
SPECIAL SECTION ON REAL-TIME MACHINE
LEARNING APPLICATIONS IN MOBILE ROBOTICS

Received October 17, 2020, accepted October 24, 2020, date of publication October 28, 2020, date of current version November 9, 2020.

Digital Object Identifier 10.1109/ACCESS.2020.3034524

Real-Time Object Navigation With Deep
Neural Networks and Hierarchical
Reinforcement Learning
ALEKSEY STAROVEROV1, DMITRY A. YUDIN 1, ILYA BELKIN 1, VASILY ADESHKIN1,
YAROSLAV K. SOLOMENTSEV1, AND ALEKSANDR I. PANOV 1,2
1Moscow Institute of Physics and Technology, 141700 Dolgoprudny, Russia
2Federal Research Center ‘‘Computer Science and Control,’’ Russian Academy of Sciences, 119333 Moscow, Russia

Corresponding author: Aleksandr I. Panov (panov.ai@mipt.ru)

This work was supported in part by the Russian Science Foundation [Theoretical Investigation and Methodology (Sections I–V)] under
Grant 20-71-10116, and in part by the Government of the Russian Federation [Experimental Evaluation (Section VI)] under
Grant 075-02-2019-967.

ABSTRACT In the last years, deep learning and reinforcement learningmethods have significantly improved
mobile robots in such fields as perception, navigation, and planning. But there are still gaps in applying
these methods to real robots due to the low computational efficiency of recent neural network architectures
and their poor adaptability to robotic experiments’ realities. In this article, we consider an important task
in mobile robotics - navigation to an object using an RGB-D camera. We develop a new neural network
framework for robot control that is fast and resistant to possible noise in sensors and actuators. We propose
an original integration of semantic segmentation, mapping, localization, and reinforcement learning methods
to improve the effectiveness of exploring the environment, finding the desired object, and quickly navigating
to it. We created a new HISNav dataset based on the Habitat virtual environment, which allowed us to use
simulation experiments to pre-train the model and then upload it to a real robot. Our architecture is adapted
to work in a real-time environment and fully implements modern trends in this area.

INDEX TERMS Indoor navigation, cognitive robotics, object segmentation, neural networks, intelligent
agents, real-time systems, robot learning.

I. INTRODUCTION
Real-time navigation, path planning, localization and object
avoidance are the major challenges of mobile robots [1].
Often such problems are solved by methods that do not use
machine learning [2]–[4]. Such approaches often face a low
level of adaptability to the various conditions in which the
robotic platform finds itself.

On the one hand, this provides a relatively high speed of
solutions but requires knowledge of dynamic models of the
robot and environmental objects movement, noise models in
sensor data, and other a priori data about the environment.
In real scenarios of the robot’s operating, such a priori data
may not be available. Therefore, it is necessary that robot
had the opportunity to learn in the course of performing
any actions in the environment. Thus, it can be considered

The associate editor coordinating the review of this manuscript and

approving it for publication was Aysegul Ucar .

as an intelligent agent [5] whose behavior is synthesized
by the control architecture, which includes the learnable
subsystems.

Recently, deep learning and reinforcement learning (RL)
methods have brought significant improvements for mobile
robots. They provide new neural network methods in such
fields as perception, navigation, and planning [6], [7]. How-
ever, there are a number of difficulties in applying these
methods due to the low computational efficiency of the most
recent neural network architectures and their low adaptability
to the features of robotic experiments.

In this work, we consider a particularly important
vision-based task in mobile robotics - indoor navigation to an
object using an RGB-D images. The solution to this problem
requires the study of three subtasks:

1) instance segmentation of the target object,
2) ego-motion estimation and localization on the map,
3) automatic exploration and path planning.

195608 This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/ VOLUME 8, 2020

https://orcid.org/0000-0002-1407-2633
https://orcid.org/0000-0002-5901-0137
https://orcid.org/0000-0002-9747-3837
https://orcid.org/0000-0002-5253-3779

A. Staroverov et al.: Real-Time Object Navigation With Deep Neural Networks and Hierarchical RL

FIGURE 1. Structure of the proposed Habitat-based Instance Segmentation, SLAM and Navigation (HISNav) framework.

For each of the tasks presented above, there are a number
of classical and neural network methods for solving problems
that are of sufficient quality but not always computationally
efficient in order to be used in energy-efficient embedded
control systems of mobile robots. In this article, we propose
real-time methods for solving these problems that are com-
bined into a single learnable behavior control framework for a
mobile robotic platform that automatically explores the envi-
ronment and navigates to the specified class of objects (see
Figure 1). Our solution is based on the well-known sim2real
paradigm when we pre-train compact neural networks using
a simulator, and then transfer the resulting models to a real
robot. It is well known that the quality of the resulting
solution directly depends on the quality of the simulator, its
randomization capabilities, and the generalizing ability of
the neural networks used. We created unique datasets based
on the accessible Habitat simulation environment [8], which
allowed us to build efficient compact models for solving
the problems of instance segmentation and localization on
the map. Using the Habitat simulator, we were able to cre-
ate complementary agent’s policies for map exploration and
trajectory planning.

Many well-known methods used for solving the object
navigation problem are weakly resistant to noise. Particularly
clear results were shown by the recent Habitat Challenge
2020 competition [9], in which almost no one managed to
cope with the noise of both cameras and actuators at the
same time. Thus the task of creating unified neural net-
work architectures for robot control in real-time to solve the
problem of object navigation, resistant to various kinds of
noise, is unsolved and relevant from a practical point of view.
The architecture we are developing allows us tomove forward
in solving this global problem.

Detail analysis of these topics is carried out in the following
article sections: related work, methodology, and experimental
results. The main contributions of the authors of the article
are:
• new neural network architecture for robot control that
is fast and resistant to possible noise in sensors and
actuators,

• original integration of semantic segmentation, mapping,
localization, and reinforcement learning methods to
improve the effectiveness of exploring the environment,
finding the desired object, and quickly navigating to it,

• a new approach to control data integration in simultane-
ous localization and mapping algorithm to increase its
quality metrics,

• a new HISNav dataset based on the Habitat virtual envi-
ronment and included RGB-D images, their instance
segmentation labels, robot camera poses and control
actions for different indoor scenes.

Proposed HISNav Framework and Dataset are publicly
available at https://github.com/cds-mipt/HISNav under MIT
Licence.

II. RELATED WORK
When solving the problem of automatic navigation to the
specified class of objects using the RGB-D camera, we solved
subtasks for which there are already a number of high-quality
neural network solutions. When creating our architecture,
we relied on a number of the methods that we have signif-
icantly improved and adapted for real-time work on a mobile
robot.

A. AUTONOMOUS AGENT INDOOR NAVIGATION
Autonomous navigation has a long history in robotics
and various fields of artificial intelligence. For a human,

VOLUME 8, 2020 195609

A. Staroverov et al.: Real-Time Object Navigation With Deep Neural Networks and Hierarchical RL

navigation is a complex task, including simultaneous local-
ization and mapping (SLAM), planning a route on it, setting
intermediate goals, controlling one’s actions, and interact-
ing with the environment. In the classical approach, such a
complex system is implemented through various modules,
each responsible for its own task. These subsystems include
SLAM, object segmentation, planning, exploration modules,
etc. Recently, neural network learning methods as a part of
those modules have also begun to appear. Integrating such
subsystems into a unified neural network architecture allows
us to hope that the general problem can be solved with
training in an end-to-end manner.

In the work [10], the authors investigated the task of navi-
gation to specific coordinates on a previously unknown map.
The agent had a camera, depth sensor, and agent position as
input. In the course of the article, both classical approaches
with SLAM (ORB-SLAM2) [11] and planning (D * Lite),
and the neural network approach (Direct Future Prediction)
[12] were analyzed in different noise conditions with dif-
ferent types of sensors. Even though they failed in surpass-
ing humans, the authors concluded that with RGB-D data,
the classical approach provides better results, especially in
a challenging environment. But compared to RL, it suffers a
disaster in noise conditioned or RGB input only. The classical
method’s advantage is the absence of training and difficulties
with transferring to the real world, its interpretability, and
stability. In conclusion, the authors say that the RL algorithm
they are testing requires further improvements and does not
indicate all end-to-end approaches, further demonstrated by
the DDPPO [13] approach.

Active Neural SLAM (ANS) [14] is an excellent imple-
mentation of a combination of the classical approach and
the neural network approach. The authors were able to sur-
pass both classical methods and completely end-to-end algo-
rithms. The task that the authors chose was a little more
complicated; they were required not to reach a point with
specific coordinates but in a finite number of steps to explore
as large an area as possible in a previously unseen to the
agent room. The modular structure remained from the clas-
sical approach, which consisted of the Global Policy, SLAM,
Local Policy blocks. SLAM was carried out using neural
networks in a supervised manner. Based on this reconstructed
map and the agent’s current position, Global Policy sets a
goal on the map in the form of coordinates, following to
which the agent maximizes the explored area. Global Policy
is implemented through the classic RL algorithm Proximal
Policy Optimization (PPO) [15] and learns an unsupervised
manner. Local Policy takes coordinates from Global Policy,
the agent’s current state, and output an action that brings the
agent closer to these coordinates. Even though Local Policy
is based on PPO, it is trained in a supervised manner on
the planner (Fast Marching Method), which gives ground
truth action in learning mode. According to the authors, this
approach provides more results than using a planner directly.
Also, for only RGB input, the authors implemented neural

network depth restoration and showed its effectiveness as
insignificant in the results in comparison with RGB-D.

Goal-Oriented Semantic Exploration (SemExp) [16] is a
continuation of ANS for another problem statement, navi-
gation to the object. The map also remains unknown to the
agent. The type of object is assigned to the agent as a target,
and stopping at a distance from it is a termination condition.
For object recognition, the authors used Mask R-CNN. The
main difference was in the Global Policy, which already
maximized not the explored area, but the distance traveled to
the nearest target type object. The target coordinates are used
only during agent learning to determine the reward. During
the test, the agent does not have access to these coordinates.
At the same time, Global Policy, in addition to maps of the
studied area and obstacle maps, accepted semantic maps for
each of the target types. As soon as the semantic module
has seen the target object on the agent’s camera, non-zero
points of belonging to the target are taken as the target. Local
Policy defines the action to achieve the goal from Global
Policy using a deterministic scheduler (FMM), which showed
similar performance to the learnable option under these
conditions.

Decentralized Distributed Proximal Policy Optimization
(DDPPO) [13] is an algorithm that is based on PPO and
expanded its idea to the efficient parallelization with the
linear character up to 256 GPUs. The authors tested their
performance on the point navigation problem. The agent had
an RGB-D sensor and a GPS+ Compass for determining the
agent’s position as data. Using 64 GPUs and three days of
training, the agent made 2.5 billion steps in the environment
and reached a success rate weighted by path length (SPL)
equal to 0.997. For the RGB version with GPS + Compass,
SPL 0.92 was obtained. Using this end-to-end approach with-
out any mapping or planning modules, the authors surpassed
all previous methods and showed human-like performance.
Long short-term memory (LSTM) [17] layers in policy were
used for the agent memory effect. The only remark was that
in the absence of GPS + Compass, SPL drops to 0.15. The
authors call the problem with only RGB input the next step
for further research.

In our work, we rely on the end-to-end approach based on
PPO, adapting it to real-time conditions and extending it to
the object navigation task.

B. REAL-TIME OBJECT SEGMENTATION
The problem of locating the target object to be reached during
navigation is usually formulated as an instance segmentation
task. This allows us to get more accurate information about
the image’s pixels belonging to the object and more correctly
estimate its three-dimensional coordinates, which is challeng-
ing to do with a simple bounding box.

For this, various approaches based on deep learning
are also distinguished, e.g., the well-known model Mask
R-CNN [18] based on the Faster R-CNN [19] architec-
ture with an additional fully convolutional head for object

195610 VOLUME 8, 2020

A. Staroverov et al.: Real-Time Object Navigation With Deep Neural Networks and Hierarchical RL

segmentation in the found bounding box. To increase such
models’ speed, basic feature extraction networks (so-called
backbones) with fewer layers or mobile architectures are
used, for example, based on MobileNet V1-V3 [20], but this
negatively affects the quality of detection and segmentation.
The modern development of two-stage segmentation is the
relatively fast model YOLACT++ [21].
Another approach to improving the quality of segmentation

of found objects involves deformation of the found contour
with a special neural network, for example, based on the polar
representation of the contour in PolarMask [22], the concept
of the circular convolution in Deep Snake [23], or deep
polygon transformer in PolyTransorfm [24].

Several modern models do not use intermediate bounding
box detection but perform segmentation directly, albeit in
several stages. These methods include modern architectures
BlendMask [25] and CenterMask [26].

Recently, the concept of a one-stage SOLO method has
appeared, which, in addition to the segmentation of dynamic
objects, can also perform semantic segmentation of static
objects [27]. Its modification SOLOv2 [28] uses the con-
cept of a feature pyramid network, attention, and a matrix
method of non-maximum suppression, which allows it to sur-
pass other methods of instance segmentation in the quality of
object detection. The problem with SOLO-based approaches
is still low performance. At the same time, they have sig-
nificant improvement potential thanks to the use of fast
backbones based on ResNet34 or ResNet18 models [29],
Deformable Convolution Networks (DCN) [30], Deep Layer
Aggregation (DLA) [31].

The recently appeared cascade models Cascade Mask
R-CNN [32], implement a step-by-step multi-stage refine-
ment of the found areas of the location of objects, which leads
to a significant increase in the accuracy and completeness of
detection. At the same time, the speed of image processing
slows down even more, which makes such cascade methods
not applicable for real-time tasks.

In this article, we explore the capabilities of modern deep
architectures with fast backbones for instance segmentation
of indoor scenes that can provide real-time across a variety of
hardware platforms.

C. VISUAL-BASED ROBOT LOCALIZATION
SLAM methods are used for robot pose and velocity esti-
mation by data from RGB-D sensors. These methods can be
divided into two categories: direct and indirect.

Dense directmethods are considered to be themost precise,
but also the slowest. These methods minimize photometric
error and apply geometric prior to dense or semi-dense
scene geometry estimation directly on the image. Sparse
direct methods work with pixel intensity values, but at
the same time, have a sparse cloud of 3D points. Typical
examples of direct SLAM methods are DSO [33], Direct
Sparse Mapping [34] (last two methods are monocular),
and StereoDSO (for stereo cameras). For different scenes
with different sensors, these methods are difficult to transfer

because sensors should be photometrically recalibrated, and
also correct uncertainty map formation for matching points is
required. Modern enhancements of these approaches are neu-
ral network methods that train in a self-supervised manner –
D3VO [35], DeepMatchVO [36], DF-VO [37]. All of them
allow generating pose estimation of two neighbor frames a
monocular camera and depth map. D3VO can also generate
an uncertainity map, DF-VO – optical flow. The effectiveness
of neural network methods is limited by training samples
cause the quality of neural network SLAM falls dramatically
in an unfamiliar environment.

Indirect SLAM methods deal with transformed images or
their features, computed for keypoints, segments, or objects,
for example, special ArUco marks [38]. These methods allow
reliably rejecting outliers among matched points. The sparse
map requires less memory; localization is faster than in direct
methods. But feature extraction is sensitive to blur, noise,
angle of view, and lightning variation.

The most wide-spread and popular methods are that
retrieve keypoints via classical computer vision methods
ORB-SLAM2 [11], RTAB-Map [39], or their modern modifi-
cation ORB-SLAM3 [40] or OpenVSLAM [41]. This group
of approaches is most stable on unfamiliar scenes, but at the
same time has significant problems with obtaining odometry
during sharp turns of the robot.

There are promising SLAM methods that use neural net-
works to predict reliable descriptors both for keypoints and
for images as a whole: hierarchical localization method [42],
Hybrid WNN-CNN [43], HF-Net [44], GCNv2 [45],
AD-VO [46], as well as the recently released DXSLAM [47].
On the one hand, they make it possible to generate more
reliable descriptors for keypoints and images on the scenes
for which they were trained, and thereby perform better point
matching and loop detection. However, their applicability to
new types of scenes requires additional research.

One of the modern trends is also the joint solution of
SLAM, exploration and path planing problems, as suggested
by Adaptive Computation SLAM (ACSLAM) [48] when
using lidar data, as well as in Active Neural SLAM [14].

In this article, we propose our own approach for modifying
fast SLAM methods, both classical and based on neural net-
works. To do this, we will explore the possibility of integrat-
ing control data from the navigation framework into them.

III. PROBLEM STATEMENT AND PROPOSED NETWORK
In this study, we set ourselves the task of developing an
object navigation framework for an indoor environment
(see Figure 1).
The source of data for this is RGB-D images, which contain

both information about the color of pixels IRGB, and a dense
depth map of the observed scene ID. This information can
be obtained from modern high-precision RGB-D cameras
commonly used in mobile robotics.

Also in the common statement, we assume that the general
scene map Ms is not known to the agent, but can be used to

VOLUME 8, 2020 195611

A. Staroverov et al.: Real-Time Object Navigation With Deep Neural Networks and Hierarchical RL

FIGURE 2. Examples of images from HISNav Dataset with three levels of noise: the first row contains visualization of ground truth segmentation, second
row demonstrates images without noise, the third row includes images with light Gaussian noise (mean = 0, σ = 1, intensity = 0.05), the bottom row
contains images with strong Gaussian noise (mean = 0, σ = 1, intensity = 0.1).

visualize the results. It is not available for the formation of
robot actions.

At the moment of time t the robot itself can choose an
action at belonging to the set A = {at,0, at,1, at,2, at,3},
where at,0 is stay in place, at,1 is turn left to the corner 1α ,
at,2 is turn to the right by an angle1α , at,3 is move directly to
the distance1d . A similar type of movement is implemented
in robots that have the ability to turn in place, in particular
robotic vacuum cleaners, robotic couriers, etc.

In the framework being developed, navigation to the target
is carried out by specifying a certain class of objects (for
example, a chair, table, etc.). The goal generator spawns the
coordinates of the target g = (xg, yg). The target object is
supposed to be detected by segmentation on a color image to
obtain an Instance Segment MapMis.
The robot’s own pose P in the environment must be deter-

mined both the position of its center x, y, z and the orientation
θy, θp, θr (the yaw, pitch, and roll angles). Pose estimation
is possible using odometry data obtained at the output of
the SLAM method, which uses RGB-D images as input
(IRGB, ID pairs).

The navigation framework also involves the reconstruction
of the two-dimensional local map Mloc, which was visited
by the robot. It is formed on the basis of Bird’s eye view
image IBEV , which is obtained as a projection onto the
horizontal plane of the depth map ID.
One of the key features of our framework is the automatic

training of a hierarchical neural network, which allows, based
on interaction with the environment, taking into account the
current state of st (combining the segmentation map Mis,

the current pose P, the depth image ID, local map Mloc) to
learn how to form actions at , bringing the robot closer to
the given goal g. Automatic selection of subgoals allows the
agent to significantly reduce the time required to explore the
map and find the desired object.

The photo-realistic indoor simulator Habitat with
Matterport3D-based scenes was chosen as the environ-
ment in which the robot operates. The structure of such a
Habitat-based Instance segmentation, SLAM and Navigation
Framework (shortly named as HISNav Framework) proposed
by the authors is shown in Figure 1.

To study the qualitative indicators of the most important
elements of the framework: the segmentation instance and
SLAM, a special diverse dataset was prepared using the
simulator. It will be discussed in detail in the next section.

IV. DATASET PREPARATION
In this article, we introduce a new Dataset - the HISNav
Dataset, which consists of various robot movements tracks,
recorded in virtual environment Habitat. Tracks were built
on 49 unique scenes from Matterport3D [49] that present
rooms with different styles. Each scene has no more than
5 trajectories with 3 different levels of noise in camera images
and in actions.

We pursue the goal to research the steadiness of the devel-
oped framework to the noise. We use three levels of noise
in images: without noise, light Gaussian noise (mean = 0,
σ = 1, intensity = 0.05), strong Gaussian noise (mean = 0,
σ = 1, intensity = 0.1). The examples of images from the
dataset are shown in Figure 2.

195612 VOLUME 8, 2020

A. Staroverov et al.: Real-Time Object Navigation With Deep Neural Networks and Hierarchical RL

Besides noise in images, noise to actions was added: with-
out action noise, light action noise (mean = 0, σ = 1,
intensity = 0.2), strong action noise (mean = 0, σ = 1,
intensity = 0.5).

Each RGB image has a resolution 640×320, and the depth
map has the same resolution. Each pixel contains a distance
value in meters (from 0 to 100m). Ground truth instance
labels of 40 classes (wall, floor, chair, door, table, sofa, etc.)
correspond to each image.

For the convenience of visual SLAM algorithms research,
the Dataset HISNav also contains ground truth of camera
poses in TUM format [50] and information about control
commands in the form of three rows of control matrice
Ci, 1 ≤ i ≤ 4, which were written string by string for each
agent action along with the taking action moment.

All the dataset includes 135962 images and is split ted
into three parts: train, val and test. Information about splitted
samples can be found in Table 1. While splitting into samples
a goal of diversity and balance between training, validation
and test samples was pursued.

V. METHODOLOGY
A. REAL-TIME INSTANCE SEGMENTATION OF INDOOR
SCENES
The HISNav Dataset described in the previous section has
a number of peculiarities - objects can be both small and
occupy a significant part of the frame. In this case, we need
to segment both movable interior elements (for example,
chair, table, towel, etc.) and stationary, background objects
(wall, floor, window, stairs, etc.). In such a situation, two-step
segmentation techniques that first detect bounding boxes and
then segment them should not work very well. To test this,
we will consider various architectures of the common model
Mask R-CNN [18] with light backbones, as well as their
modern counterpart YOLACT++ [21].
Consideration of models such as DeepSnake [23],

PolarMask [22], PolyTransform [24] for this task is imprac-
tical since they are intended to refine the convex contours
of segments without cavities. But in the prepared dataset,
segments of objects may contain holes.

The most promising method seems to be the light versions
of modern one-step fully convolutional approaches to the
segmentation of objects Blendmask [25] and SOLOv2 [28].
They will also be explored in this article.

To compare the quality, it is advisable to analyze the result-
ing metrics mean Average Precision (mAP) [51] with dif-
ferent thresholds of Intersection over Union (IoU) measure.
Inference time on different hardware platforms is also a topic
of study.

B. INDOOR ROBOT LOCALIZATION USING VISUAL SLAM
To solve the task of robot localization in the environment
using RGB-D images, we have chosen two modern open
source methods as basic: OpenVSLAM and DXSLAM. Both
of them refer to indirect sparse approaches that estimate the

TABLE 1. Details of the proposed HISNav Dataset.

pose of the camera (robot) by the found keypoints and their
descriptors: in the first case, by the ORB method, in the
second, by the neural network-based method HF-Net [44].
They are improved versions of the popular ORB-SLAM2 [11]
visual odometry method.

In these methods the current camera frame pose estimation
is performed in two stages: at first, an approximate pose
is estimated based on the pose of the previous frame or
previous keyframe, then this pose is improved using local
map (local bundle adjustment), which is built from multiple
last keyframes (covisibility keyframes) and have common
3D points with the current frame. When the current frame
becomes a keyframe, its pose is also refined by global bundle
adjustment.

The current frame pose estimation includes keypoints
matching, followed by bundle adjustment. Keypoints match-
ing is performed based on its descriptors and accelerated with
Bag Of Words. For further acceleration, modern approaches
adopt the motion model for keypoints matching.

VOLUME 8, 2020 195613

A. Staroverov et al.: Real-Time Object Navigation With Deep Neural Networks and Hierarchical RL

In the motion model robot displacement is estimated from
previous motion. In details, a velocity matrix V is estimated
and the pose of next frame Pi+1cw is calculated from the pose
of previous frame Picw as follows: Pi+1cw = VPicw. When Pi+1cw
is known, keypoints of the previous frame are projected into
the current frame and point correspondence is found based on
euclidian distance on image plane.

When agent motion is continuous and smooth motion
model assumptions are satisfied and keypoints matching
based on euclidian distance on the image plane is performed
correctly. However, when motions are sharp, these assump-
tions become incorrect and its use leads to rapid loss of
keypoints and quality decrease. But when robot displacement
in the environment results from performing certain known
action and expected displacement is known, it can be used
instead of the standard motion model.

In the Habitat environment an agent (robot) is allowed to
perform four actions: go forward for d meters, rotate for±α,
finish episode. For these actions, we can determine robot
displacement in the environment using matrices of control
Ci, 1 ≤ i ≤ 4, which have the next form:

C(α, d) =

cos(α) 0 sin(α) 0

0 1 0 0
− sin(α) 0 cos(α) d

0 0 0 1

 . (1)

This matrix determine displacement in the direction of
z axis for d and rotation around y axis for α. In these notation,
forward displacement is given by C1 = C(0, d), rotation -
C2,3 = C(±α, 0), episode finish C0 = C(0, 0). Then the
velocity matrix for motion model is constructed V = C−1i .
It is worth noting that only only expected displacement is
known. In fact, displacement is determined by a random
matrix Ĉ = C(α+ξα, d+ξd), where ξα ξd - randomvariables,
noises in rotation angle and forward step. This means that
information about actions is insufficient to localize on the
map without the use of visual odometry.

The proposed approach with the displacement of the stan-
dard motion model with the control model allows us to
integrate prior knowledge about robot motion in the SLAM
method and, as shown in experiments, improve robot local-
ization from camera images and depth maps.

For our study, the following SLAM metrics were taken:
1) Relative translation (TKITTI , %) and rotation

(RKITTI , deg/m) errors which are introduced in the KITTI
Odometry Benchmark [52], [53]. Because of short indoor
tracks in the HISNav Dataset, we use distance subsequences
of length (0.25, 0.5, 1, 2, 4, 8, 16, 20) meters instead of
conventional (100, 200, . . . , 800) distances.

2) Also, we use absolute pose error for translation (APET ,
m) and rotation (APER, deg) introduced in the tool [54].
Absolute pose error for translation APET is computed as

median of the errors array ET . Each element of the array ET
is calculated as follows:

E iT = ||P
i
pred − P

i
GT ||2, (2)

where PiGT is the ground truth translation for i-th frame
(x iGT , y

i
GT , z

i
GT), P

i
pred is the predicted translation for i-th

frame (x ipred , y
i
pred , z

i
pred), ||.||2 is L2 norm corresponding to

absolute error between two points.
Absolute pose error for rotation APER is computed as

median of the errors array ER.
For each frame i error pose PiR is calculated as follows:

PiE = (Pipred)
−1
· PiGT , (3)

where Pipred is the predited pose (4 × 4) on frame i, PiGT is
the ground truth pose (4× 4) on frame i.

Then, from each error pose (4 × 4) PiE rotation matrix
(3× 3) is extracted. Each rotation matrix is transformed into
a 3 dimensional vector which is co-directional to the Euler
axis of rotation and whose norm gives the angle of rotation
(in radians). After that from each rotation vector, norm is
obtained. Norm of the received rotation vector is transformed
from radians to degrees and used as angle error E iR itself.
3) Lost (tracks), %. This metric shows in percentage how

often SLAM method fails in tracking at the beginning or at
the end of a track.

SLAM method is considered to fail tracking if one of the
two conditions is true:
• if the first successfully predicted pose stands further than
0.2 sec from the first GT pose.

• if the last predicted pose stands further than 0.2 sec from
the last GT pose.

C. REINFORCEMENT LEARNING FOR INDOOR OBJECT
NAVIGATION
After solving the subtasks of instance segmentation and agent
localization on the map, the agent needs to solve the key
subtask - fast navigation to the desired object.We have chosen
a modular hierarchical approach that allows us to separate
the tasks of navigation in a short horizon and route planning
over long distances. Another advantage of our approach is
the absence of a complex reward function during learning
process, which is usually programmed manually and cannot
convey all the features of the environment.

The main purpose of our method is to learn k-level policy
5k−1. We took k as 2. Each level of policy learns πi :
Si × Gi → Ai. To learn these policies π0,π1 we use the
set of Universal Markov Decision Process (UMDP) U0,U1,
in which Uk = (S,G,A,R, γ) where γ is a discount factor.
The state space S to this policies is identical and consist of
depth, semantic sensor observation and localization informa-
tion. Both layers goal space G consist of coordinates of the
goal. First higher layer action space A is the coordinates of
subgoal that needed to achieve the task goal. Also, it should
be mentioned that the first layer output subgoal measures
relative to the current agent position and restricted to some
area Targ around to be achievable in any situation. Second
lower layer action space is the action that agent needed to
perform to achieve the subgoal that was given by the first
layer. After the subgoal is set by the first layer of policy,

195614 VOLUME 8, 2020

A. Staroverov et al.: Real-Time Object Navigation With Deep Neural Networks and Hierarchical RL

the second layer of policy need to output the sequence of
N a
max actions to achieve the given subgoal. If this subgoal was

achieved, agent recieve reward R of 0, else−1. The first layer
has maximum of N t

max attempts to achieve the final goal.
The RL agent have three actions: forward, turn left, and

turn right. Evaluation occurs when the goal object appears in
the agent camera and is closer than 0.5 m. As a metric, SPL
(Success weighted by Path Length) is used (4).

SPL =
1
N

N∑
i=1

li
max (pi, li)

, (4)

where li is the length of shortest path between start point and
goal object that was closest to the point where agent trajectory
is end pi is the length of path taken by agent in an episode.

The lower level of a policy due to the discrete action space
is based on DDDQN [55], the higher policy has a continuous
action space (coordinates of the subgoal) and based on a Twin
Delayed DDPG (TD3) [56] algorithm. Sructure of the neural
net is shown here (Figure 3). As a goal state, TD3 receiving
a semantic image because we filter it to 1 if object belongs to
the goal class, else 0.

FIGURE 3. Structure of the policy neural network.

The biggest problem to learn these policies is that if all of
the policies are to be trained in parallel, any level’s actions
cannot be evaluated with respect to the policy below that
level. This lower level hierarchy will continue to change
as long as these lower-level policies both learn from expe-
rience and explore. Changes in the lower level will cause
non-stationary transitions, and rewards functions become dif-
ficult to learn at higher levels. To overcome this, we used
the Hierarchical Actor-Critic [57] main idea. Instead of eval-
uating the actions with respect to the lower level of poli-
cies, evaluate the actions concerning where the lower level
is headed — an optimal lower level hierarchy. The optimal
lower level hierarchy, which consists of optimal versions of
all lower-level policies, does not vary over time. As a result,

the states and rewards for any action will be stable, allowing
the hierarchical agent to learn its multiple levels of policies
in parallel.

Optimal low lever hierarchy is achieved by two types of
transitions: Hindsight Action Transitions and Hindsight Goal
Transitions [57].

Hindsight action transitions serve to replace the proposed
action with the action that was actually executed in hindsight.
It means that for non-base levels when a policy presents a
subgoal state, but the level below misses that subgoal state
and ends in another state after N t

mid attempts, the hindsight
action transition will use that ended state as the original sub-
goal action. With this substitution, the next state and action
components in the transition will be the same, and hindsight
action transition is simulating how an optimal lower-level
policy would act. For the reward component of the transition,
the reward will only depend on the reached state and the goal
state. The reward will not take into consideration the exact
path taken to the state reached after N t

mid attempts because
the goal is to create transitions that simulate an optimal
lower-level policy hierarchy, and it is not known what path an
optimal lower-level policy hierarchy would take. The reward
will also be sparse and binary to avoid the issues that arise
when reward functions are manually engineered.

Hindsight action transitions reduce the non-stationary tran-
sitions, and the reward function problem is not presented.
But dealing with sparse reward function can be very com-
plicated due to the complexness of getting a positive reward.
Hindsight Goal Transitions could overcome that. This type of
transition extends the idea of Hindsight Experience Replay
(HER). It is done by copying of original (st , at , rt , s′t ,G)
transition and replacing the achieved goal with a state that the
agent stopped in. The reward is also recalculated according
to the new conditions. For the non-base level, hindsight goal
transitions being made from copies of the hindsight action
transitions.

VI. EXPERIMENTAL RESULTS
A. HARDWARE PLATFORM
To test performance of proposed approaches we use different
hardware platforms:

1) Server platform with NVidia Tesla V100 32Gb GPU,
Intel Xeon Gold 6154 (16 cores 3GHz), 128Gb RAM,

2) Ground robot platform based on Clearpath Husky chas-
sis with ZED camera 1200×600 and onboard computer
with GTX1050Ti 4Gb, Intel Core i5-4570TE (2 cores
3.3GHz), 8Gb RAM (see Figure 4).

B. REAL-TIME INSTANCE SEGMENTATION OF INDOOR
SCENES
In the course of computational experiments on the training
set proposed by the HISNav Dataset, we train several modern
models with fast backbones:
• SOLOv2 with ResNet34 backbone,
• Blendmask with DLA34 backbone,
• YOLOACT++ with ResNet50 and FPN backbone,

VOLUME 8, 2020 195615

A. Staroverov et al.: Real-Time Object Navigation With Deep Neural Networks and Hierarchical RL

FIGURE 4. Ground robot platform based on Clearpath Husky chassis with
ZED camera. It was used for experiments with proposed algorithms.

• Mask R-CNN implementation in Detectron2 [58] with
Resnet50 and FPN,

• Mask R-CNN implementation in MMdetection [59]
with the same backbone.

During training, batch size equal to 8 was set for all
models. The quality assessment of the segmentation instance
during training on the validation set (HISNav-val) is shown
in Figure 6. Using mAP value of instance segmentation for
all 40 object classes we have selected the best models of each
type.

Using the selected models, Table 2 was built to detail the
segmentation quality at different threshold IoU values on the
HISNav-test dataset.

On its basis, we can conclude that the highest quality indi-
cators are for the network with the Blendmask architecture in

TABLE 2. Quality of instance segmentation neural networks on
HISNav-test data.

terms of mAP with IoU= 0.50:0.95. But the SOLOv2 model
is better in more common metric mAP with IoU= 0.5. These
two models can be considered as basic for integration into the
proposed HISNav Framework.

Visualization of image instance segmentation for the all
trained neural networks is shown on Figure 5. It demonstrates
comparison of the different models with ground truth seg-
mentation. SOLOv2 model seems more accurate than others
which confirms its high quality metrics.

C. INDOOR ROBOT LOCALIZATION USING VISUAL SLAM
Table 3 shows that the proposed control-based DXSLAM
method (named CDXSLAM) demonstrates better perfor-
mance in terms of relative metrics TKITTI and RKITTI . We can
also conclude that the integration of control data both in
neural network-based DXSLAM and OpenVSLAM shows
significant increase of relative and absolute quality metrics.
A visualization of one of the tracks from the HISNav dataset
is shown in the Figure 8.

FIGURE 5. Examples of instance segmentation using different neural network models on images from HISNav-test dataset.

195616 VOLUME 8, 2020

A. Staroverov et al.: Real-Time Object Navigation With Deep Neural Networks and Hierarchical RL

FIGURE 6. Results of instance segmentation models training.

TABLE 3. SLAM methods validation results on data with different motion
mode.

FIGURE 7. Keypoint detection and matching details in noisy images: a -
for CDXSLAM method, b - for OpenVSLAM method.

Figure 7 demonstrates the efficiency of keypoints detection
in noisy images by the considered SLAM methods. As we
can see, there are no noise points on the key and subsequent
frames of the neural network CDXSLAM. OpenVSLAM
adds a lot of noise points to the map, which at the same time
do not match the next one.

Table 4 also shows that the neural network-based method
CDXSLAM often loses tracking on noisy data. A possible
reason is that keypoints generated by neural network are
less universal and their descriptors are less reliable than
those generated by the ORB method. The basic neural net-
work in CDXSLAM was trained on OpenLORIS [60] indoor
dataset with real scenes, which did not contain type of noise,
the effect of which we are analyzing in this article.

TABLE 4. SLAM methods validation results on data with different noise.

FIGURE 8. Results of studied CDXSLAM and OpenVSLAM methods on
some tracks of HISNav Dataset. Integration in motion model of control
data increase quality of both methods.

The experimental results of the CDXSLAM and
OpenVSLAM on the ground robot platform moved in the
university campus are shown in the Figure 9. We can see the
main advantage of CDXSLAM: its trajectory is more smooth
(see Figure 9b). It is important for some applications, for
example, map reconstruction.

D. REINFORCEMENT LEARNING FOR INDOOR OBJECT
NAVIGATION
Deep reinforcement learning methods lack the exploration
bonus to speed up the learning process in the long-distance
scenes. The most current promising approach is Random
Network Distillation [61], which we choose to compare with
our method. In the general case, the object navigation task
comes down to a point navigation task with the addition of
an exploration. We have been able to solve point navigation

VOLUME 8, 2020 195617

A. Staroverov et al.: Real-Time Object Navigation With Deep Neural Networks and Hierarchical RL

FIGURE 9. Experiment results with Clearpath Husky chassis in MIPT campus.

task with our framework, and as the exploration task solution,
we took as a baseline the SemExp [16] global policy module.
To speed up the training, for all experiments below we took
one scene from our dataset with multiple episodes with dif-
ferent start and goal points. The results on object navigation
task are present here (Figure 10). The result we demonstrate
is sufficient to quickly find the object, but it is still low in our
opinion. We have future plans to develop a better solution to
this problem, and the HISnav framework is able to do it.

FIGURE 10. HISNav at object navigation task.

We also tested our framework on more simple point navi-
gation task. It’s showed identical behavior on the first steps,
but then rapidly speed up, so we hope that on object nav-
igation task it should behave the same. In our experiment,
we compare vanilla PPO, RND, and HISNav framework at

point navigation task with the presence of sensor Gaussian
noise (mean = 0, σ = 1, intensity = 0.05) and action noise
(mean = 0, σ = 1, intensity = 0.2).

As a result (Figure 11), RND showed slightly worse than
vanilla PPO. RND’s intrisic rewards showed no gain in the
beginning of the training process and it decays to minimum
at the end. Our method at the end converge to optimal SPL
of 0.7 as PPO and RND, but achieve 0.6 as twice as fast, at 3M
rather than 6M.

FIGURE 11. PPO vs RND vs HISNav at point navigation task.

E. REAL-TIME PERFORMANCE OF THE PROPOSED
NAVIGATION FRAMEWORK
The performance of various modules developed by HISNav
Framevork was tested on two hardware platforms and sum-
marized in Table 5. Specification of the server and ground

195618 VOLUME 8, 2020

A. Staroverov et al.: Real-Time Object Navigation With Deep Neural Networks and Hierarchical RL

TABLE 5. Mean inference time of the modules of HISNav Framework, s.
For CDXSLAM we report total inference time as well as inference time of
keypoint detector HFNet and time of tracking separately (in parenthesis).

robot platforms are described in subsection VI-A. It shows
that the proposed approach provides a fairly high perfor-
mance on both server and mobile hardware platforms.

The best speed between instance segmentation models has
SOLOv2: about 15 frames per second (fps) on the ground
robot platform and 55 fps on server hardware. Considering
this and the high segmentation quality the SOLOv2 model
is the most suitable for use as part of the proposed HISNav
Framework.

CDXSLAM performance includes the performance of
HF-Net - neural network for extraction of global image
descriptors and keypoints with their descriptors and camera
pose tracking performance. HF-Net is faster on the server due
to faster GPU. However, tracking is faster on the ground robot
because its central processor has higher frequency. The latter
also explains the higher speed of OpenVSLAM on the robot
than on the server.

Results show that proposed control model increases the
performance of SLAM methods. Keypoints matching can
be performed faster with the motion model than with Bag
Of Words. Moreover, the improvement is critical since it
allows us to achieve real-time operation at a camera frequency
of 10 Hz.

Policy neural network used in reinforcement learningmod-
ule of HISNav Framework is fast both on server (200 fps) and
on the ground robot platform (111 fps).

VII. CONCLUSION AND DISCUSSION
In this article, we have proposed a new HISNav framework
for solving the problem of indoor navigation through an
RGB-D camera in the presence of noise, the source of which
can be the sensors and actuators of the robot. Our approach
implements the sim2real paradigm, following which we first
pre-train various modules of our framework using a simula-
tion environment, and then load the resulting models onto a
real robot. Our framework includes modern neural network
methods of instance segmentation, localization, andmapping,
which allow the robot to solve its subtasks in real-time. To
speed up the exploration of the environment and the search
for an object of interest, we have developed a new hierarchical

method of reinforcement learning with automatic generation
of subgoals, which allows us not to create a complex reward
function. To pre-train all subsystems, we developed a new
HISNav dataset using the photo-realistic Habitat environment
on the basis of which we were able to train models of seg-
mentation, localization, and agent strategies that are resistant
to external noise.

Experimental studies have shown the promise of our
framework. With the necessary refinement, we have shown
that modern neural network architectures and reinforcement
learning methods are suitable for solving important robotic
problems in real-time. Nevertheless, it should be noted that
further research is needed in this direction. Even though
we have shown the advantages of our architecture over the
existing learning solutions of the object navigation problem
in terms of work and learning speed, the solution’s quality
should be significantly improved.

There are several methods that are less resistant to noise
and less computationally efficient, but which, in some
cases, can reduce the distance traveled when searching for
objects. Increasing the SPL metric and the necessary refine-
ment of our framework for this is a direction for future
research. We believe that the critical point here should be
deeper integration of the RL and SLAM methods, which
we have already demonstrated by integrating the dynamics
model into the localization algorithms.

REFERENCES
[1] M. B. Alatise and G. P. Hancke, ‘‘A review on challenges of autonomous

mobile robot and sensor fusion methods,’’ IEEE Access, vol. 8,
pp. 39830–39846, 2020.

[2] M.Ghaffari Jadidi, J. VallsMiro, andG.Dissanayake, ‘‘Gaussian processes
autonomous mapping and exploration for range-sensing mobile robots,’’
Auto. Robots, vol. 42, no. 2, pp. 273–290, Feb. 2018.

[3] B. Fang, J. Ding, and Z. Wang, ‘‘Autonomous robotic exploration based
on frontier point optimization and multistep path planning,’’ IEEE Access,
vol. 7, pp. 46104–46113, 2019.

[4] E. I. Al Khatib, M. A. K. Jaradat, and M. F. Abdel-Hafez, ‘‘Low-cost
reduced navigation system for mobile robot in indoor/outdoor environ-
ments,’’ IEEE Access, vol. 8, pp. 25014–25026, 2020.

[5] S. Russell and P. Norvig, Artificial Intelligence: A Modern Approach.
New York, NY, USA: Pearson, 4th ed., 2020.

[6] X.Mu, B. He, X. Zhang, T. Yan, X. Chen, and R. Dong, ‘‘Visual navigation
features selection algorithm based on instance segmentation in dynamic
environment,’’ IEEE Access, vol. 8, pp. 465–473, 2020.

[7] Y. Zhang, R. Ge, L. Lyu, J. Zhang, C. Lyu, and X. Yang, ‘‘A virtual end-to-
end learning system for robot navigation based on temporal dependencies,’’
IEEE Access, vol. 8, pp. 134111–134123, 2020.

[8] M. Savva, A. Kadian, O. Maksymets, Y. Zhao, E. Wijmans, B. Jain,
J. Straub, J. Liu, V. Koltun, J. Malik, D. Parikh, and D. Batra, ‘‘Habitat:
A platform for embodied AI research,’’ in Proc. IEEE/CVF Int. Conf.
Comput. Vis. (ICCV), Oct. 2019, pp. 9339–9347.

[9] D. Batra, A. Gokaslan, A. Kembhavi, O. Maksymets, R. Mottaghi,
M. Savva, A. Toshev, and E. Wijmans, ‘‘ObjectNav revisited: On evalu-
ation of embodied agents navigating to objects,’’ 2020, arXiv:2006.13171.
[Online]. Available: http://arxiv.org/abs/2006.13171

[10] D. Mishkin, A. Dosovitskiy, and V. Koltun, ‘‘Benchmarking clas-
sic and learned navigation in complex 3D environments,’’ 2019,
arXiv:1901.10915. [Online]. Available: http://arxiv.org/abs/1901.10915

[11] R. Mur-Artal and J. D. Tardos, ‘‘Orb-SLAM2: An open-source SLAM
system for monocular, stereo, and RGB-D cameras,’’ IEEE Trans. Robot.,
vol. 33, no. 5, p. 1255–1262, Oct. 2017.

[12] A. Dosovitskiy and V. Koltun, ‘‘Learning to act by predicting the
future,’’ 2016, arXiv:1611.01779. [Online]. Available: http://arxiv.org/abs/
1611.01779

VOLUME 8, 2020 195619

A. Staroverov et al.: Real-Time Object Navigation With Deep Neural Networks and Hierarchical RL

[13] E. Wijmans, A. Kadian, A. Morcos, S. Lee, I. Essa, D. Parikh, M. Savva,
and D. Batra, ‘‘DD-PPO: Learning near-perfect PointGoal navigators
from 2.5 billion frames,’’ 2019, arXiv:1911.00357. [Online]. Available:
http://arxiv.org/abs/1911.00357

[14] D. Singh Chaplot, D. Gandhi, S. Gupta, A. Gupta, and R. Salakhut-
dinov, ‘‘Learning to explore using active neural SLAM,’’ 2020,
arXiv:2004.05155. [Online]. Available: http://arxiv.org/abs/2004.05155

[15] J. Schulman, F. Wolski, P. Dhariwal, A. Radford, and O. Klimov, ‘‘Prox-
imal policy optimization algorithms,’’ 2017, arXiv:1707.06347. [Online].
Available: http://arxiv.org/abs/1707.06347

[16] D. S. Chaplot, D. Gandhi, A. Gupta, and R. Salakhutdinov, ‘‘Object
goal navigation using goal-oriented semantic exploration,’’ 2020,
arXiv:2007.00643. [Online]. Available: http://arxiv.org/abs/2007.00643

[17] K. Greff, R. K. Srivastava, J. Koutník, B. R. Steunebrink, and
J. Schmidhuber, ‘‘LSTM: A search space odyssey,’’ IEEE Trans. Neural
Netw. Learn. Syst., vol. 28, no. 10, pp. 2222–2232, Oct. 2017.

[18] K. He, G. Gkioxari, P. Dollár, and R. Girshick, ‘‘Mask R-CNN,’’ in Proc.
IEEE Int. Conf. Comput. Vis., Jun. 2017, pp. 2961–2969.

[19] S. Ren, K. He, R. Girshick, and J. Sun, ‘‘Faster R-CNN: Towards real-time
object detection with region proposal networks,’’ in Proc. Adv. Neural Inf.
Process. Syst., 2015, pp. 91–99.

[20] A. Howard, M. Sandler, B. Chen, W. Wang, L.-C. Chen, M. Tan, G. Chu,
V. Vasudevan, Y. Zhu, R. Pang, H. Adam, and Q. Le, ‘‘Searching for
MobileNetV3,’’ in Proc. IEEE/CVF Int. Conf. Comput. Vis. (ICCV),
Oct. 2019, pp. 1314–1324.

[21] D. Bolya, C. Zhou, F. Xiao, and Y. Jae Lee, ‘‘YOLACT++: Better real-
time instance segmentation,’’ 2019, arXiv:1912.06218. [Online]. Avail-
able: http://arxiv.org/abs/1912.06218

[22] E. Xie, P. Sun, X. Song, W. Wang, X. Liu, D. Liang, C. Shen, and P. Luo,
‘‘PolarMask: Single shot instance segmentation with polar representa-
tion,’’ in Proc. IEEE/CVF Conf. Comput. Vis. Pattern Recognit. (CVPR),
Jun. 2020, pp. 12193–12202.

[23] S. Peng, W. Jiang, H. Pi, X. Li, H. Bao, and X. Zhou, ‘‘Deep snake for
real-time instance segmentation,’’ in Proc. IEEE/CVF Conf. Comput. Vis.
Pattern Recognit. (CVPR), Jun. 2020, pp. 8533–8542.

[24] J. Liang, N. Homayounfar, W.-C. Ma, Y. Xiong, R. Hu, and R. Urtasun,
‘‘PolyTransform: Deep polygon transformer for instance segmentation,’’ in
Proc. IEEE/CVF Conf. Comput. Vis. Pattern Recognit. (CVPR), Jun. 2020,
pp. 9131–9140.

[25] H. Chen, K. Sun, Z. Tian, C. Shen, Y. Huang, and Y. Yan, ‘‘Blend-
Mask: Top-down meets bottom-up for instance segmentation,’’ in Proc.
IEEE/CVF Conf. Comput. Vis. Pattern Recognit. (CVPR), Jun. 2020,
pp. 8573–8581.

[26] Y. Wang, Z. Xu, H. Shen, B. Cheng, and L. Yang, ‘‘CenterMask: Single
shot instance segmentation with point representation,’’ in Proc. IEEE/CVF
Conf. Comput. Vis. Pattern Recognit. (CVPR), Jun. 2020, pp. 9313–9321.

[27] X. Wang, T. Kong, C. Shen, Y. Jiang, and L. Li, ‘‘SOLO: Segment-
ing objects by locations,’’ 2019, arXiv:1912.04488. [Online]. Available:
http://arxiv.org/abs/1912.04488

[28] X. Wang, R. Zhang, T. Kong, L. Li, and C. Shen, ‘‘SOLOv2: Dynamic and
fast instance segmentation,’’ 2020, arXiv:2003.10152. [Online]. Available:
http://arxiv.org/abs/2003.10152

[29] K. He, X. Zhang, S. Ren, and J. Sun, ‘‘Deep residual learning for image
recognition,’’ in Proc. IEEE Conf. Comput. Vis. Pattern Recognit. (CVPR),
Jun. 2016, pp. 770–778.

[30] J. Dai, H. Qi, Y. Xiong, Y. Li, G. Zhang, H. Hu, and Y. Wei, ‘‘Deformable
convolutional networks,’’ in Proc. IEEE Int. Conf. Comput. Vis. (ICCV),
Oct. 2017, pp. 764–773.

[31] F. Yu, D. Wang, E. Shelhamer, and T. Darrell, ‘‘Deep layer aggregation,’’
in Proc. IEEE/CVF Conf. Comput. Vis. Pattern Recognit., Jun. 2018,
pp. 2403–2412.

[32] Z. Cai and N. Vasconcelos, ‘‘Cascade R-CNN: High quality object detec-
tion and instance segmentation,’’ IEEE Trans. Pattern Anal. Mach. Intell.,
early access, Nov. 28, 2019, doi: 10.1109/TPAMI.2019.2956516.

[33] J. Engel, V. Koltun, and D. Cremers, ‘‘Direct sparse odometry,’’ IEEE
Trans. Pattern Anal. Mach. Intell., vol. 40, no. 3, pp. 611–625, Mar. 2018.

[34] J. Zubizarreta, I. Aguinaga, and J. M. M. Montiel, ‘‘Direct sparse map-
ping,’’ IEEE Trans. Robot., vol. 36, no. 4, p. 1363–1370, Aug. 2020.

[35] N. Yang, L. von Stumberg, R. Wang, and D. Cremers, ‘‘D3VO: Deep
depth, deep pose and deep uncertainty for monocular visual odometry,’’ in
Proc. IEEE/CVF Conf. Comput. Vis. Pattern Recognit. (CVPR), Jun. 2020,
pp. 1281–1292.

[36] T. Shen, Z. Luo, L. Zhou, H. Deng, R. Zhang, T. Fang, and L. Quan,
‘‘Beyond photometric loss for self-supervised ego-motion estimation,’’ in
Proc. Int. Conf. Robot. Autom. (ICRA), May 2019, pp. 6359–6365.

[37] H. Zhan, C. Saroj Weerasekera, J. Bian, and I. Reid, ‘‘Visual odometry
revisited: What should be learnt?’’ 2019, arXiv:1909.09803. [Online].
Available: http://arxiv.org/abs/1909.09803

[38] R. Muñoz-Salinas and R. Medina-Carnicer, ‘‘UcoSLAM: Simultaneous
localization and mapping by fusion of keypoints and squared planar mark-
ers,’’ Pattern Recognit., vol. 101, May 2020, Art. no. 107193.

[39] M. Labbé and F.Michaud, ‘‘RTAB-Map as an open-source Lidar and visual
simultaneous localization and mapping library for large-scale and long-
term online operation,’’ J. Field Robot., vol. 36, no. 2, pp. 416–446, 2019.

[40] C. Campos, R. Elvira, J. J. G. Rodríguez, J. M. M. Montiel, and
J. D. Tardós, ‘‘ORB-SLAM3: An accurate open-source library for visual,
visual-inertial and multi-map SLAM,’’ 2020, arXiv:2007.11898. [Online].
Available: http://arxiv.org/abs/2007.11898

[41] S. Sumikura, M. Shibuya, and K. Sakurada, ‘‘OpenVSLAM: A versatile
visual SLAM framework,’’ inProc. 27th ACM Int. Conf.Multimedia (MM),
New York, NY, USA, 2019, pp. 2292–2295.

[42] P.-E. Sarlin, F. Debraine, M. Dymczyk, R. Siegwart, and C. Cadena,
‘‘Leveraging deep visual descriptors for hierarchical efficient local-
ization,’’ 2018, arXiv:1809.01019. [Online]. Available: http://arxiv.org/
abs/1809.01019

[43] A. Forechi, T. Oliveira-Santos, C. Badue, and A. F. D. Souza, ‘‘Visual
global localization with a hybridWNN-CNN approach,’’ in Proc. Int. Joint
Conf. Neural Netw. (IJCNN), Jul. 2018, pp. 1–9.

[44] P.-E. Sarlin, C. Cadena, R. Siegwart, and M. Dymczyk, ‘‘From coarse
to fine: Robust hierarchical localization at large scale,’’ in Proc.
IEEE/CVF Conf. Comput. Vis. Pattern Recognit. (CVPR), Jun. 2019,
pp. 12716–12725.

[45] J. Tang, L. Ericson, J. Folkesson, and P. Jensfelt, ‘‘GCNV2: Efficient
correspondence prediction for real-time SLAM,’’ IEEE Robot. Autom.
Lett., vol. 4, no. 4, pp. 3505–3512, Jul. 2019.

[46] J. Lee, S. Hwang, K. Lee, W. J. Kim, J. Lee, T.-Y. Chung, and
S. Lee, ‘‘AD-VO: Scale-resilient visual odometry using attentive dis-
parity map,’’ 2020, arXiv:2001.02090. [Online]. Available: http://arxiv.
org/abs/2001.02090

[47] D. Li, X. Shi, Q. Long, S. Liu, W. Yang, F. Wang, Q. Wei,
and F. Qiao, ‘‘DXSLAM: A robust and efficient visual SLAM sys-
tem with deep features,’’ 2020, arXiv:2008.05416. [Online]. Available:
http://arxiv.org/abs/2008.05416

[48] J. Baltes, D.-W. Kung, W.-Y. Wang, and C.-C. Hsu, ‘‘Adaptive computa-
tional SLAM incorporating strategies of exploration and path planning,’’
Knowl. Eng. Rev., vol. 34, p. e23, 2019.

[49] A. Chang, A. Dai, T. Funkhouser, M. Halber, M. Niebner, M. Savva,
S. Song, A. Zeng, and Y. Zhang, ‘‘Matterport3D: Learning from RGB-D
data in indoor environments,’’ in Proc. Int. Conf. 3D Vis. (3DV), Oct. 2017,
pp. 667–676.

[50] J. Sturm, N. Engelhard, F. Endres, W. Burgard, and D. Cremers, ‘‘A bench-
mark for the evaluation of RGB-D SLAM systems,’’ inProc. IEEE/RSJ Int.
Conf. Intell. Robots Syst. (IROS), Oct. 2012, pp. 573–580.

[51] M. Everingham, L. VanGool, C. K. I.Williams, J.Winn, andA. Zisserman,
‘‘The Pascal visual object classes (VOC) challenge,’’ Int. J. Comput. Vis.,
vol. 88, no. 2, pp. 303–338, Jun. 2010.

[52] A. Geiger, P. Lenz, and R. Urtasun, ‘‘Are we ready for autonomous driving?
The KITTI vision benchmark suite,’’ in Proc. IEEE Conf. Comput. Vis.
Pattern Recognit. (CVPR), Jun. 2012, pp. 3354–3361.

[53] H. Zhan, C. Saroj Weerasekera, J. Bian, and I. Reid, ‘‘Visual odometry
revisited: What should be learnt?’’ 2019, arXiv:1909.09803. [Online].
Available: http://arxiv.org/abs/1909.09803

[54] M. Grupp. (2017). EVO: Python Package for the Evaluation of Odometry
and SLAM. [Online]. Available: https://github.com/MichaelGrupp/evo

[55] Z. Wang, T. Schaul, M. Hessel, H. van Hasselt, M. Lanctot, and
N. de Freitas, ‘‘Dueling network architectures for deep reinforcement
learning,’’ in Proc. Int. Conf. Mach. Learn., 2016, pp. 1995–2003.

[56] S. Fujimoto, H. van Hoof, and D. Meger, ‘‘Addressing function approxi-
mation error in actor-critic methods,’’ 2018, arXiv:1802.09477. [Online].
Available: http://arxiv.org/abs/1802.09477

[57] A. Levy, G. Konidaris, R. Platt, and K. Saenko, ‘‘Learning multi-level
hierarchies with hindsight,’’ 2017, arXiv:1712.00948. [Online]. Available:
http://arxiv.org/abs/1712.00948

[58] Y. Wu, A. Kirillov, F. Massa, W.-Y. Lo, and R. Girshick. (2019).
Detectron2. [Online]. Available: https://github.com/facebookresearch/
detectron2

195620 VOLUME 8, 2020

http://dx.doi.org/10.1109/TPAMI.2019.2956516

A. Staroverov et al.: Real-Time Object Navigation With Deep Neural Networks and Hierarchical RL

[59] K. Chen et al., ‘‘MMDetection: Open MMLab detection toolbox and
benchmark,’’ 2019, arXiv:1906.07155. [Online]. Available: http://arxiv.
org/abs/1906.07155

[60] X. Shi, D. Li, P. Zhao, Q. Tian, Y. Tian, Q. Long, C. Zhu, J. Song,
F. Qiao, L. Song, Y. Guo, Z. Wang, Y. Zhang, B. Qin, W. Yang,
F. Wang, R. H. M. Chan, and Q. She, ‘‘Are we ready for service robots?
The OpenLORIS-scene datasets for lifelong SLAM,’’ in Proc. IEEE Int.
Conf. Robot. Autom. (ICRA), May 2020, pp. 3139–3145.

[61] Y. Burda, H. Edwards, A. Storkey, and O. Klimov, ‘‘Exploration by ran-
dom network distillation,’’ 2018, arXiv:1810.12894. [Online]. Available:
https://arxiv.org/abs/1810.12894

ALEKSEY STAROVEROV was born in Russia.
He received the M.S. degree from Bauman
Moscow State Technical University, in 2019. He is
currently pursuing the Ph.D. degree in computer
science with the Moscow Institute of Physics and
Technology. His research thesis is the methods
and algorithms for the automatic determination
of subgoals in a reinforcement learning problem
for robotic systems. Since October 2019, he has
been working as a Researcher with the Cognitive

Dynamic System Laboratory, Moscow Institute of Physics and Technology.
His research interests include reinforcement learning, deep learning, and
robotic systems.

DMITRY A. YUDIN was born in Belgorod,
Russia, in 1988. He received theDiploma degree in
automation engineering of technological processes
and production, in 2010, and the Ph.D. degree
in computer science from Belgorod State Tech-
nological University named after V. G. Shukhov,
Belgorod, in 2014.

From 2009 to 2019, he was a Researcher and an
Assistant Professor with the Technical Cybernetics
Department, Belgorod State Technological Uni-

versity named after V. G. Shukhov. Since 2019, he has been a Postdoctoral
Researcher with the Cognitive Dynamic System Laboratory and the Head
of the Intelligent Transport Laboratory, Moscow Institute of Physics and
Technology, Moscow, Russia. He is the author of three books and more than
100 articles. His research interests include computer vision, deep learning,
and robotics.

Dr. Yudin was a recipient of the IEEE Czechoslovakia Section Young
Scientist Paper Award in 2017 and the Grant of the President of the Russian
Federation for state support of young Russian scientists from 2017 to 2018.

ILYA BELKIN received the B.S. degree in com-
puter science from theMoscow Institute of Physics
and Technology, Moscow, Russia, in 2019, where
he is currently pursuing the master’s degree in
methods and technologies of artificial intelligence.

From June 2018 to September 2018, he was
a Data Science Intern with the Huawei Russian
Research Center. FromOctober 2018 to July 2019,
he was a Computer Vision Intern with ABBYY
Research and Development Russia. From June to

the present, he is a Researcher and a Developer with the Intelligent Transport
Laboratory, Moscow Institute of Physics and Technology. His research
interests include computer vision, deep learning, and robotics.

VASILY ADESHKIN was born in Nizhnyaya Toya,
Khakas Republic, Russia. He received the B.S.
degree in applied mathematics and physics from
the Moscow Institute of Physics and Technology,
Moscow, Russia, in 2020, where he is currently
pursuing the master’s degree in methods and tech-
nologies of artificial intelligence.

Since November 2019, he has been an Intern
Data Scientist at the Cognitive Dynamic System
Laboratory,Moscow Institute of Physics and Tech-

nology. His research interests include computer vision and deep learning.

YAROSLAV K. SOLOMENTSEV received the
M.S. degree in computer science from theMoscow
Institute of Physics and Technology, Moscow,
Russia, in 2020, where he is currently pursuing the
Ph.D. degree in computer science.

His research interests include computer vision,
and the methods of simultaneous localization and
mapping.

ALEKSANDR I. PANOV received the M.S. degree
in computer science from the Moscow Institute of
Physics and Technology,Moscow, Russia, in 2011,
and the Ph.D. degree in theoretical computer sci-
ence from the Institute for Systems Analysis,
Moscow, in 2015.

Since 2010, he has been a Research Fellow
with the Federal Research Center ‘‘Computer Sci-
ence and Control,’’ Russian Academy of Sciences.
Since 2018, he has been the Head of the Cognitive

Dynamic System Laboratory, Moscow Institute of Physics and Technology.
He is the author of three books and more than 90 articles. His research
interests include behavior planning, reinforcement learning, semiotics, and
robotics.

VOLUME 8, 2020 195621

