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ABSTRACT Detection of Black Hole attacks is one of the most challenging and critical routing security
issues in vehicular ad hoc networks (VANETs) and autonomous and connected vehicles (ACVs). Malicious
vehicles or nodes may exist in the cyber-physical path on which the data and control packets have to be
routed converting a secure and reliable route into a compromised one. However, instead of passing packets
to a neighbouring node, malicious nodes bypass them and drop any data packets that could contain emergency
alarms. We introduce an intelligent black hole attack detection scheme (IDBA) tailored to ACV.We consider
four key parameters in the design of the scheme, namely, Hop Count, Destination Sequence Number, Packet
Delivery Ratio (PDR), and End-to-End delay (E2E). We tested the performance of our IDBA against AODV
with Black Hole (BAODV), Intrusion Detection System (IdsAODV), and EAODV algorithms. Extensive
simulation results show that our IDBA outperforms existing approaches in terms of PDR, E2E, Routing
Overhead, Packet Loss Rate, and Throughput.

INDEX TERMS ACVs, VANETs, MANETs, detection, black hole, AODV, routing, secure, communication.

I. INTRODUCTION
VANETs were approved by the Federal Communications
Commission (FCC) in 2002 [1]. VANETs permit autonomous
(self-driving or partial self-driving) vehicles to mutually
exchange data packets and sensitive messages (emergency
alarms) with other vehicles and roadside units (RSUs)
in the form of Cooperative Awareness Messages (CAMs)
[2], [3]. Three types of communication that exist in VANETs
are vehicle to vehicle (V2V), vehicle to infrastructure
(V2I), and infrastructure to infrastructure (I2I) as shown
in Figure 1 [4]. VANETs seek to provide security measures
and privacy and safety to vehicles and drivers by exchanging
alarm messages and CAMs [5], [6]. Due to some properties
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of VANETs, they are vulnerable to various routing (network
layer) attacks like Black Hole, Rushing, Denial of Service
(DoS), and Grey hole [7]. VANETs exhibit characteristics
like high mobility, dynamic topology, and unbound commu-
nication medium. These features make security a challenging
issue for autonomous vehicles [8], [9].

Autonomous vehicles are considered to be one of the
greatest revolutions in the automobile and research indus-
try [10]. They are equipped with On-Board Units (OBUs)
and Application Units (AUs). These parts play a key role
in communication between the vehicles and the RSUs to
create and mutually exchange CAMs to decrease the num-
ber of accidents that could occur as a result of human
mistakes [11]–[14].

VANETs are a sub-class of Mobile ad hoc networks
(MANETs), inheriting most of their characteristics. The main
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FIGURE 1. Basic VANET architecture.

similarity between them is the absence of a backbone infras-
tructure in the network for messages exchange. Moreover,
the continuously changing topology is another common fac-
tor. The communication range between the nodes is also
restricted, which means that each mobile node needs the
assistance of intermediate nodes to send data towards the
destination in a multi-hop fashion [15].

Nevertheless, VANETs have several characteristics that
vary from MANETs. The movement of nodes in MANETs is
randomwhile in VANETs, nodes are supposed to travel along
the roads. Also, every vehicle is equipped with On-Board
Sensors. These sensors are used for obtaining the vehicles’
speed and location. Due to these characteristics, implement-
ing secure routing in VANETs, which leads to secure com-
munication is a challenging issue [16]–[19].

Ad hoc onDemandDistanceVector (AODV) is a renowned
and mostly configured routing protocol for ad hoc networks.
Two main control messages that AODV uses for route dis-
covery are route request (RREQ) and route reply (RREP).
When the source needs to send data to communicate with the
destination, and a route is not available, then it floods RREQ
messages to its neighbours. The Neighbours reply with RREP
if they have the best path to the destination. If they do not have
one, then they further flood RREQ to their neighbours and
the route discovery process continues until RREQ reaches
the destination or the intermediate node which has got the
route. The source unicast data packets upon receipt of RREP.
Although AODV offers reactive routing and route discovery,
however, it lacks security features (AODV-RFC 3561).

There are a variety of attacks that can harm data com-
munication. Some attacks are internal which are initiated
by an authorized malicious vehicle and some are external
that are launched by a non-authorized malicious vehicle. The
attacks can also be categorized as passive such as eaves-
dropping and active in particular routing attacks that directly
disrupts data communication. One of the routing attacks in
the field of ad hoc networks is a Black Hole attack, shown
in Figure 2. During a black hole attack, fake RREP is sent
as responses to legitimate RREQ requests without consulting
the routing table. The fake RREP craft parameters to the
maximum value of the destination sequence number and the

FIGURE 2. The black hole attack.

minimum available to the hop count. That makes an adversary
to appear as the one preserving the best path to the destina-
tion. This is because AODV will interpret this node as the
next hop in the path. The source which receives the fake
RREP forwards all data packets to the Black Hole. These
packets are then dropped instead of being forwarded to the
destination [20]–[24].

This attack might have devastating effects in VANETs
as each data packet, which may include alarms as well as
emergency messages, needs to be delivered to the destination
within limited time constraints [25]–[28]. The higher the
speed, the more dangerous the attack is, as dropping all or
even some data packets in high dynamic scenarios causes
failure in the end to end communication that can lead to
accidents and fatalities.

A lot of research and experiments have been performed
on the isolation and detection of Black Hole Attacks
for MANETs through AODV. Due to many similarities
that exist between MANETs and VANETs, solutions pro-
posed for MANETs, are extended to VANETs by resear-
chers [29]–[31]. Since we are considering ACVs, which are
a sub-class of VANETs and carry all of their features, solu-
tions proposed in the literature can also be considered for
ACVs. However, one crucial aspect of ACVs is autonomy,
i.e. a reduction in the degree of human intervention in driv-
ing. When it comes to driverless cars the attack surface is
expanded due to the different levels of control on car safety
and operational functions than those controlled by drivers.
Regarding this important factor, there is a big research gap
in the field of ACVs. Keeping this aspect into consideration,
solutions for the detection of Black Hole attacks that have
already been proposed for MANETs and VANETs cannot be
directly applied to ACVs. Rather, some improvements need
to be made.

In this paper, we propose a detection algorithm IDBA. All
Parameters that Black Hole exploits are precalculated in this
technique. To make the detection intelligent, 802.11p is used
at the mac layer. Since 802.11p is employed for Intelligent
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Transport Systems (ITS), that is why any technique utilising
802.11p would be named as intelligent by definition.

Additionally, four main parameters that have never been
combined for Black Hole detection are collectively con-
figured in our security algorithm. These are Hop Count,
Destination Sequence Number, Packet Delivery Ratio, and
End-to-End delay.

The rest of the paper is structured as follows: Section II
gives existing works published in public literature. Section III
gives mathematical modeling of the Black Hole attack.
Section IV is based on the overall proposed methodology.
In Section V, simulation results are given. Section VI presents
the conclusions and future directions for research.

II. BACKGROUND AND RELATED WORK
Security is considered a main area of research in the
domain of MANETs and VANETs. In the past years, various
researchers took keen interest and gave several solutions
for the improvement of security mechanisms in routing for
Ad hoc Networks. Table 1 provides a brief overview of the
comparison among the different state of the art Black Hole
detection techniques.

In [32], Hortelano et al. elaborated on the watchdog mech-
anism for VANETs. In their mechanism, if source node A
transmits some packets to intermediate node B, then A can
verify if B forwarded the packets or not by continuously
listening to node B’s transmission. Every vehicle utilises a
trust neighbour level for each neighbour vehicle. This can
be calculated by the ratio of the packets sent to a neighbour
to packets that are forwarded by the neighbour. Hence if a
malicious vehicle continuously drops packets and it reaches
the calculated level, then it is declared as a Black Hole.

In [33], Delkesh et al. proposed a heuristic approach to
detecting Black Hole attacks inMANETs. The technique was
used for MANET but equally applies to VANET as this is a
heuristic approach and offers a generalised scheme based on
fake IP address crafting techniques. The technique is often
used to send forged packets in the AODV route discovery.
Since a Black Hole never consults its routing table before
sending back a reply to the requesting node, as a result,
a Black Hole is trapped by replying to the requested fake
destination IP address which never existed in the network.
In this way detection of both single and cooperative Black
Hole attacks occurred.

In [34], Daeinabi et al. developed an algorithm that was
based on car monitoring. In their solution, vehicles are
grouped into different clusters led by a cluster head (CH)
which is the most reliable car in each cluster. Whenever any
vehicle joins the cluster, the verifier begins their scanning
about the behaviors of the joined vehicle. If the verifier
notices that the vehicle is continuously dropping packets,
then it reports to CH. Subsequently, CH decreases the trust
value of the vehicle and also informs the neighbours of the
vehicle. If somehow that trust value becomes lesser than a
pre-defined threshold, CH directly reports to a certificate
authority (CA), and the CA adds the vehicle to the Black List.

It then informs all the vehicles to stop communicating with
that Black Listed node. The experimental result shows that
the proposed solution can detect malicious attackers at very
high movements. In [35] the prevention mechanism is added
to [34], and the selection of the verifier is improved in [36].

In [35], Kadam et al. made improvements to the algo-
rithm proposed in [34] by adding the prevention and isolation
mechanism of a Black Hole from the network. Almost the
entire algorithm proposed in [35] is the same as in [34].
The difference lies in the additional parameter used for the
isolation of an attacker and the alarm used, which is contained
in the identity of the malicious node broadcasted across the
network. The proposed technique could prevent and detect
attackers at high mobility compared to [34].

In [36], Uzma et al. enhanced the detection mechanism
proposed in [34] by improving the selection of the verifiers
based on Load, Distrust Value, and Distance. Simulation
results have shown improvements in performance metrics as
compared to those shown in [34].

In [37], Yao et al. derived a solution for the detection of
selfish nodes for Quality of Service and Optimized Link State
Routing (QOS-OLSR). Each car utilises three parameters
of trust. Every vehicle estimates its direct trust value to its
neighbour’s vehicle. Then a recommendation value is calcu-
lated based on a previously calculated trust value. Thirdly the
comprehensive trust value is made by combining the direct
trust value and recommendation value. If a vehicle’s compre-
hensive calculated trust value is less than the threshold, then
the neighbour vehicle is declared as an attacker.

In [38], Wahab et al. used the concept of watchdog tech-
nique to detect selfish behaviors with a Black Hole. The
technique proposed has got five phases. The first phase is
known as the reputation phase for calculation. In this phase,
initial reputation values are given to the vehicles. Multipoint
Relay (MPR) vehicles are chosen by the cluster heads to
forward data to different clusters. Next, is the watchdog
phase for monitoring in which cluster members analyse the
work of MPR nodes. The third phase is known as the voting
phase based on aggregation, CH uses a voting technique and
collects analysed data from the cluster members to check the
trustworthiness of MPR. The fourth phase is the Tit for Tat
phase for cooperation and regulation in which the reliability
of MPR is checked by comparing it with a precalculated
threshold value. The fifth phase is the information propaga-
tion phase, CH shares information about MPR to the cluster
members and other CHs. Based on this, a member vehicle
marks those vehicles as a Black Hole which were determined
as malicious.

In [39], Baiad et al. gave a solution by utilising a watch-
dog scheme in an efficient way in which monitoring has
been deployed to both network and data link layers for the
detection of a Black Hole that targets the Multipoint Relays
(MPRs). Authors in [39] used the mechanism in [40] where
the monitoring is deployed on the network layer to avoid
a wrong accusation of innocent nodes i.e. loss of packets,
because of normal collisions. So to minimise the level of the
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TABLE 1. Comparison among various black hole detection techniques

false-positive ratio, the information about the detection of the
attacks is further scanned with the help of data link moni-
toring. If the RTS sent are different from the CTS received,
then packet losses have occurred due to the normal collisions.
False positives escalated because of an increase in packet loss
caused by the normal collision of legitimate nodes. In [41],
the authors expanded their cross-layer detection scheme by

merging the physical layer monitoring process side by side
with the MAC and network layer monitoring.

In [42], Arwind et al. designed an algorithm for Gray and
Black Hole nodes detection in MANETs. They implemented
their security on the AODV MAC layer. They introduced
two control packets, Response sequence (Rseq) and Code
Sequence (Cseq). When any source wants to discover a route
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and access a channel, it first sends Cseq to all its neighbours,
and in turn, the neighbour replies with Rseq. If both Cseq
and Rseq match a particular neighbour then the connection
to the network layer is established; otherwise, a source node
discards that neighbour node and also informs others about
that neighbour as a malicious node.

In [43], Li et al. gave a Trust Management Scheme in
which the reliability of data in VANETs is evaluated by
detecting the attacker nodes. In this algorithm, data was
collected from various vehicles to make a prediction for
data to be trusted. The solution is divided into two steps:
analysis of data and management of the trust. In the analysis
of data, data is collected from various vehicles and utilising
Dempster-Shafer theory.

In [44], Alheeti et al. gave an intrusion detection sys-
tem (IDS) for the detection of DoS and Black Hole attacks
in VANETs. This work was proposed for the security of
communication in autonomous cars. The algorithm is based
on Linear Discriminant Analysis (LDA) and Quadratic Dis-
criminant Analysis (QDA) for the prediction of the attack,
which is based on the observation of the vehicle’s behaviour.
The results were generated by carrying out data fuzzification,
which indicated the behaviour of different vehicles as normal
or malicious. After the detection process, different mobility
scenarios were generated.

In [45], Alheeti et al. developed an Intrusion Detection
System (IDS) which was dependent on a dataset gathered
from the trace files that were extracted by running the
NS2 coding in the VANET environment. Trace files were
divided into ‘‘basic trace’’, ‘‘internet protocol trace’’ and
‘‘AODV trace’’. The characteristics extracted from the trace
files were utilised to evaluate the proposed solution. These
features were used as the criteria to decide whether the
behaviour of vehicles is malicious or normal. A statistical
method was used for feature extraction named Proportional
Overlapping Scores (POS).

In [47], Cai et al. proposed a path based solution for Gray
and Black Hole attack detection. In the proposed work, every
node keeps a FwdPktBuffer. The algorithm executes over
three stages. In the first stage, forwarded packets are added
into the packet buffer, and the source node starts listening.
In the second stage, when a neighbour forwards packets
and is listened by the source node, the stored packets from
the buffer of the source node will be released. In the third
stage, the source node compares the overheard rate with the
precalculated threshold value to declare the neighbour as a
legitimate node or an attacker, who continuously drops the
data packets.

In [48], Tyagi et al. introduced a three-phase algorithm
for the detection of Black Hole. Under the first phase, RSU
plays the role of a certificate authority (CA) which maintains
and generates a public and private key as well as certificates
for the vehicles. Before the start of any communication,
vehicles have to be verified from the RSU. In the second
phase, the source broadcasts RREQ along with the correct
certificate, nonce encryption, and destination’s public key.

The destination sends RREP back with the source’s public
key. In the third phase, Black Hole vehicles are detected
based on the threshold of the destination sequence numbers,
extracted from the RREPs, which are stored in the data struc-
ture used in the algorithm called Heaps.

III. MATHEMATICAL PROOF OF VEHICLE’S ISOLATION
FROM COMMUNICATION UNDER BLACK HOLE ATTACK
In this section, we present the mathematical modeling of
the Black Hole attack with emphasis placed upon vehicle
isolation and presence attributes during the attack.

A. SYSTEM SCENARIO ASSUMPTIONS AND
SUPPOSITIONS
In our work, we assume that all vehicles are equally dis-
tributed in an urban scenario over a 2-dimensional area. The
radius of transmission r is the same for all vehicles. Vehicle v
is considered as a neighbour node of vehicle u, if and only if,
a distance of transmission between them is ≤ r. All vehicles
have a constant speed. Source and destination within 2 hops
having three lanes are considered, as shown in Figure 3.
By taking 2-hops, each vehicle is supposed to detect the
attacker within 2-hop cars surrounding, which eliminates the
probability for a high-speed attacker to escape the range
before detection. All vehicles run a single algorithm that
participates in communication. It is assumed that there is
little or even no intervention of humans in driving. We fur-
ther assume two types of vehicles named Black Hole and
Cooperative. Cooperative vehicles are those that follow the
instructions of routing protocol in the route discovery process
and data packets forwarding. In contrast, Black Hole vehicles
violate the instructions of the routing protocol, hence drop
data packets. T(V) is used to denote a network, where

V = VCUVB (1)

FIGURE 3. System scenario.

B. VEHICLE BEHAVIOR’S STOCHASTIC PROPERTIES
A random process is defined to be a Markov process if for
a given value of W(t), the value of W(a) for a > t does not
depend on the values of W(b) for b < t [49]. This means
future results of the process do not depend on past values
but present values. If a stochastic or random process at time
tn is state Wn, the future state Wn+1 at time tn+1 depends
only on the present state Wnand not on the past states Wn−1,
Wn−2,......., W0. The sequence of states {Wn} is called a
Markov chain. Any vehicle can be modeled according to the
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TABLE 2. 2-state markov chain’s probability transition matrix

proposed model as in the connected state (CS) and isolated
state (IS). A vehicle can be either in any one of these states
in the presence of Black Hole. A two-state Markov model is
given in Figure 4. Variables x and y for the vehicle K at time
instant i are formally defined as:

x = P[Ki = IS|Ki−1 = CS]

y = P[Ki = CS|Ki−1 = IS] (2)

FIGURE 4. Network node’s 2-state transition model.

So the state of K as any instant i is given by

Ki =

{
CS, if y = VC ≥ 1 and x = VB = 0
IS, otherwise

(3)

where VC and VB represent the number of Cooperative and
Blackhole vehicles.

Let’s suppose that the probability of the two-state model
be PS = [PCS,PIS]. By solving a set of linear equations (2)
and (3), this vector can be obtained.

D.PS = PS (4)

Here probability transition matrix is represented by D.

PCS + PIS = 1 (5)

By comparing and solving equations (4) and (5) we get

PCS =
y

x+ y
and PIS =

x
x+ y

(6)

From (6) we can say that PCS =
VC

VC+VB
= PC and PIS =

VB
VC+VB

= PB.

C. VEHICLE’S ISOLATION UNDER BLACK HOLE ATTACK
(PROBABILISTIC MODELING)
LEMMA
A vehicle V is isolated from the network if at least it has one
Black Hole neighbour, provided it has n neighbours [49].

According to Lemma, let V(IS) denotes that the vehicle is
in an isolated state, then, the vehicle probability being in the

isolated state provided that the vehicle has neighbours is given
by:

Pr
(
V(IS)|D (v) = d

)
= Pr (VB ≥ 1) = 1− (1− PB)d

(7)

D. VEHICLE’S CONNECTIVITY PROBABILISTIC MODEL
WITH THE NETWORK
A vehicle is in the connected state with the network if it has
q-cooperative neighbours where 1 ≤ q ≤ d. Given vehicle v
with degree D(v) = d, v is said to be in a q-connected
state to the network if D(c,v) = q which is only true if v
has q cooperative neighbours and no Black Hole neighbours
where D(c,v) denotes the degree of cooperation of vehicle v.
Hence the probability of vehicle v being q connected provided
D(v) = d is given by:

Pr
(
D(c,v) = q|D(v) = d

)
= Pr (VC = q,VB = 0|D = d)

(8)

According to Binomial Distribution

Pr
(
D(c,v) = q|D(v) = d

)
=

(
d
q

)
PqC (9)

where the probability of cooperative neighbours is repre-
sented by PC = 1− PB which can also be written as

Pr
(
V(CS)|D(v) = d

)
=

(
d
q

)
PqC (10)

Suppose that N number of vehicles exist in a networkM, then
the condition which is necessary to be fulfilled for a network
to remain in the q-connected state is that every vehicle must
have at least q cooperative neighbours. Hence the probability
for a vehicle to have at minimum q cooperative neighbours is
given by:

Pr
(
D(c,v) ≥ q

)
=
{
1− Pr

(
D(c,v) < q

)}N (11)

POISSON’S MODEL TO PROVE MAXIMUM NETWORK
CONNECTIVITY WHEN PB = 0
To calculate neighbour vehicle’s distribution Pr(D(u)=d),
we split a network of area A into N smaller blocks where
each block size is equal to the vehicle’s physical size and
N represents the number of vehicles in area A. The distribu-
tion of Poisson can be used to model a vehicle’s distribution
as given:

Pr
(
D(v) = d

)
=
µd

d
e−µ (12)

where an average number of vehicles is denoted by µ within
the area and vehicle’s transmission range. Value ofµ = ρπr2

and ρ = N
A which denotes the vehicle’s density in the network

of area A.
Applying the Total Probability Law on (9) and (12), we get

Pr
(
D(c,v) = q|D(v) = d

)
=

N−1∑
d=q

(
d
q

)
(1− PB)q

µd

d
e−µ

(13)
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Pr(D(c,v) < q) can be derived using (13) as follows:

Pr
(
D(c,v) < q|D(v) = d

)
≈

q−1∑
m=0

∑N−1

d=q

(
d
m

)
(1− PB)m

µd

d
e−µ (14)

≈
0(q,µ(1− PB))

0(q)
(15)

To obtain the probability of a vehicle to have at least q coop-
erative degree vehicles, substituting (15) in (11) as follows:

Pr
(
D(c,v) ≥ q

)
=

{
1−

0(q,µ(1− PB))
0(q)

}N
(16)

where

0 (α, β) = (α − 1)!e−β
α−1∑
i=0

(
β i

i!

)
αεN gives the incomplete gamma function and 0 (q) =
(q− 1)! gives the complete gamma function. Nevertheless,
the network can have maximum connectivity if and only if
PB = 0 provided that A, N, and q have fixed values.

IV. PROPOSED TECHNIQUE
Our proposed solution IDBA uses four main parameters in
which two of them are sequence number and hop count. The
Black Hole exploits these two to damage the availability and
integrity of the network. The other two parameters are outputs
of the network performance that are degraded as a result of
the attack on the first two parameters. So by combining these
four parameters and precalculating the thresholds regarding
the future actions of the Black Hole, we achieved to detect the
attack according to Algorithm 1more efficiently as compared
to others’ work. IDBA process is shown in Figure 5.

A. IDBA DETECTION PARAMETERS
1) SEQUENCE NUMBER
The sequence number is one of the main metrics of AODV
based on which a node decides which route it has to mark
fresh to transmit its data. Black Hole compromises this met-
ric by setting the destination sequence number to a max-
imum possible value to elude the source to believe that a
different node than the legitimate should be the next hop.
Algorithm 2 has been used to find the threshold for the desti-
nation sequence number and make the distinction between an
attack or not manifested in the network. Any Precalculations
of the destination sequence numbers generated both by the
normal nodes and the malicious nodes are done according
to Algorithm 2.

2) HOP COUNT
The second main metric considered in our work is the hop
count value. Lower count leads to a fresher route. A Black
Hole advertises this metric as low as 2 side by side with the
destination sequence number to the source to mark itself as
next-hop [50].

FIGURE 5. IDBA detection process.

3) PACKET DELIVERY RATIO AND END TO END DELAY
The threshold values for these two parameters are calculated
according to the procedure adopted in [33]. Advantage has
been taken of the claimmade by the authors that their solution
can also be considered for a majority of ad hoc networks
under the hierarchy of which ACVs also fall [51]–[54].

V. SIMULATION ENVIRONMENT, PARAMETERS, AND
RESULTS
Simulations are performed for our proposed technique using
NS2 (v2.34) network simulator 2.We compared our approach
with B-AODV, Ids-AODV, and EAODV algorithms. EAODV
was offered for MANETs. However, authors of [33] addi-
tionally claimed that the technique could be applied to a vast
majority of ad hoc networks. Advantage has been taken of
their argument as discussed in the previous paragraph, and
results are compared to [33]. Also, if the attacker had scanned
a network, EAODV would have failed, would not be the case
when IDBA was considered in the same scenario.

A. PACKET DELIVERY RATIO (PDR)
PDR is the ratio of the total number of data packets received
to the total number of data packets sent as given in Eq. 17.

PDR =

∑
PR∑
PS

(17)

B. END-TO-END DELAY (E2E)
E2E is the average time required for the data packets to
be delivered from the source to the destination, as shown
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Algorithm 1 Black Hole Detection
1: Input: n, αth, βth, γth, Hc, ID_RREPz_B
2: begin

for (i = 1; i <= n; i++)
3: if {(DS_RREPz > αth)&& (Hc == 2)} then

G← RREPz
goto step 5
else

4: goto start
end

5: if {(PDR < βth)&& (E2E > γth)} then
6: B← G
7: RREQ← ID_RREPz_B
8: Alarm← RREQ
9: Flood Alarm

else
10: AODV();

end
end
end

Algorithm 2 Sequence Number Threshold Precalculation
1: Input: Sum, z, DS_RREPz, DS_RREQ, n
2: start
3: Sum← 0

for each reply [z] do
if (DS_RREPz > DS_RREQ) then

4: D← DS_RREPz – DS_RREQ
5: Sum← Sum+D

D← 0
else

6: AODV();
end
end

7: αth←
Sum
n

end

in Eq. 18.

E2E =

∑
(TA − TS)∑

C
(18)

C. ROUTING OVERHEAD (ROH)
ROH is defined as the number of packets that need to be
processed and routed during network communication.

D. THROUGHPUT
It is the average number of data packets delivered to the
destination by the source.

E. PACKET LOSS RATE (PLR)
PLR is defined as the difference between the data packets sent
to the data packets received.

PLR =
∑

PS −
∑

PR (19)

TABLE 3. Notations and descriptions

TABLE 4. Notations and descriptions

Fig. 6 shows the variations in the PDR according to the
number of nodes and gives a maximum value when nodes
are 60. Nevertheless, for every node check, IDBA gives a high
PDR rate than EAODV and other algorithms. Variations in
the values of PDR are due to the network conditions. There
were pre-defined thresholds used in our technique to check
whether the path is clear from the attack, for the packets
which are to be routed to the destination. Simulation results
in Fig. 6 show that PDR with IDBA gives better results as
compared to other algorithms.
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FIGURE 6. Packet delivery ratio in BAODV, idsAODV, EAODV and IDBA.

FIGURE 7. Throughput in BAODV, idsAODV, EAODV and IDBA.

TABLE 5. Simulation parameters

High PDR gives low E2E and optimal throughput. It is
thus specifically evaluated in Fig, 7, and Fig. 8 that E2E
and throughput give optimised results where PDR was higher
in Fig. 6. This means that maximum packets are transmitted
to the destination with less latency as compared to EAODV
and other algorithms.

Fig. 9 shows the number of packets dropped. Since in
BAODV, there were 4 malicious nodes without a detection
algorithm, so the dropped packets reached 89%. IDBA, when
under attack, gave a lower packet dropped rate as compared
to BAODV and two detection algorithms i.e. idsAODV and
EAODV. This can also be analysed from Fig.6 as the greater
the PDR, the lower will be the rate of packets dropped.

FIGURE 8. End-to-End delay in BAODV, idsAODV, EAODV and IDBA.

FIGURE 9. The packets loss rate in BAODV, idsAODV, EAODV and IDBA.

FIGURE 10. Routing overhead in BAODV, idsAODV, EAODV and IDBA.

Fig. 10 indicates that IDBA requires less number of pack-
ets that needs to be routed for network communication and
hence reduces processing overhead as compared to other
algorithms.

VI. CONCLUSION AND FUTURE DIRECTIONS
Detection of the BlackHole attacks is becoming an indispens-
able issue with the exponential increase in car automation.
Black Hole directly impacts communication, which is unac-
ceptable when it comes to ACVs, where delay even in a single
data packet can cause accidents. Thus, the deterring of these
attacks is imperative.

To ensure secure autonomous vehicular applications,
i.e. comfort, safety, and transport of the vehicles and
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passengers, we proposed and tested our solution which gave
more satisfactory results in terms of PDR, E2E, PLR, ROH,
and Throughput against existing solutions. For this reason,
our technique could be deployed for real-world scenarios that
would minimise the number of accidents.

The proposed technique can be enhanced by combining
smart clustering techniques to deter Black Hole Attacks.
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