the sig-
nature size to logarithmic. Our ring signature protocol
is used as part of ARCT to hide user accounts. The
verifier cannot determine which public keys belong to
the signer. Even so, he can still verify that whether
the spender knows the secret keys corresponding to
her accounts and determine whether the sum of input
amounts is equal to it of output amounts.

2) We design the creation and validation of aggregated
key-images. The key-image is usually generated by the
user’s private information (e.g. user’s private key). It is
used to prove that the user’s amount has been spent. The
verifier cannot get the spender’s information from the
key-image. A typical way [11], [19], [25] is to verify
that each key-image in the transaction did not exist in
the key-image list. Our new design provides one short
witness generated by the spender’s key-images. Vali-
dation only needs a constant number of group element
operations to determine whether they has been used
rather than searching the entire list.

3) Our protocol implements that hide the number of
spender’s accounts. Due to we allowmultiple addresses
to be hidden in one ring, it will expose more informa-
tion to the adversary. Because the adversary needs to
get the information of other account owners in the ring
to determine the sender’s address, as the number of
hidden addresses increases, the attacker’s attack con-
dition will become easier. In our design, the number
of spender’s accounts is not exposed in both signature
or witness of key-images. It makes the security of our
protocol stronger.

B. ORGANIZATION
The remainder of this article is organized as follows.
Section II briefly introduces the related work. Section III
reviews some mathematical assumptions and definitions.
Section IV gives an overview of the systems that use our
protocols and some definitions of basic primitives. Section V
gives a complete implementation of our protocol. Section VI
compares the efficiency of our scheme with other schemes.
Finally, Section VII takes a short conclusion.

II. RELATED WORK
A. MIXING PROTOCOL
In recent years, there have been some privacy protec-
tion protocols for blockchain privacy problems. One of
them [2]–[6] is mixing protocol which mixes the tokens of

different spenders and redistributes them to the receiving
address, so as to break the association between the input
address and the output addresses. Mixing protocol can be
divided into centralized mixing and decentralized mixing.
The former requires a trusted third party to act as an online
mixer and swap different users’ inputs and outputs. The
advantage is that the third party will charge extra service
fees, so the centralized mixed coin protocol can resist the
witch attack. The disadvantage is that users need to pay extra
mixed fees and there is a risk that third parties will steal users’
tokens. The latter mixes coins between participants save the
extra mixing costs but it is susceptible to Sybil attack.

B. NIZK PROOFS
Zerocoin [7] is a cryptocurrency project for privacy
protection, which uses the method of non-interactive
zero-knowledge proofs (NIZK) to converts the general tokens
into commitments corresponding to their information. This
allows verifiers to verify the transactions without any use-
ful information, which to some extent protects the private
information of the transaction party. However, the converted
amount cannot be split again, which limits the application
of Zerocoin. The Ethereum [27] also uses NIZK technol-
ogy to protect the privacy of users’ information in smart
contracts. However, these protocols that use NIZK make the
use of smart contracts expensive. Based on [7], Zerocash [8]
use zk-SNARKs (zero-knowledge succinct non-interactive
argument of knowledge) to provide anonymity with formal
security proof. For achieving better privacy protection,
the transaction amount, and input address in [8] were kept
secret. However, it requires a complex trusted setup to
result in common reference strings (CRS) which is specific
to each application, and possesses trapdoors. For example,
In Hawk [28], different smart contracts require different CRS,
its generation requires trusted third-party or expensive multi-
party computation.

C. CONFIDENTIAL TRANSACTIONS
CryptoNote [10] uses the one-time address to hide the address
of the transaction receiver and a linkable ring signature [15]
to hide the address of the transaction sender. Based on it, Shen
Noether built ring confidential transactions (RingCT) [11]
for the currently popular anonymous cryptocurrency Mon-
ero, which is one of the largest cryptocurrencies. Upon the
enhancement of privacy, a major trade-off is the increase of
size for the transaction. As shown in Table 1, compared with
other schemes, it protects the user’s privacy to the greatest
extent.

Although ring confidential transactions provides strong
anonymity, it has the problem of excessive volume. The
size of the transaction increases linearly with the number of
ring members and the spender’s account addresses, which
greatly increases the storage overhead of the system. Aim-
ing at this problem, [19] put forward RingCT 2.0 which
is built upon the well-known Pedersen commitment, accu-
mulator with one-way domain and signature of knowledge.
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TABLE 1. Comparison of privacy technologies.

By accumulating the elements in the ring into a single piece
of evidence, it shortens the size of the transaction. To solve
the problem of low efficiency caused by the large amount
of zero-knowledge proof in [19], [32] proposes a practical
privacy protection protocol based on [21].

Confidential transactions [12] hide the transaction amount
into a commitment. Although this technique protects the
privacy of users, but it also causes some trouble in transaction
verifying. The verifier is no longer able to verify the rela-
tionship between inputs and outputs, and that all transaction
values are positive. Because the amounts in cryptocurrencies
are represented by group elements, it means that a negative
amount is equal to a huge positive amount. SNARKS [8]
can be used to solve this problem, but they require a trusted
setup. Early Monero [11] used range proof which is based
Borromean ring signature [29]. It is less efficient because it
needs to be constructed a binary ring signature for each bit of
a 32-bit amount. Based on the techniques of Bootle et al. [30],
Benedikt et al. proposed bulletproofs [14], a non-interactive
zero-knowledge proof protocol with very short proofs. With-
out a trusted setup, it optimizes the size of the proofs to a
logarithmic relationship with the bits of amounts.

D. KEY-IMAGE
In anonymous cryptocurrency, the spender has to prove that
she spent the amount without disclosing the content of the
transaction. The natural idea is to construct evidence of the
amount. Just like a serial number, the key-image is used to
uniquely represent an amount. In Monero [11], it’s repre-
sented by sk·Hp(pk) where the function Hp is a G → G
hash function. The verifier verifies that the current key-image
exists in the set of key-images that have been used. If it
passes, then put it to the set. Similar approaches are used
in [8], [19], [25]. But unlike UTXO [1], elements in the set of
key-images cannot be delete because, for users’ privacy, the
verifier cannot know its corresponding account. It causes the
validation time increases linearly with the elements in the set.

III. PRILIMINARIES
A. NOTATIONS
We give some notations we are going to use in later sections
in table 2.

B. MATHEMATICAL ASSUMPTIONS
Definition 1:(Discrete Logarithm Problem). LetG be a group
where the order of G is q. There exists no probabilistic

TABLE 2. Some notations we’re going to use.

polynomial time (PPT) algorithm that can find an integer x

such that h = gx , where g, h
R
←− Zq.

Definition 2:(Decisional Diffie-Hellman (DDH) Assump-
tion). LetG be a group where the order ofG is p. g ∈ G is the
generator of G. There exists no PPT algorithm that is given
(g, ga, gb, gc) can determine if gc = gab with non-negligible

probability, where a, b, c
R
←− Zp.

Definition 3:(Strong RSA Assumption). Let n be an RSA

modulus and x
R
←− Zn. There exists no PPT algorithm that

can find e > 1 and y ∈ Z∗n such that ey = x mod n.

C. HOMOMORPHIC COMMITMENT
A homomorphic commitment scheme consists of two
phases: commitment and validation. In the commitment step,
the spender selects a value and constructs a commitment
about it, the spender can choose to reveal the value of the
commitment in the reveal phase. After that, the verifier
can verify that it is indeed the originally committed value.
A homomorphic commitment scheme consists of a pair of
polynomial algorithms (Setup,Com).

- pp ← Setup(1λ): on input a security parameter λ,
it outputs public parameters pp for the scheme. which
specifies a message spaceMpp, a randomness spaceRpp
and a commitment space Cpp.

- C ← Com(m, r): on input a message m ∈ Mpp and a
randomness x ∈ Rpp, generates a commitment c ∈ Cpp.

From [21], a homomorphic commitment HCom =

(CKGen,Com) satisfies the following definitions:
Definition 4:(Hiding). the value of the original message

cannot be found by commitment. More precisely, for all PPT
adversaries A, it holds that:∣∣∣∣∣∣∣∣Pr

A (C) = b :

pp← CKGen
(
1λ
)
;

(m0,m1)← C;

b← {0, 1} ;
C ← Com (ctk,mb)

−1
2

∣∣∣∣∣∣∣∣ ≤ negl(λ)
where challenger C is a PPT algorithm,m0,m1 ∈ M , ifA has
exactly 1/2 chance of guessing b, then the HCom has perfect
hiding.
Definition 5:(Binding). the same commitment cannot cor-

respond to two different values. More precisely, for all PPT
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adversaries A, it holds that:

Pr


m0 6= m1;

Com (r0,m0) = Com (r1,m1)

pp← CKGen
(
1λ
)
;

(r0,m0, r1,m1)← A (ctk)

 ≤ negl(λ)
where m0,m1 ∈ M , r0, r1 are random chosen. If the proba-
bility is exactly 0, then the HCom has perfectly binding.
Definition 6:(Homomorphism). we assume that the com-

mitment space Cpp is a group of order p. For all m0,m1
R
←−

Zp; r0, r1
R
←− Zp, it holds that:

Com (r0,m0)+ Com (r1,m1) = Com (r0 + r1,m0 + m1)

D. UNIVERSAL ACCUMULATORS
A cryptographic accumulator is a primitive that produces a
short binding commitment to a set of elements. The prover
can produce short membership or non-membership proofs for
the element in the set. These proofs can be publicly verified
against the commitment.Merkle tree [31] is a simple accumu-
lator widely used formembership proofs of transactions in the
blockchain. However, it only supports membership proofs,
which limits its use in blockchain privacy transactions. The
reason is, in the verification phase of a private transaction,
the verifier often has to prove that an account is not mem-
bership of the account set that has been spent, rather than to
prove that it’s a member of the account set that has not been
spent.

An Accumulator which supports both membership and
non-membership proofs is called a universal accumulator.
It consists of a tuple of the following polynomial-time algo-
rithms:

- (pp, aux) ← Gen(1λ): on input a security parameter
λ, it returns system public parameters pp and some
auxiliary information, denoted as aux.

- (At+1, St+1)← Add(At , St , x): on input a current accu-
mulator At , an element x from the odd primes domain,
and a set S of accumulated elements, it returns a new
accumulator At+1 and a new set St+1.

- (At+1, St+1) ← Del(At , St , x): its description is the
same as above.

- ux ← MemCreate(A, S, x): on input an accumulatorA,
an element x from the odd primes domain, and a set S of
accumulated elements, it returns a witness ux = (a,B).

- ux ← NonMemCreate(A, S, x): its description is the
same as above.

- 1/0 ← VerMen(A, ux , x): on input an accumulator A,
an element x from the odd primes domain, and a witness
ux , it returns 1 if the verification passes, else returns 0.

- 1/0 ← VerNonMen(A, ux , x): its description is the
same as above.

Assume all inputs belong to the set Xλ. A universal accu-
mulator protocol satisfies the following definitions:
Definition 7:(Quasi-Commutative). For an algorithm f ∈
{Add,Del}, and for all x1, x2 ∈ Xλ, f (f (At , x1) , x2) =
f (f (At , x2) , x1).

Definition 8:(Security). A universal accumulator scheme is
secure if, for all probabilistic polynomial-time adversary Aλ,

Pr

 1← VerMen (A, u1, x) ;
1← VerNonMen (A, u2, x) :
(u1, u2)← Aλ (A, S, x) , x ∈ Xλ

 = negl(λ)

It means that it is computationally infeasible to find both
a valid membership witness and a valid non-membership
witness for any x in Xλ.

IV. SYSTEM MODEL
In this section, we introduce the system model from two
parts. We will first give an overview of a privacy-protected
transaction system by using ARCT protocol, then we give
some definitions of the algorithms in our protocol.

A. OVERVIEW OF THE SCENARIO
There are three types of participants in our system:
spenders, receivers, and verifiers. Informally, a receiver
can generate a long-time key pair. For different trans-
actions, the receiver generates different one-time public
keys to be his receiving address by using the long-time
key pair. When the spender wants to transfer money to
the receiver, she constructs a transaction by the following
steps:

- Generate a Pedersen commitment for the amounts that
she will transfer, then use the commitment and the
receiver’s one-time public key to construct the receiver’s
account.

- Use the spender’s one-time secret key to scan the UTXO
(unspent transaction outputs) to find her accounts. Select
some accounts of these so that the input amount is equal
to the output amount.

- Generate the content of the transaction which contains
the accounts of both parties.

- Ask the verifier (It also called complete node which
stores the complete data of blocks) for other users’
accounts.

- Construct the witness of the spender’s key-images.
- Construct the signature of the transaction by using the
accounts collected above.

After constructing the transaction, the spender publishes
it to the network by broadcasting. The verifier listens and
collects the transactions that are broadcast to the network.
When he receives a transaction, he performs the following
verification steps:

- Verify the witness to determine whether the spender has
spent the same account twice.

- Verify the signature with public information (the
content of the transaction) to determine whether
spender knows the secret keys corresponding to her
accounts and the input amount is equal to the output
amount.

Note that during the above validation process, the verifier
does not know the identity of the spender and the receiver,
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FIGURE 1. an overview of a privacy-protected transaction system by using
ARCT protocol.

the transfer amount, and the number of spender’s accounts,
but that did not prevent him from verifying the deal.

When a transaction is broadcast to the network, multiple
verifiers competitively process the transactions. Because the
verifiers are distributed in different places, they package
different transactions into their blocks. The consensus algo-
rithms, e.g., the Proof of Work ensures ledger consistency
between them. Specifically, if a verifier has verified a batch
of transactions, before he packages these transactions into
blocks, he has to solve a computational puzzle which is to
compute a hash value of the block header’s information that
must satisfy certain conditions (e.g., less than a certain value).
It can only be done by trying different random numbers
until the conditions are satisfied. When someone figures out
a qualified hash value, then his block becomes the newest
block of the blockchain. He will broadcast his block to other
nodes.

After receiving the block, other verifiers need to verify
the block again to ensure the block is compliant. If the
verification is successful, other verifiers will add new blocks
to their local blockchain, and those who produce the block
will be rewarded. Assuming most participants were hon-
est, by using the consensus algorithm, the verifiers could
jointly maintain a unified ledger. It’s ensuring the security
of the system. An overview of the system’s work is shown
in Figure 1.

B. DEVICES
In this system, participants are divided into light nodes and
full nodes according to the storage capacity and comput-
ing capacity of their devices. All nodes communicate via
P2P protocol. The light node is similar in function to the
client, it doesn’t have to be online all the time, and it only
holds the block heads of the blocks. The light nodes cannot

participate in the validation of the transaction and can only
create transactions and receive transactions of its own. Some
mobile devices and IoT devices can perform the function of
light nodes. The full nodes need to stay online and maintain
complete blockchain information. They maintain complete
routing information to broadcast new blocks, listen and verify
transactions. The full node is usually implemented by a server
or specialized hardware facility.

C. DEFINITIONS
We give the security models for our ARCT protocol based
on [19]. Our protocol consists of a tuple of polynomial time
algorithms (Setup,KeyGen,Mint,AccGen,Spend ,
Verify), the syntax of which are described as follows:
- pp ← Setup

(
1λ
)
: on input a security parameter λ,

it outputs the system parameters pp which are used for
the later algorithms.

- (pk, sk) ← KeyGen(): the algorithm outputs corre-
sponding private-public key pair (pk, sk). Similar to
Monero [11], it can be divided into two parts: generating
long-term key pairs and one-time key pairs. The former
is used for users to receive money transfers and the is
used by the sender to construct the transaction.
(ltpk, ltsk) ← LongTermKeyGen() : it outputs a
long-term secret key ltsk and a long-term public key
ltpk .
(pk, auxot ) ← OneTimePKGen(ltpk) : on input a
long-term public key ltpk , it outputs a one-time key pk
and an auxiliary information auxot .
sk ← OneTimeSKGen(pk, ltsk, auxot ) : on input a
one-time key pk , a long-term secret key ltsk , and an
auxiliary information auxot , it outputs one-time secret
key sk .

- (C, ck) ← Mint(pk, v): on input an amount v and
a public key pk , the algorithm outputs a commit-
ment C for pk as well as the associated commitment
key ck .

- (act, ask)← AccGen(sk, pk,C, ck, v): on input a com-
mitment C with key ck and value v, a key pair (pk, sk),
outputs an account act = (pk,C), the corresponding
secret key of which is ask = (sk, ck, v).

- (tx, sig, img)← Spend(m,Aπ ,Kπ ,A,Vout ): on input a
set Aπ of accounts with the corresponding set of account
secret keys Kπ , a setA of input accounts containing Aπ ,
a set Vout of output amounts and some transaction string
m ∈ {0, 1}∗, the algorithm outputs a transaction tx (con-
taining m,A,Aout ), a signature sig and an aggregating
key-image img.

- 1/0 ← Verify(m, tx, sig, img): on input transaction tx,
signature sig, the aggregating key-image img and some
transaction stringm, the algorithm verifies whether a set
of accounts with serial numbers S is spent properly for
the transaction tx towards addresses Aout , and outputs
0/1 when the spending is in/valid.

Definition 9:(Correctness). This property requires that the
verifier can correctly verify the legal signature generated by
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the signer. it holds that:

Pr


Verify (tx, sig, img) = 1 :
for i ∈ [1,m],

(
pk i, sk i

)
← KeyGen

(
1λ
)
,

(Ci, ck i)← Mint
(
pk1, vi

)
,

(act, ask)← AccGen
(
pk i, sk i,Ci, ck i, vi

)
;

Aπ = {act i}i∈[1,m];Kπ = {ask i}i∈[1,m];
(tx, sig, img)← Spend(m,Aπ ,Kπ ,A,Aout )

 = 1

Definition 10:(Unforgeability). This property requires that
no attacker can generate a valid transaction using only pub-
lic information. In other words, for all PPT adversaries A,
it holds that:

Pr
[
Verify (tx, sig, IMG) = 1 :
(tx, sig, img)← A(m,Aπ ,A,Aout )

]
Definition 11:(Anonymity). This property requires that no
PPT adversaries A be able to determine the index of the
sender’s account in the ring. Specifically, it holds that:

Pr[Aπ ∩ A′π 6= ∅ : A
′
π ← A (tx, sig, img) ; ] ≤ negl(λ)

where A′π is a set of act , and m, n is the number of the
elements in Aπ and A.
Definition 12:(Linkability). If two transactions contain

same spender’s accounts and they are both expended in the
corresponding transaction, we say the two transactions are
linkable. In other word, for all PPT adversaries A, it holds
that:

Pr


Aπ,1 ∩ Aπ,2 6= ∅ : fori = 1, 2,
Verify(tx i, sigi, imgi) = 1,(

tx i, sigi, IMGi
)
←

A(mi,Aπ,i,Kπ,i,Ai,Aout,i)

 ≤ negl(λ)
where {0, 1} ← 6 is a PPT algorithm.

V. OUR RINGCT PROTOCOL
In this section, we introduce the instantiation of our protocol.
We will first give the design of our aggregated key-images
protocol, then we give the design of our inner-product proof
algorithm which is used to hide the sender’s public keys.
Finally, we combine the algorithms in the first two parts to
give the complete implementation of our protocol.

A. AGGREGATED KEY-IMAGES
In this part, we propose the design of our aggregated key-
images protocol. Our protocol is based on the batching
non-membership proofs in [26]. Informally, it consists of
two phases: commitment and validation. In the commitment
phase, the prover first computes her key-images by the cor-
responding key-pairs, then she calculates the aggregation of
these key-images and generates a non-membership proof of
it. In order to reduce the cost of validation, the proof con-
tains some zero-knowledge proof protocols. In the validation
phase, the verifier first executes the verification algorithm,
if it passes, then he adds the aggregated key-images to the
used set by using the corresponding algorithm.

Formally, our protocol contains a tuple of polynomial
time algorithms: (Setup,KeyGen,Add,NonMemCreate∗,

VerNonMem∗). Note all accumulated values are odd primes.
The syntax of which are described as follows:

- G← Setup(1λ): on input a security parameter λ, it out-
puts a groupGwith a generator g and a set of odd primes
Xprime.

- x ← KeyGen() : it picks a key-image x
R
←− Xprime.

- (At+1,St+1) ← Add(At ,St ,X = {x1, . . . , xn}): on
input a current accumulator At , a set X contains n odd
prime elements and a set St of accumulated elements,
if x ∈ St ∩ x ∈ X , it returns (At ,St), else compute
x∗ =

∏n
i=1 xi,St+1 = St ∪ {x∗} ,At+1 = Ax

∗

t , return
(At+1,St+1).

- ux∗ ← NonMemCreate∗(A,S,X = {x1, . . . , xn}): on
input an accumulator A, a set X contains n odd prime
elements, and a set S of accumulated elements, it per-
forms:

1) Compute s∗ =
∏

s∈S s, x
∗
=
∏n

i=1 xi.
2) Compute a, b = Bezout(s∗, x∗).
3) Compute V = Aa,B = gb.
4) Perform a proof of knowledge protocol πV ← PoK :
{a : V = Aa}.

5) Perform a proof of exponent protocol πg ← PoE :
{x∗, b, g · V−1 : x∗b = g · V−1}.

6) Output ux = {V ,B, πV , πg}.

The instantiations of PoK and PoE are introduced in
appendix B.

- 1/0← VerNonMem∗(A, ux = {V ,B, πV }): on input an
accumulator A and a witness ux , it performs the verification
algorithms of PoK and PoE . If they are both true, return 1,
else return 0.

In this way, the verification process only needs a constant
number of group element multiplication, so it can reduce the
complexity of validation from n to 1. We will give a detailed
comparison in section VII.

B. INNER-PRODUCT PROOF
In this part, we propose a zero-knowledge proof to prove
that prover’s public keys are in a group. Our starting point
is a binary vector aL = (a1, . . . , an), where the indexes of
element ‘‘1’’ of aL are represent spender’s public keys indexes
in a public-key group. For checking that the elements of aL
contain only 1 and 0, we define aR = aL − 1n, and construct
a zero-knowledge proof for the following conditions:

aL ◦ aR = 0n (1)

aL − aR = 1n (2)

Then we pick y
R
←− Zp so that b = 0n is equals to <

b, yn >= 0 with an overwhelming probability, so we convert
previous equations to:

< aL, aR ◦ yn > = 0 (3)

< aL − 1− aR, yn > = 0 (4)
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Pick z
R
←− Zp so that we can use these above equations as a

linear combination of z. we have:

z < aL − 1− aR, yn > + < aL, aR ◦ yn >= 0 (5)

By converting the two inner products of aL and aR to one
inner product, we have:

< aL − z · 1n, (aR + z · 1n) ◦ yn >=
(
z− z2

)
< 1n, yn >

For simplicity, we set:

L = aL − z · 1n (6)

R = (aR + z · 1n) ◦ yn (7)

δ =
(
z− z2

)
< 1n, yn > (8)

Note that δ is made up of common random parameters, the
verifier can computer δ first, then accepts L and R from the
prover and verifies that < L,R >= δ. If it’s true, the verifier
believes that aL is a binary vector.
Now it can verify whether aL is a binary vector by verify an

inner product. But the above proof process exposes the value
of aL and aR, so we set two random vectors sL and sR to hide
aL and aR, as follows:

Lx =
(
aL − z · 1n

)
+ sL · x (9)

Rx =
(
aR + z · 1n + sR · x

)
◦ yn (10)

This prevents the verifier from getting information about
aL fromLx orRx. These two equations and their inner product
can be viewed as polynomials of x. The constant terms of
< Lx,Rx > is equals to δ.

Assume a groupGwith order p and generators g, h
R
←− G.

we give a set of public keys Y = (Y1, . . . ,Yn) where Yi = gxi ,
xi is the corresponding private key. A vector h which consists
of n elements that are logarithmically unknown to each other
and the random numbers α, ρ ∈ Zp. The prover computes
that:

A = hαYaLhaR (11)

S = hρY sLhsR (12)

The spender sendsA and S to the verifier. It can prove that
L and R is well-formed by verifying that:

hµYLh′R = A · Sx · Y−z·1
n
· hz·y

n
(13)

where h
′
= (h′1, . . . , h

′
n) and for i = 1, . . . , n, h′i = hy

−i+1

i .
By the above process, we get an interactive zero-knowledge

proof about hiding user’s public keys in a group. By apply-
ing the Fiat-Shamir heuristic, we can convert them into
non-interactive proofs.

The size of the above proof increases linearly with the
number of group members. Further, we use the inner-product
optimization algorithm with low communication complexity
proposed by [30]. It can prove the knowledge that the prover
knows two vectors of Pedersen commitment that satisfy an

inner product relation. More precisely, it is an efficient proof
for the following relation:{

P = gahb ∧ c =< a, b >:
h ∈ Gn,P ∈ G, c ∈ Zp; a, b ∈ Znp

}
For simply, we denote a tuple of algorithms
(CreateImpIP,VerImpIP) to represent its process. we can
use it to reduce the proof size to logn. The instantiation of it
is in appendix C.

C. ARCT PROTOCOL
In this part, we present our new RingCT protocol under the
formalized syntax mentioned in Section V. Our scheme is
designed as follows:
In the setup step, the system needs to generate some

parameters as common variables, formally, it is the following
polynomial time algorithm:
Setup

(
1λ
)
: on input a security parameter λ, it picks a

group G with prime order p and a set of odd primes Xprime,
and some generators g, h, hv ∈ G. The hash functions which
be used include H : {0, 1}∗ → Zp,HG : {0, 1}∗ →
G,Hprime : {0, 1}∗ → Xprime. Compute h = {h1, . . . , hn}
where h1 = HG(h) and hi = HG (hi−1) , i ∈ {2, n}.
The receiver needs to generate a long-term key pair. Then

he sends the long-term public key to the spender. The spender
uses it and a random value to generate a one-time public
key and some auxiliary information. When the transaction
has been recorded in the blockchain, the receiver can use the
long-term secret key and the auxiliary information to generate
the one-time secret key. The receiver has access to the account
only if he has the one-time secret key. In the process of it,
because the sender does not have the long-term secret key
of the receiver, so she can’t spend this account. For others,
they couldn’t determine whom this one-time key belongs
to. Formally, the algorithm KeyGen contains the following
polynomial-time algorithms:
LongTermKeyGen() : it picks a long term secret key ltsk =

(ltsk1, ltsk2)
R
←− Zp and computes long term public key

ltpk = (gltsk1 , gltsk2 ).
OneTimePKGen(ltpk) : on input a long term public key

ltpk = (ltsk1, ltsk2), it picks (r
R
←− Zp and computes

one-time public key pk = gltsk1 · gH (gltsk2
r
), it outputs pk and

the auxiliary information R = gr .
OneTimeSKGen(pk, ltsk, auxot ) : on input a one-time key

pk , a long term secret key ltsk = (ltsk1, ltsk2), and an
auxiliary information R, if pk = gltsk1 · gH (Rltsk2 ), it outputs
sk = ltsk1 + H (Rltsk2 ).
A user’s account contains two parts: address and the corre-

sponding amount. The address is represented by the one-time
public key. It hides the identity of the user. The amount is
represented by Pedersen Commitment [12]. In confidential
transactions, Pedersen commitment is used to represent an
amount of user. We denote C = grhv where v is used to
represent the amount and r is called the blinding factor. Since
the value range of v in the actual transfer operation is limited,
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if don’t set blinding factor r , the attacker can guess the v by
the exhaustive method. Once an attacker gets the value of
a commitment, then all commitments which hide the same
secret value will be revealed. Formally, the following two
algorithms describe the process of constructing an account.
Mint(pk, v) : on input an amount v and a public key pk , it

picks ck
R
←− Zp and computes C = gckhvv. It returns C and

ck .
AccGen(sk, pk,C, ck, v) : on input a commitment C =

gckhvv with key ck and value v, a key pair (pk, sk), it outputs
an account act = (pk,C), the corresponding secret key of
which is ask = (sk, ck, v).

The sender’s transfer behavior can be viewed as that to
collect the appropriate accounts to satisfy the transaction’s
input amount equals output amount. She needs to select ran-
dom numbers for the Pedersen commitments in the output
accounts. Then use the transaction’s one-time public key to
encrypt the random numbers and corresponding values and
put them into the content of the transaction. When she has the
required input and output accounts ready, she constructs the
aggregated key-images and corresponding zero-knowledge
proof using the public key in her accounts by using the
algorithm in Section VI.A. Then the spender constructs some
zero-knowledge proofs of the transaction which are used to
prove that:

- The spender has the right to spend the amount in the
account, that is, she knows the private keys for her
accounts.

- The input amount of a transaction is equal to the output
amount.

- The accounts the spender spends correspond to the key-
images in the aggregated key-images.

Formally, the algorithm Spend contains the following
polynomial time algorithms:
Spend(m,Aπ ,Kπ ,A,Vout ) : on input a set Aπ =

{actπ,1, . . . , actπ,m} with the corresponding set of account
secret keys Kπ , a set A = {act1, . . . , actn},Aπ ⊆ A, a set
Vout = {vout,1, . . . , vout,l} and some transaction string m ∈
{0, 1}∗, it performs the following steps:

1) If
∑m

i=1 vπ,i 6=
∑l

i=1 vout,i, it returns ⊥, else it

chooses ckout,i
R
←− Zq for each vout,i. Then it com-

putes commitment Cout,i = gckout,ihvout,iv , i ∈ (1, l)
and generates the set Aout = (actout,1, . . . , actout,l)
where actout,i = (pkout,i,Cout,i). The sender adds all
ckout,i, vout,i encrypted by pk into the transaction.

2) Generate a range proof of all vout,i, i ∈ (1, l) by using
the technique in [14].

3) Pick θ, ϕ
R
←− Xprime and compute img =

θ
∑m

i=1 Hprime(pkπ,1). Get the set S of img and the
accumulator A from local or other nodes. Execute
NonMemCreate∗.

4) Generate a binary vector aL = (a1, . . . , an) where
ai = 1 if act i in A is also a member of Aπ . Compute
aR = aL − 1n and u1 = H (m) , ui = H (ui−1) ,

i ∈ {2, n}. Pick α, ρ
R
←− Zp, sL, sR

R
←− Znp. Then

compute:

Y1 =
{
pku11 C1, . . . , pkunn Cn

}
(14)

Y2 = {Hprime(pk1), . . . ,Hprime(pkn)} (15)

A1 = hα
∑m

i=1
pkuπ,iπ,i Cπ,i (16)

A2 = hβhaR (17)

S1 = hρY sL
1 h

sR (18)

S2 = ϕY
sL
2 (19)

5) Compute the string:

str = m||Y1||Y2||A1||A2||S1||S2 (20)

y = H (str) ,w = H (y) , z = H(w) (21)

µ1 = α + wβ + xρ (22)

6) Assume there are two polynomials of a variable x,
we have:

Lx = aL − z · 1n + x · sL (23)

Rx = (w · aL + wz · 1n + sR · x) ◦ yn (24)

tx = < Lx ,Rx > (25)

Note that this step doesn’t generate the value of x.
By these polynomials, it can be confirmed that;

tx = to + t1x + t2x2 (26)

7) Pick τ1, τ2
R
←− Zp, and compute T1 = gt1hτ1 ,T2 =

gt2hτ2 , x = H(T1,T2). Then compute τx = τ1x +
τ2x2, µ2 = α + τ1, µ3 =

∑m
i=1 skπ,iuπ,i + ckπ,i −∑l

i=1 ckout,i + t1, µ4 = θϕ
x and Lx,Rx.

8) The algorithm outputs a transaction tx = (m,A,Aout),
a signature:

sig = (µ1, µ2, µ3, µ4, τx ,A1,A2, S1, S2,Lx,Rx)

(27)

and an aggregating key-image img.
- 1/0 ← Verify(tx, sig, img): on input a transaction tx,

a signature sig and the aggregating key-image img, the algo-
rithm verifies:

1) Get the accumulator A from local and perform
VerNonMem∗ to check the non-membership proof of
img.

2) Check the range proof of all vout,i, i ∈ (1, l).
3) Compute Y1,Y2 by public parameters, then compute

str = m||Y1||Y2||A1||A2||S1||S2, δ = w
(
z− z2

)
<

1n, yn > and challenges y = H (str) ,w = H (y) ,
z = H (w) , x = H (T1,T2). Define h

′
= (h′1, . . . , h

′
n)

where h′i = hy
−i+1

i . Then check that:

tx = < Lx,Rx > (28)

hτxgtx = gδ · T x1 · T
x2
2 (29)

hµ1YLx
1 h′Rx = A1 · Aw2 · S

x
1 · Y

−z·1n
1 · h′z·y

n
(30)

hµ2gµ3 = A1 · T1/
∏l

i=1
Cout,i (31)
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TABLE 3. Compare of RingCT Schemes.

µ4Y
Lx
2 = IMG · Sx2 · Y

−z·1n
1 (32)

If these equations are all true, perform add in Section 3.5 to
update the state of the accumulator and return 1, otherwise
return 0.

We give a brief explanation of the verification process
of the above equations. Equation (29) is used to verify that
Lx and Rx are honestly generated. Equation (30) is used to
verify that A1 is honestly generated. Equation (31) is used to
verify that the spender knows the secret keys corresponding
to her accounts. Because her secret keys are involved in the
creation of µ3. It also verifies that the input amount equals
to the output amount. Because there are no hv’s terms in the
equation (31), it verifies whether the hv’s term in A1 is equal
to it in Cout . Finally, the equation (32) is used to verify the
key-images correspond to the spender’s account.

By using the technique in Section 3.4, the size of Lx,Rx in
signature sig can be optimized from n to logn. For intuition,
we keep the original content of the signature before opti-
mization. The correlation instantiations of the optimization
algorithms are in appendix C.

VI. EFFICIENCY ANALYSIS
In this section, we briefly compare the efficiency of our
protocol with others. The simulations are conducted on an
Intel i5-8265U 1.3GHz, 8GB machine with Windows 10.
We use the PyNacl python library for Ed25519 in our imple-
mentation. The length of the element in Zp is represented by
33 bytes, and it in G is represented by 32 bytes. For making
the communication cost intuitive, we unify the units in the
interaction into the length of the element in Zp. We only
care about exponential operations on group elements because
other operations are much less expensive than that (In the
simulation, an exponential operation on group elements takes
about 1ms, an addition operation on it takes about 4µs,
and a general hash function takes about 0.1µs). We give a
comparison of the calculation and communication cost of the
whole protocol in Table 3.

The linkable ring signature used in the scheme [11], [19],
[25], [32] needs to construct a ring signature for each
account of the sender, so their costs of construction and
validation increase linearly with the input accounts of the

FIGURE 2. A. Signing time’s comparison under increased inputs
B. Verifying time’s comparison under increased inputs
C. Signature size’s comparison under increased inputs.

spender. Because our protocol allows multiple user accounts
to be hidden in the same ring, the costs of them do not
change as the sender’s account increases. For communi-
cation cost, Scheme [19] use the one-way accumulator
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FIGURE 3. Verifying time’s comparison under increased key-images.

to compress the size of each group of signatures, whose
communication complexity is about O(m). But the knowl-
edge signature it constructs is associated with the length
λ of the group element. When n < λ, the communication
complexity is still higher than that of [11]. [32] reduce the
number of groups to logarithm based on sigma protocol
and muti-signature. [25] also reduces the signature size to
logarithm by using the technique in [30], but the signature
sizes of them are still related to m. In our scheme, the above
complexity only increases as n multiplies the logarithm. For
a 2-inputs and a ring size of 128 transaction, our interaction
cost of ringCT is approximately 0.8kB. which is 93% less
than it in Monero (12kB).

The efficiency analysis is divided into two parts. First,
we compared the cost of construction, validation, and com-
munication between our protocol and others under the same
ring size (ring size of 11) and increased inputs. Second,
we compare the cost of construction and validation of
aggregated key-images. The comparison can be seen in
Figure 2 and Figure 3.

From Figure 2.A, we can see that when the spender con-
structs the signature, in addition to our protocol, the running
times of protocols [11], [19], [25], [32] are increase linearly
with the input, with protocol [25] increasing the fastest. The
advantage of our protocol grows with the inputs.

From Figure 2.B, we can see that when verifying the
signature, the running times of protocols [11], [19], [32] are
increase linearly with the input. For fewer inputs, the run-
ning time of the protocol [25] is slightly lower than that of
our protocol. However, as the number of inputs increases,
it will eventually be higher than that of our protocol. The
comparison between signature size from Figure 2.C is similar
to Figure 2.B.

From the above comparison, we can see that our protocols
running time is lower than the protocol [11], [19], [25], [32]
in the constructing signature phase. For verifying time and
signature size, our protocol’s Our protocol is more efficient
than [11], [19], [32] and closer to [25]. With more spender’s
accounts, we have a more obvious advantage.

For key-images’ verification, other schemes all traverse
the set to see if there are equal elements, so its running
time increases linearly as you increase the elements of the
set. Every time a transaction passes validation, some new
key-images are added to the set. In our protocol, verifying
them needs just about six exponential operations on group
elements. It doesn’t change as the increasing of elements in
the set. In our simulation, an exponential operation of group
element costs about 1ms, and an operation of access and
compare costs about 0.3µs. We assume that 10k transactions
are recorded per day and each transaction has 1 key-image
added to the set. When the system executes for one month,
the execution time of our algorithm will be reduced to 1/15
of that of the traditional method.

VII. CONCLUSION
In this work, we design a high-efficient ring confidential
transaction protocol to protect users’ privacy information in
the blockchain. We define and implement the underlying
cryptographic primitives of our protocol, and describes the
application of the algorithm in anonymous cryptocurrency.
Compared with other RingCT protocols, our scheme has
lower computing and storage costs, especially when the trans-
action involves multiple transfer’s sub-accounts. Our pro-
tocol is based on the inner product optimization algorithm
and cryptographic accumulator. We prove the security of the
underlying primitives under the random oracle model.

In future work, we expect that put our algorithm into more
applications beyond what was discussed, also, we hope to
further optimize its performance.

APPENDIX
A. SECURITY PROOFS
Our proofs are based on random oracle model [15] and adap-
tive chosen-message attack [13]. Some parameters like g, p
have been defined in the previous article, and omitted from
notations. For simply, we prove for the case that spender
has one account actπ . Other cases are similar and not be
discussed.

Formally, we give the security proofs of our protocol by
defining a security game played between an adversaryA and
a simulator M. Assume that both A and M receive their
respective problems. They perform the following steps:
Setup: The simulator M prepares some public and secret

information, such as public keys and secret keys. The adver-
sary A has access to get public information.
Query: The adversary A can adaptively query some hash

values or signatures to the simulator M. A would not query
the same message twice.
Challenge: The adversary A generates an output to her

problem. If it passes the validation, then the simulatorM gets
the solution to his problem.
Proof of Theorem 10 (Unforgeability): Suppose there is a

PPT adversary A which has public information and a PPT
simulator M which is given a discrete logarithm problem
(g, ga) and need to find a.
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Setup: The simulator M prepares some public-secret key
pairs from corresponding domains. Then M sets Y ∗ = ga

with unknown corresponding secret key. M also uses these
public keys and some randomly generated Pedersen commit-
ments to make up the accounts.
Query: If the adversaryA queries theH oracle,HG oracle

and Hprime oracle, the simulator M returns random values
from their respective domains. When A queries the spend
oracle with input (m, actπ ,A,Yout ), if M knows the secret
keys corresponding to actπ , it executes the spend algorithm
honestly and outputs the valid signature. Else if Yπ = Y ∗,M
chooses β

R
←− Zp and setsµ3 = βuπ+ckπ−

∑l
i=1 ckout,i+

t1. The other parameters (µ1, µ2, ρ, τ1, τ2, θ, ϕ) are chosen
randomly from their respective domains. M sets the values
of (A1,A2, S1) and the challenges (w, x, y, z) to satisfy the
equation (3). Then M honestly computes other parameters
and outputs a valid signature.
Challenge: The adversary A outputs (tx, sig, img) to the

simulator M. If ga does not belongs to tx, M returns failure
and exits. If verify (tx, sig, img) = 1, then based on the
forking lemma [BCC16], M rewinds the H oracle which
used to outputs uπ = H(uπ−1), then outputs u′π = H(uπ−1).
By computing with uπ , u′π , µ3, µ

′

3, we have:

µ3 − µ
′

3

uπ − u′π
=

(
auπ+ckπ−

∑l
i=1 ckout,i+t1

−au′π−ckπ+
∑l

i=1 ckout,i−t1

)
uπ − u′π

= a

Therefore M gets an instantiation to solve discrete log-
arithm with probability 1/n, which contradicts the discrete
logarithm assumption.
Proof of Theorem 11 (Anonymity): Assume that a PPT

adversaryA is given (tx, sig, img). Note that tx only contains
the input and output accountsA,Aout without spender’s infor-
mation. The key-image img is a composite number multiplied
by some prime number. Finding spender’s information from
it is equivalent to the solving prime factorization problem.
Therefore, we analyze the situation in which A finds infor-
mation from the signature.

Suppose there is a PPT simulatorMwhich is given a DDH
problem (g, ga, gb, gc) and need to determine if gc = gab.
Setup: The simulator M prepares some public-secret key

pairs from corresponding domains. Then M sets Y ∗ = ga

with unknown corresponding secret key. M also uses these
public keys and some randomly generated Pedersen commit-
ments to make up the accounts.
Query: If the adversaryA queries theH oracle,HG oracle

and Hprime oracle, the simulator M returns random values
from their respective domains, then M stores the queries
about H oracle into a set QH . When A queries the spend
oracle with input (m, actπ ,A,Yout ), if M knows the secret
keys corresponding to actπ , it executes the spend algorithm
honestly and outputs the valid signature, then M stores the
queries aboutH oracle intoQH . Else if Yπ = Y ∗,M declares
failure and exits.

Challenge: The adversaryA gives an input (m,A,Yout) to
the simulator M. If Y ∗ does not belongs to A or m ∈ QH ,
M declares failure and exits. Else in the signature phase,
M sets A1 = hαgcCπ where Cπ is corresponding to Yπ =
Y ∗. M can set the other elements and challenges adap-
tively from their respective domains in order to satisfy the
verification.

If the PPT adversary A can distinguish the index π of Yπ ,
then the simulator M can determine if gc = gab so that M
gets an instantiation to solve the DDH problem. It contradicts
the DDH assumption.
Proof of Theorem 12 (Linkability): Assume there is a

PPT adversary A which can construct two valid transactions
using same Yπ and a PPT simulator M which is given a
strong RSA problem g and need to find d and e such that
de = g.
Setup: The simulator M prepares some public-secret key

pairs from corresponding domains.M also uses these public
keys and some randomly generated Pedersen commitments
to make up the accounts.
Query: If the adversaryA queries theH oracle,HG oracle

and Hprime oracle, the simulator M returns random values
from their respective domains. When A queries the spend
oracle with input (m, actπ ,A,Yout ), M executes the spend
algorithm honestly and outputs the valid signature. A can
also get the private keys corresponding the public key which
generated by M.
Challenge: Suppose A uses the public Yπ corresponding

the secret key x to construct two transactions. We ignore
the other parts of the signature except for img because
they are irrelevant to determine linkability. Suppose M sets
the values current state of accumulator and the product of
key-images as (At , yt ).A computes img = θx, then performs
NonMemCreate and outputs ux = (a,B = gb). M hon-
estly performs VerNonMem and updates the state (At+1 =
Aθxt , yt+1 = yt · θx).

Finally, A generates img′ = θ ′x and performs
NonMemCreate to output u′x = (a′,B′ = gb

′

). If u′x passes
the verification algorithm, then we have:

Aa
′

t+1B
′θ ′x
= g

gytθxa
′

gb
′θ ′x
= g

(gx)ytθa
′
+b′θ ′
= g

Let d = gx , e = ytθa′+ b′θ ′, thenM gets an instantiation to
solve strong RSA problem, which contradicts the strong RSA
assumption.

B. BATCH NON-MEMBERSHIP PROOFS
Assume that x∗ is the product of the prover’s elements, y∗ is
the product of the elements which are added into the accu-
mulator. At is the accumulator. By the following algorithm,
the computational complexity of the validation process can
be reduced to a constant.

NonMemCreate(x∗, y∗,At ) :
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(a, b) = Bezout(y∗, x∗)

A = Aat
B = gb

gH = HG (At ,A)

za = gaH
la = Hprime(At ,A, za)

α = H(At ,A, za, la)

qa = ba/lc

ra = a mod la
Qa =

(
At · gαH

)qa
πA = {za,Qa, ra}

lb = Hprime(B, x∗, g · A−1)

qb =
⌊
x∗/lb

⌋
Qb = Bqb

return ux∗= {A,B, πA,Qb}

VerNonMem(At , ux∗ , x∗) :

gH = HG (At ,A)

la = Hprime(At ,A, za)

lb = Hprime(B, x∗, g · A−1)

α = H(At ,A, za, la)

rb = x∗mod lb

if Qlaa (Atgα)ra = Azαa∧Q
lb
b B

rb = g · A−1, return 1, else
return 0.

The first half of the judgment is used to verify the knowl-
edge A = Aat . The second half is used to verify the equation
Bezout (y∗, x∗) = 1, in other words, to verify that x∗ and
y∗ are each other’s prime numbers. The above validation
operation only performs 6 exponential operations on group
elements.

C. IMPROVED INNER PRODUCT ALGORITHM
Denote that a, b∈Znpg,h∈Gn, u,P∈ G,S= ∅, the

CreateImpIP (a, b, g,h, u,P, n,S) :

while n> 1:

n′ = n′/2

L = g
a[:n′]
[n′:] h

b[n′ :]
[:n′] u

<a[:n′],b[n′ :]>

R = g
a[n′ :]
[:n′] h

b[:n′]
[n′:] u

<a[n′ :],b[:n′]>

x = H (L,R)

g′ = gx
−1

[:n′]◦g
x
[n′:]

h′ = hx[:n′]◦h
x−1
[n′:]

P′ = Lx
2
PRx

2

a′ = a[:n′]·x + a[n′:]·x−1

b′ = b[:n′]·x−1 + b[n′:]·x

S′ = S∪{(L,R)}

CreateImpIP
(
a′, b′, g′,h′, u,P′, n′,S

)

return (g,h, a, b,P,S)

VerImpIP (g,h, a, b,P,S) :

for j ∈ {1, logn}:

xj = H
(
Lj,Rj

)
b (i, j) =

{
1 : the jth bit of i−1 is1
−1 : otherwise

for i ∈ {1,n} :

si =
∏logn

j=1
xb(i,j)j

s = {s1, . . . ,sn}

if ga·s · hb·s
−1
· ua·b = P ·

∏logn
j=1 L

x2j
j · R

x−2j
j , return 1

else return 0
By the above algorithm, the vector size in each loop can be

reduced by half, and then the half vector stays the same struc-
ture as before. After going through the logn loops, the size of
the vector reduces to 1. Through the Fiat-Shamir heuristic,
the sender is able to pre-calculate challenge x to achieve
non-interactive proofs. For two vectors of length n, it only
has to send 2logn+ 2 elements.
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