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ABSTRACT In this technical paper, we design and implement an optical camera communication system
for real-time remote monitoring of patient’s heart rate (HR) and oxygen saturation (SpO2) data. The data
is collected and transmitted by a patch circuit which comprises a MAX30102 sensor and an RGB LED
array. A close circuit television camera is used not only for surveillance but also for receiving the data
simultaneously. The LED is modulated using color intensities, and the data can be retrieved regardless
of any orientations of the LED array. We propose a neural network (NN) to detect each LED separately,
and we implement another NN-based on feature extraction to precisely recognize the colors. The data are
also encoded with a unique key, which increases the security of the communication mechanism. System
performance of 4.68 kbps with low bit-error-rate (BER) and 1.172 kbps with moderate BER is achieved at
1 and 3 m, respectively.

INDEX TERMS Optical camera communication (OCC), image processing, neural network (NN), remote
patient monitoring.

I. INTRODUCTION
One of the most significant diagnostic tests in clinical
medicine is the measurement of heart rate (HR) and blood
oxygen saturation (SpO2), which can effectively determine
the physiological state of the human body [1]. Therefore, it is
crucial to monitor these healthcare data, especially in such
a period when the world is immobilized by disastrous conta-
gious diseases like COVID-19, in which more than 35million
people were affected across 213 countries, as of this writing
[2]. The status of HR and SpO2 levels is incredibly significant
not only for a disease like COVID-19 but also for any serious
malady related to the human circulatory and respiratory sys-
tem. In consideration of this health information, designing a
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reliable real-time monitoring system has attracted significant
research interest recently.

The healthcare data are collected using a wearable sensor
connected to a communication device to provide healthcare
services across the users. The transmission of health infor-
mation can be done wired and wireless. Wired-connected
sensors are odd, costly, and consume high power. On the
other hand, currently, radio-frequency (RF)-based devices,
such as Bluetooth, ZigBee, and 6LowPAN are mostly used
for wireless communication objectives. However, it can cause
serious damage to human health and negative biological
effects in the human body when long-term involvement with
electromagnetic radiation (EMR) originating for RF [3]–[6].
In addition, medicinal devices are very sensitive to EMR,
and its continuous usage can gradually deteriorate the perfor-
mance of medical instruments [7], [8]. Furthermore, for being
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omnidirectional, RF devices are not secured, and the signals
are often affected by inter-channel interferences, which even-
tually questions the reliability. Therefore, the necessity of a
suitable technology to use as a complementary or replace-
ment of RF-based devices cannot be overlooked.

In this study, we propose an optical camera communica-
tion (OCC) system to transmit data. Generally, OCC is a line-
of-sight (LoS) technology that uses an LED as a transmitter,
a camera image sensor as a receiver, and visible light as the
communication medium. OCC supports several constructive
characteristics such as low cost, high security, low power
consumption, and enhanced reliability. Because the system
uses visible light, it is free from electromagnetic interferences
and completely risk-free to human health [9].

In this work, we have designed and implemented a com-
plete end-to-end system for real-time monitoring of patient’s
HR and SpO2 data, in which we have used a pulse oxime-
ter sensor, MAX30102, to collect the infrared (IR), bit-
per-minute (BPM), and SpO2 data from the patient’s body.
A microcontroller is used to receive the photoplethysmo-
gram (PPG) signals and the BPM data that are further
exploited to generate the ECG signals. A 4 × 4 RGB LED
array is modulated with the data using color intensity modu-
lation (CIM) [10]. A patch circuit mountable in the patient’s
hand is designed integrating the LED array and the microcon-
troller. Neural networks (NNs) are developed to detect and
recognize each LED and its color in the LED array using a
close circuit television (CCTV) camera, which is also used
for the surveillance objective, simultaneously. The data are
decoded and processed in real-time in Python 3.7 and sent to
a cloud server.

Previous studies discussed the application of OCC in
health monitoring [11], [12]. However, none of them are
implementation-based work; rather, only simulations were
considered. In [13], OCC was applied to monitor humid-
ity, temperature, and CO2 using RGB LED [13]; how-
ever, the achieved data rate was very low (8–30 bps).
In [14], an NN-based OCC system was proposed for moni-
toring weather conditions, in which substantial data rate and
an excellent bit-error-rate (BER) were achieved; however,
the demonstration of their scheme was only at 50 cm. To the
best of the authors’ knowledge, this is the first report to design
a complete end-to-end OCC-based health monitoring system,
where the whole procedure from data acquisition from the
sensor to storing the data in a cloud server is demonstrated.
For being directional, OCC is a secured communication sys-
tem; however, if the modulation and encoding procedure is
certain, using another camera can retrieve the data. Therefore,
to increase security, we have also implemented a model by
adding a unique key at the transmitter. No security protocol
has been proposed for OCC until now. In [15], a security
protocol using a camera was proposed; however, the com-
munication system was designed using photodiode (PD) with
different channel matrices. Furthermore, the data can be erro-
neous if a different row of the projected image of the LED
array is captured first as we are using the intensity of the

LED for recognizing the color. We have proposed a technique
to resolve the orientation issue. In [16], the authors also
invested efforts to solve the orientation problem; however,
the achieved communication distance was only 30 cm.

Recently, designing a reliable real-time health monitor-
ing system is extensively researched. The most considered
healthcare information includes HR, SpO2 level, blood pres-
sure, and body temperature [17]–[20]. Reducing power con-
sumption is the main reason to use wireless technology for
healthcare data transmission. The most adopted wireless sys-
tems are Bluetooth and ZigBee [1], [21]. In this study, to col-
lect the HR and SpO2 data, we have used a pulse oximeter
sensor, which was used in previous studies [22], [23]; how-
ever, in [22], two Bluetooth modules were used, whereas in
[23], a costly processor was used. In [24], a health monitoring
system was developed, where IR rays were emitted into the
patient’s organ, which was captured using a camera, and the
image was processed to collect the SpO2 data. However,
the systemwas too costly, consumes high power, and provides
high error in the measured data. On the other hand, we have
used an LED array as transmitter, which is cost-effective and
supports low-power consumption, and a CCTV camera as
receiver, which is almost installed in every clinic. In brief,
the contributions of this study are listed as follows.

1) For real-time remote monitoring of the patient’s ECG
(generated from IR and BPM values) and oxygen sat-
uration level, a patch-based OCC system is designed
using an RGB LED array as transmitter and a CCTV
camera as receiver. The CCTV camera used in the
system can be utilized for both communication and
surveillance, simultaneously.

2) A data-retrieval mechanism using CIM is developed,
and a technique is proposed to consider any orientation
of the LED array.

3) An NN-based LED detection mechanism is proposed,
where each LED in the LED array is detected sepa-
rately. A feature extraction-based NN is also designed
for precise color recognition.

4) To enhance security in the communication system,
an encryption scheme is proposed. After processing,
the data is transmitted to a server that can be accessed
by an authorized person.

The rest of the paper is organized as follows. Section II
presents an overview of the proposed scheme. The detailed
explanation of the system is provided in Section III.
Section IV includes the experimental results and a discussion
of the research findings. Finally, the paper is concluded in
Section V.

II. OVERVIEW
In this work, an indoor scenario is considered, wherein a
patient’s health is continuously monitored. Using a sensor
fixed in a finger of the patient, we collected the patient’s
healthcare data, specifically the HR and SpO2 data. The sen-
sor is connectedwith a patch circuit attached as an armband in
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FIGURE 1. Overview of the proposed health monitoring system.

FIGURE 2. Functional block diagram of the sensor connected to the
human body and the microcontroller.

the patient’s body. The patch is composed of an LED array,
modulated using the sensing data. A CCTV camera is used
for surveillance and receiving data from the LED array using
OCC simultaneously. Afterward, the data are processed and
accessed in real-time by the remote monitor. Simultaneously,
the data are transmitted to a cloud server, which can be further
accessed by any authorized person using a private user ID and
password. Figure 1 shows a block diagram of the proposed
system.

III. SYSTEM DESIGN
The developed patch comprises a pulse oximeter sensor,
a microcontroller, and an RGB LED array. The optical sensor
and the RGB LED array are controlled by the microcontroller
so that the data sensed from the human body are processed,
modulated, and driven to the LED array. Figure 2 shows the
overall architecture of the patch and a setup scenario in the
human body. Then, the optical signal from the LED array
is transmitted to the camera and the server subsequently.
The rest of the section discusses the healthcare data sensing,
the communication system, data reconstruction and process-
ing, and the security protocol.

A. OPTICAL SENSING AND DATA ACQUISITION
To garner the SpO2 and HR information from the human
body, we used a MAX30102 sensor, which is a complete
pulse oximetry and heart rate sensor module designed for
the demanding requirements of wearable devices. The sensor
is very small in size that could collect data without sac-
rificing optical or electrical performance. Figure 2 shows
the complete functional diagram. An LED driver is inte-

FIGURE 3. The input data, and the patch architecture and its setup
scenario in the human body.

grated to modulate the Red and IR LEDs, and a PD is
used to receive the optical signals. The sensor includes
an SpO2 subsystem containing an ambient light cancella-
tion unit (ALC), a continuous-time sigma-delta (ADC), and
a proprietary discrete-time filter. The sensor also has an
on-chip temperature sensor that calibrates the temperature
dependency of the SpO2 subsystem. For further reading
and writing the data, the sensor utilizes a data register and
an I2C communication bus. The I2C line uses several bus
wires, such as serial data wire (SDA), serial clock wire
(SCL), and active-low interrupt (INT) to drive the data to the
microcontroller (MCU).

B. OCC PROTOTYPE
1) TRANSMITTER
In the microcontroller, the data are processed through several
steps before steering to the LED array. The microcontroller
continuously communicates with the I2C bus and generates
three decimal bitstreams from the data, which contain IR, HR,
and SpO2 data, respectively. The PPG signal is collected from
the patient’s finger and processed using the SpO2 algorithm,
a sampling rate of 100 Hz, a pulse width of 411 µs, and
an ADC range of 4096-bit. The bitstreams pass through a
serial-to-parallel converter after transforming to the binary
form. If the binary bitstreams are not divisible by the number
of bits per symbol, few additional zeros are added at the
beginning of the bitstream. The data are then modulated
using the CIM scheme, which is mainly a combination of
the color-shift keying and the pulse amplitude modulation
techniques. In this scheme, the data are mapped into the color
and intensity of each LED. The LED array has 16 LEDs, each
with an individual symbol and four colors (white, red, blue,
and green). On the basis of the length of the bit sequence,
the IR, BPM, and SpO2 data are assigned to the first eight
LEDs, the second four LEDs, and the final four LEDs in the
4×4 matrix, respectively. The last LED for each type of data
is kept ‘‘OFF’’, as shown in Figure 3. The ending of each
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data stream is indicated by these three OFF LEDs, therefore,
mitigating the necessity of any header, footer, or flag bits and
increasing the bit efficiency. In addition, the three bits are
also used for assuaging the effect of unwanted orientation of
the transmitter, which is further explained in Section 3.B(3).
Before assigning the LED for data transmission, the data are
transformed into another coded form for obtaining a secure
protocol that is explained in Section 3.B(6).

2) DATA RECEIVING AND COLOR RECOGNITION
A Bayer pattern filter is used to recognize the color when
the optical signal befell on the image sensor; thus, a color
image is formed. Half of the filter is composed of green
filter, whereas the other two quarters are composed of red
and blue filters. To recognize the LED region inside the
image, we controlled the exposure time after constructing an
image. Afterward, the edges of the LED region are selected,
and an offset value is added to all the pixel coordinates of
the edges, consequently generating a boundary containing
only the LED image, which is further resized to keep the
aspect ratio constant. How much the size of the LED image
augmented depends on the actual size of the LEDs inside the
image sensor. However, the image experiences blurriness and
distortion because of the magnification. By filtering, resam-
pling, and smoothing, we resolved the blur effect. On the
other hand, using an NN-based super-resolution technique,
we remediated the image distortion. In this regard, 60%
of the total acquired image are trained, and in the training
process, a file called FSRCNN_x2.pb is used as the weight
configuration.

To detect each LED in the 4×4matrix, we used another NN
after getting the unblemished image. Darknet and OpenCV
are used in the Python 3.7 platform to train the images.
The weight configurations of the trained images are used
in the test images to detect and label each LED. However,
a variation in the color intensity is observed between pixels
of each detected LED. Therefore, it is challenging to conclude
a specific color code for each LEDs. As a solution, we devel-
oped anNN-based feature extraction technique for each pixel.
Each color has unique features depending on the grayscale
code of the R, G, and B, which are further commingled to
form different vectors.

Afterward, the vectors are assigned in a group for a specific
color. Depending on the variations of a certain part of the
vectors, different weight values are generated, which are
further assigned to the hidden layer of the NN. The NN is
applied thenceforth to the previously detected pixels, and
the color code of each pixel is eventually determined using
the weight values trained beforehand. Finally, using the con-
firmed color codes of each LED, we have constructed a 4×4
matrix, which is also used to extract the original data. On the
basis of the matrix coordinates, the elements are assigned
consecutively in thematrix; therefore, the OFFLED locations
are kept blank. Figure 4 shows the whole color recognition
process.

FIGURE 4. The receiving architecture with color recognition and matrix
formation.

FIGURE 5. Four possible orientations of the 4 × 4 LED matrix.

3) DATA DECODING
The retrieval of the received signal significantly depends on
the orientation of the transmitter. It will not be sophisticated
to maintain a fixed position of the patch as the placement of
the hand may be altered on the basis of the patients’ require-
ments. However, different orientations of the LED array will
generate substantial errors in the data. By measuring the
amount of inflection of the LED array, we have avoided the
challenge. Figure 5 shows different orientations of the LED
array compared with the original image. As mentioned in
Section 3.B(1), three LEDs are reserved in the OFF position
to indicate the starting and ending points of each IR, BPM,
and SpO2 data. The three positions will be unchanged in the
LEDmatrix, disregarding any inflection. Thus, in the original
LED matrix, the amount of orientation is calculated to locate
the positions of the OFF LEDs. The data may vary signifi-
cantly; thus, any other LEDs can progress in the OFF state if
the data are too small. However, as we defined the OFF LEDs
at the end of each dataset, the newly OFF LEDs will appear
sequentially just before the specific OFF LED, determining
the positions of the OFF LEDs easily. The starting point of the

VOLUME 8, 2020 198743



M. F. Ahmed et al.: Design and Implementation of an OCC-Based Real-Time HR and Pulse-Oxygen Saturation Monitoring System

dataset is defined after measuring the inflection angle. Then,
the symbols are decoded using the color code sequence in
the LED matrix. Finally, the data for IR, BPM, and SpO2 are
stored into three separate CSV files.

4) EFFECT OF CHANNEL PROPERTIES
Background noise and interference from the neighboring
light sources can affect the OCC performance. The intensity
of the background light can have a significant effect on the
change in the intensity level of the RGB LED. This type
of noise is realized on a scale of 0 and 1, where a value
of 0 is associated with an ideal situation with no ambient
light, whereas a value of 1 indicates a fully noisy image from
which no data can be extracted and no reliable tracking can
be performed. After controlling the exposure time, we could
extract the data properly.

The camera receives red, green, and blue, forming an
image containing the colored data distorted by the channel
background noise. However, because of the discrete nature of
the digital image generated at the image sensor, the intensity
values over each of the red, green, and blue channels of
the received image cannot exceed a certain threshold. This
threshold is typically 255, as each pixel is represented by
an eight bits value, and is often normalized. Effectively, any
signal with noise non-linearity above a certain level will be
mapped to a value for that particular pixel. The threshold
should be below 128 so that the pixel could show the different
R, G, B.

Besides the background noise non-linearity, the path loss is
to be taken into account to prepare the data distortion model
over the channel, capturing the effect of the distance and
the angle between the transmitter and the receiver. Besides
affecting the intensity of the non-linearity of noise received,
these variations affect the code of the data. Decreasing the
size of the detected rectangle due to a long-distance between
the transmitter and receiver or reducing the intensity of the
received color makes the data more variable to the noise,
which could result in higher BER values.

5) ECG SIGNAL CONSTRUCTION
To fabricate the ECG signal, we used the IR and BPM data.
The whole signal processing is performed on the basis of the
Pan Tompkins algorithm. To generate the curves, we have
taken the average of every 100 samples of the BPM value.
On the other hand, to present the slop more precisely, every
single interval of the IR data is utilized after adding an offset.
To form the waveform of the ECG signal, we followed the
following steps.

1) First, the program takes the raw IR signal in a fixed
time interval. After that, the data are filtered out using
a bandpass (1–30 Hz) filter (composite of high and low
pass filters).

2) Next, the sharp peaks, the nadirs of the QRS, and the
notches are differentiated to integrate the signal with
the IIR filter at 60 Hz.

TABLE 1. Experimental parameters.

3) Then, after integrating the derivative of the signal with
themovingwindow, a threshold is set to find the precise
peak. Therefore, the peak is properly recognized, and
the QRS complex is estimated.

Finally, the output of the ECG signal is generated and the
number of peaks is plotted using the BPM information.

6) PROPOSED SECURITY PROTOCOL
After approaching the LED access point, a camera can
retrieve the data if the process of encoding the data is cer-
tain and have the proper decoding mechanism and intrinsic
properties. Medical data can be sensitive; therefore, we have
proposed a unique key that is only valid for a specific user.
The main data pattern is updated to a coded form in the
transmitter when using a key. Let us assume that the original
input signal is x, which is formed using several symbols, and
then each symbol is constructed as a form of triplets.

x = {s1, s2, . . . , sN } (1)

where

sn =
[
inr i

n
g i

n
b
]

(2)

The inr , i
n
g, and inb denote the peak currents of the red, green,

and blue LEDs, respectively, considering the nth symbol. The
received signal by the image sensor will be as follows:

r = Hx+ n (3)

whereH and n are the optical channel gain and noise inmatrix
form, respectively. Now, we convert the input signal x into a
coded signal o which will be sent by the LED access point;
o is generated using the unique key kp and constructed with
four parts (k1, k2, k3, and k4), where each part is composed as

kpε[1,4] =
[
i j k

]
(4)

where i, j, and k are octets whose value range from 0-255. It is
worth noting here that the values of x, c, and cI range from
0-255. In addition, the output signal also varies from 0-255.
However, the addition of x and c can exceed 255, therefore,
their average is multiplied by cI and then divided by 255.
Now, x is converted in a 4× 4 matrix and o is presented as

o = 0.00196 (x+ c) cI (5)
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TABLE 2. The mean absolute error of the sensor data in different
situation.

where c =


k1 k1 k1 k1
k2 k2 k2 k2
k3 k3 k3 k3
k4 k4 k4 k4

 and cI is the multiplication of c

and a 4×4 identity matrix. Therefore, using the value of o,
Eq. 5 is updated as

r = 0.00196H (x+ c) cI + n (6)

When the camera receives the data, the noise and interfer-
ences can be removed using different filtering techniques.
Finally, the data is demodulated using the following equation:

x = 510
(
r×H−1

)
c−1I − c (7)

IV. PERFORMANCE ANALYSIS
Experiments are conducted to assess the proposed OCC
based remote monitoring system. An IP camera (DH-
IPCHFW1230SP-036 –1080p 3.6 mm DAHUA) was used
in the experiment, and Python 3.7 was used to detect the
LED and decode and process the data. Table 1 shows the
implementation parameters. Figure 6(a) shows a specific
frame received by the camera, whereas Figure 6(b) depicts
the processed figure for OCC. To detect each LED separately,
we need to control the exposure time of the camera. The
image frames are also used for surveillance; however, it is not
possible to use two different exposure times simultaneously.
Therefore, firstly, we have controlled the brightness of each
image frame to use for the surveillance. Concurrently, each
image frame is processed with increasing adequate resolution
to the projected LED region.The output at the receiver is also
illustrated in Figure 6(b).

Each LED in the 4× 4 matrix is detected separately using
the NN, and a data rate of 4.68 kbps is achieved, which can
be further augmented by using a camera with a higher frame
rate. Figure 7 shows the BER performance of the proposed
scheme. If the color intensity is increased, the accuracy of the
LED detection will be increased, thus reducing the BER. For-
tunately, we could achieve the maximum normalized inten-
sity when the transmit power is set to 3.3 W, consequently
achieving a BER around 10−6 at a communication distance
of 1 m. The number of colors has a profound impact on the

FIGURE 6. (a) An image of the implemented 4 × 4 LED matrix (b) the
detection of each LED separately and the output after processing.

FIGURE 7. The effect of BER with respect to the distance considering the
effect of normalized intensity and number of different colors are used.

OCC performance: the higher the number of colors, the lower
the accuracy of color detection, resulting in higher BER.
As discussed in Section 3, the data are composed of three
different types (IR, BPM, and SpO2), which are collected
in three different CSV files. However, several sudden spikes
are observed in the data. The larger spikes are eliminated
using a filter, whereas the smaller ones are removed using
the sliding window mechanism considering a particular win-
dow size. The IR data for around 1100 samples is shown
in Figure 8(a), and the ECG signals generated using 64 BPM
from the IR data is shown in Figure 8(b). Using a But-
terworth and infinite-impulse-response notch filter, we exe-
cuted the ECG feature extraction algorithm to the IR data.
We then performed the first derivative of the signal using a
Lagrange five-point interpolation formula and then computed
the Hilbert transform of those samples. The whole signal
generation procedures are performed in Python 3.7.

On the other hand, the SpO2 and the BPM data are plotted
in Figure 9. We have taken 400 samples to generate the
graphs. As shown in the figure, several unstable spikes are
generated within the initial samples. The reason is the initial
stirs of the patch while attaching the sensor. The exact BPM
and SpO2 values can be observed after 125 and 200 samples,
respectively. The experiments are performed on a 26-year-old
male volunteer whose weight is 62 kg and height is 167 cm.
Table 2 gives information on mean absolute error (MAE)
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FIGURE 8. (a) The output PPG signal before filtering (b) the generated
ECG signal by taking the BPM value as 64.

FIGURE 9. The value of blood oxygen saturation and heart rate with
respect to the number of sample in the output.

FIGURE 10. Data (HR and SpO2) monitoring accessing the cloud server
using smartphone.

of the data of the volunteer in different lighting condi-
tions. We consider four different indoor conditions. Firstly,
in the nighttime, the data are taken using multiple room
light sources and a single light source with low intensity,
separately. The same procedure is applied in the daytime
using slight sunlight entering the room. It can be seen that
the MAE increases when the interferences are high. Finally,

as shown in Figure 10, the data are sent to an IoT cloud server
where an authorized person can access the data using a login
ID and password.

V. CONCLUSION
In this study, we proposed a real-time health monitoring
system based onOCCwhere aMAX30102 sensorwas used to
collect the IR, SpO2, and BPM data and connected to a patch
mounted on the patient′s hand. The patch was composed of
an LED array used to transmit the data to a CCTV camera.
The LED array was modulated using CIM and the data were
encoded with a unique key to enhance the security. Each
LED in the array was detected using an NN, and another
feature-extraction-based NNwas used to recognize the colors
precisely. A mechanism was also developed to assuage the
challenge of different LED array orientations in the decoding
procedure. Finally, the data were processed and accessed
by a remote monitor and stored in a cloud server. A data
rate of 4.68 kbps and an excellent BER were achieved,
demonstrating the reliability of the remote monitoring
system.
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