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ABSTRACT This article presents RoomSLAM, a Simultaneous Localization andMapping (SLAM) method
for mobile robots in indoor environments where environments are modeled by points and quadrilaterals in
2D space. Points represent positions of semantic objects whereas quadrilaterals approximate the structural
layout of the environment, namely rooms. The benefit of such modeling is threefold. Firstly, rooms are a
logical way to partition a graph in large-scale SLAM. Secondly, rooms and objects reduce search space in
data association. Lastly, the model contains a higher level of semantic, which is beneficial to autonomous
robots whenever inter-room navigation is needed. The method was evaluated with two public datasets and
the results were compared to those of ORBSLAM and RGBDSLAM.

INDEX TERMS Indoor mapping, mobile robot, RGBD sensor, semantic, SLAM.

I. INTRODUCTION
Simultaneous Localization and Mapping (SLAM) is a set
of techniques to deal with correlated uncertainties in sensor
movements and sensor readings in an unknown environment
to simultaneously map the environment and track the sensor
poses. Typically, it consists of a technique to estimate model
parameters from noisy data and a technique to associate two
sensor readings from different timestamps (data association,
loop-closure detection).

There are several kinds of maps generated by SLAM and it
depends on the sensor used. For example, an occupancy grid
map is usually generated by SLAM that uses laser rangefind-
ers whereas a sparse point map is generated by SLAM that
uses cameras. Recently, SLAM is also able to generate 3D
dense reconstruction of an environment with the advance in
RGBD sensors and computer hardware [1], [2].

Sparse point map and dense reconstruction are useful mod-
els. However, they do not contain semantic information of
environments. These models are cumbersome for robots that
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are projected to work in human environments. Therefore,
SLAM researches are now heading toward semantic SLAM,
i.e. SLAM that generates maps with semantic entities.

Notable results in semantic SLAM are [3]–[8] and [9].
Similarities between these works are that all maps resem-
ble point-based maps with semantic objects or walls are
now taking place of points. Although this is sufficient, hav-
ing a higher degree of semantic is always desirable. For
example, in an indoor environment, if a robot only maps
objects, it will see the map as a collection of objects. In real-
ity, objects are clustered spatially, e.g. by rooms. Certainly,
this spatial information is advantageous for the robot’s
autonomy.

This article describes a method of semantic SLAM using
objects and walls as a model of an environment. Each object
or wall plays a single landmark in the environment, whereas
a collection of walls are combined into quadrilaterals to
approximate rooms. During the SLAM loop, data association
and parameter estimation are localized within this room,
which makes SLAM efficient and guarantees map scalability.
Rooms are also utilized to detect potential loop-closures.
Specifically, contributions of the method are as follows.
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TABLE 1. Semantic entities used in recent works in semantic SLAM.

1) Usage of rooms to reduce search space in data associa-
tion and to find potential loop-closures.

2) Usage of rooms as a semantic sub mapping strategy to
deal with SLAM scalability.

3) Generate a map with objects and floorplan-like struc-
ture of indoor environments.

The rest of the paper is organized as follows. Section II
describes related works to the presented method. Section III
and Section IV gives detail of the method followed by its
evaluation in MIT Stata Center Dataset and TUM RGBD
Dataset. Finally, Section V concludes this article and conveys
some plans for future work.

II. RELATED WORKS
The problem of decomposing a single image into semantic
entities, such as walls, ceilings, floors, and object instances
is known as image understanding. The decomposition could
be either in the form of 2D boxes in image space or 3D
bounding boxes and structural layout in 3D space.Works such
as [10]–[14], and [15] have shown to have great accuracy in
inferring semantic entities from an image. However, these
works do not run in real-time which render them unsuitable
for mobile robotic applications.

Recently, works in Simultaneous Localization and Map-
ping (SLAM) have moved toward semantic SLAM. Instead
of using geometric features, such as points or lines, semantic
SLAM uses semantic entities, e.g. objects and walls, as ele-
ments of amap. Table 1 shows semantic entities used in recent
works in semantic SLAM.

SLAM++ [3] uses a hand-held RGBD camera to scan an
environment that is cluttered with repetitive domain-specific
objects, e.g. chairs and tables. A Point-Pair Feature (PPF)
based object detector then performs object detection and
object localization while the motion of the camera is tracked
using ICP-based camera-model tracking. All parameters, i.e.
camera and object poses are estimated using graph optimiza-
tion with additional ground-plane constraints for objects.

Object-SLAM [4] uses a standard salient feature matching
method for object detection. They combine points and objects
as landmarks and estimate SLAM parameters with standard
graph optimization.

The recent popularity of deep learning-based object detec-
tion and recognition is adopted for SLAM in [5]–[8]. Hos-
seinzadeh et al. [5] use two kinds of landmark, i.e. objects
which are represented by dual quadrics and planes which
represent any plan regions in an environment, e.g. table sur-
faces or walls. To detect objects, they use YOLOv3 [17],

and to detect planes they use PlaneNet [18]. To estimate
SLAM parameters, they perform graph optimization with
additional constraints i.e. plane-plane constraints from Man-
hattan assumptions, point-plane constraints, and support-
ing/tangency constraints. Similarly, [6] also uses YOLOv3 as
an object detector and represents objects as dual quadrics.

Yang and Scherer [7] use a monocular camera to map
objects and walls. First, they generate proposals of indoor
structure layout by projecting detected ground-wall edges to
3D space. They use YOLOv3 to detect objects and project
2D bounding boxes from YOLOv3 to 3D space using the
method in [8]. Generated objects and plane proposals are
then supplied to CRF based inference engine to get the best
proposal for single image understanding.

Shariati et al. [9] exploit the Manhattan structure of indoor
environments to estimate their structural layouts and robot
trajectories. They use a method known as entropy compass
to get the axis-aligned planar fragments from RGBD data.
Once salient axes are known, they label each pixel in the
depth map by its orientation according to a small patch ori-
entation of its surrounding. The pixels are then grouped to
create layout segments, which are typically walls, floors, and
ceilings. Combined with robot poses data from visual-inertial
odometry, they build a factor graph with factors correspond to
either pose-pose constraints or layout segment measurement
constraints. The latter is simply one-dimensional distance
measurement from robot to layout segments.

Shariati et. al. model each wall as a single entity in [9].
However, in their subsequent work [16], they also model a
higher level of semantic from layout segments, i.e. rooms.
This is by far the closest concept to that of the method
presented in this article. However, [16] generates model
of rooms after it gets the result from SLAM. Therefore,
they do not exploit the concept of rooms for the benefit
of SLAM.

The work that shows the benefit of room concept in SLAM
is that of Salas et al. [12], although it is not categorized as
semantic SLAM. In their work, Salas et. al. show at least
two benefits of using the room concept in SLAM. Firstly,
it splits the map into sub-maps which will ease the burden
of computation. Secondly, it prevents the SLAM system to
make incorrect inferences whenever severe occlusions occur,
e.g. when a robot leaves a room or turning around a corner.
The main difference with RoomSLAM is that in [12], rooms
itself are not part of SLAM whereas, in RoomSLAM, rooms
(at least in the form of walls) are part of the system and are
used for example in data association.

III. RoomSLAM
This section starts with some mathematical notations and
definitions used throughout the paper. After that, the method
of RoomSLAM is briefly overviewed in Section III-B.
Details of components of RoomSLAM are then described
in Section III-C (object detector), Section III-D (wall detec-
tor), Section III-E (robot motion model), Section III-F
(room detection/creation), Section III-G (data association),
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Section III-H (loop-closure detection), and finally
Section III-I (optimization).

A. NOTATIONS AND DEFINITIONS
The i-th robot pose, r0i , relative to a global frame of reference
is described by 3 parameters, i.e. its position (x0i , y

0
i ) and its

orientation (α0i ) in a 2D space. The global frame of reference
coincides with the initial robot pose, which is denoted r00.

r0i = (x0i , y
0
i , α

0
i )

To simplify notations, 0 superscript is dropped and
all variables are assumed to be measured with respect
to the global frame of reference unless otherwise stated,
e.g. ri ≡ r0i .
In calculation, ri is represented by an element of SE(2).

ri =

cosαi − sinαi xi
sinαi cosαi yi
o 0 1

 = [Ri ti
0 1

]
with Ri is a 2D rotation matrix and ti = (xi yi)T is a 2D
translation vector.

The i-th object pose is represented by its 2D position

oi = (oxi, oyi)

Each object has an attribute ci, which indicates its class of
object, e.g. ‘‘chair’’ and ‘‘monitor’’.

The i-th wall is represented by two parameters, i.e., its
perpendicular distance (ρi) to the origin and its orientation
(θi) with respect to the horizontal axis of the global frame of
reference.

wi = (ρi, θi)

Fig. 1 shows a wall j with respect to a frame of reference
that coincides with ri. Each wall does not contain information
about edges. Therefore, each wall is an infinite line.

Each wall either has a type (tj) of virtual or real. A virtual
wall is a wall that is generated hypothetically to make a
room. There is no measurement associated with this wall.
Meanwhile, a real wall is a wall that has been measured. A
virtual wall becomes real when a measurement is associated
with it.

Measurement z of a robot pose, an object, and a wall are
represented by the same parameters as those in state-space
respectively.

zr|j = (xj, yj, αj)

zio|j = (oixj, o
i
yj)

ziw|j = (ρij , θ
i
j )

For each object measurement zio|j, there is attached a class
attribute, zj.
As in its state-space counterpart, zr|j is represented by an

element of SE(2).
Covariance matrices for robots, objects, and walls are

denoted by 6r|i, 6o|j, and 6w|k respectively. Covariance

FIGURE 1. Wall parameters.

matrices for robots, objects, and walls measurements are
denoted by Qr|i,Qi

o|j, and Q
i
w|k respectively.

An i-th room,Ri, is defined by a set of 4 walls that form a
quadrilateral. A collection of all rooms is denoted by R.

Ri = {wj}
4
j=1

B. SYSTEM OVERVIEW
Modern SLAM systems typically consist of two modules run
in parallel, namely front-end and back-end. In RoomSLAM,
the front-end is responsible for walls and objects detection,
rooms detection/creation, and data association. Meanwhile,
the back-end is responsible for state estimation through graph
optimization. Fig. 2 shows a block diagram of RoomSLAM.

For each timestep i, RoomSLAM receives data from two
synchronized sources. Firstly, it receives RGB and depth
images from an RGBD sensor. Secondly, it receives a position
and orientation of the robot (zr|i) from a wheel or visual
odometry.

An RGB image is used by YOLOv3 [17] to detect objects
in the surrounding of the current robot pose. A depth image
is first converted to a point cloud and then used to infer the
position of the objects in the 3D world. The same point cloud
is also used to extract walls.

Initially, RoomSLAM creates a quadrilateral room based
on current detected walls. If there is no wall detected, a
rectangular room from four virtual walls is created instead.
In subsequent moves, each time a wall measurement is asso-
ciated with a virtual wall, the wall becomes real.

During exploration, a robot is detected to leave the current
room when it crosses a real wall of the room. Whenever this
happens, the algorithm will search for a possible revisitation
of previous rooms or otherwise creates a new room. On the
other hand, the robot is not considered to leave the current
room when it crosses a virtual wall. Instead, the virtual
wall will be pushed away from the robot to make the room
bigger. Therefore, during the SLAM operation, a room is
allowed to deform either because it is still formed by virtual
walls or due to the result of a graph optimization in the
back-end.

Room is a key part of RoomSLAM. During the front-end
loop, RoomSLAM will search for associations of object and
wall measurements with objects and walls in the current
room. In the back-end, RoomSLAM also only optimizes sub-
graph associated with objects and walls in the current room.
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FIGURE 2. Block diagram of RoomSLAM.

TABLE 2. Classes of object detected by YOLOv3 in the MIT Stata Center
dataset and the TUM RGBD dataset.

Whenever available, RoomSLAM also searches for room-to-
room similarity for loop-closure detection. However, for the
current implementation, it only applies to corridors.

C. OBJECT DETECTOR
RoomSLAM uses YOLOv3 [17] and its pre-trained model as
an object detector. The model is trained to detect 80 classes
of indoor and outdoor objects. The output from YOLOv3 is
bounding boxes of objects in image space. Table 2 shows
some objects that were detected in the MIT Stata Center
dataset and the TUM RGBD dataset.

To get a 2D position of an object, the corresponding 2D box
in image space is projected into a 3D space to form a cuboid.
In Fig. 3, left top blue box in image space is projected into a
point cloud space (lower blue box). The blue box in the point
cloud space becomes the front face of a cuboid. A centroid is
then calculated from the point cloud contained in the cuboid
and the 2D position of the object is just a projection of the
centroid to the xy-plane (floor). Measurement model for an
object is shown in (1).

oij = g(oj, ri) = R−1i (αi)× oj + t−1i

with t−1i =
[
−xi cosαi − yi sinαi
xi sinαi − yi cosαi

]
(1)

FIGURE 3. Two standard deviations for an object measurement. If the
object is treated as a point (blue dot), its position uncertainty is likely to
be in the area of the blue box (short yellow line in the lower part of the
image represents standard deviation). Else, if the object is treated as a
rigid body, its position uncertainty is likely to be outside of the blue box
(yellow boxes are possible positions of the object).

Treating an object as a point needs careful consideration.
On the one hand, as a point, position uncertainty is confined
within the cuboid. This is because the variance of the point is
calculated from the distribution of the point cloud within the
cuboid. On the other hand, as a rigid body, position uncer-
tainty is likely to span in the order of the object’s dimensions.
For example, in Fig. 3, yellow boxes are possible positions of
the object. This is important, especially in data association.
Therefore, RoomSLAM uses two covariance matrices for
object measurements, i.e. the point covariance in graph opti-
mization and the rigid body covariance in data association.
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FIGURE 4. Red lines are lines fitted to the upper rows of the point cloud
data.

D. WALL DETECTOR
RoomSLAM uses a simple algorithm to detect walls [19]. It
samples several rows from an organized point cloud data and
applies line-fitting (RANSAC) to each of them. The rows are
chosen arbitrarily although the upper rows are preferable to
avoid occlusion from objects (Fig. 4).

For each sample, RANSAC typically returns none to two
lines (lines that are too short are discarded). Wall detector
then groups lines from all samples according to parameter
proximity. A group with more than one line is considered
representing a wall. Parameters of the wall are calculated by
averaging lines parameters in the group.

Measurement model for a wall is shown in (2). The equa-
tion relates wj with wi

j. The derivation is in Appendix.

wi
j = h(wj, ri) =

[
ρj − xi cos θj − yi sin θj

θj − αi

]
(2)

E. ROBOT MOTION MODEL
Robot motion data come from a wheel or visual odometry
in the form of the current robot position and heading with
respect to the global frame of reference (first robot pose). For
each two consecutive robot motion data, the motion model is

calculated by a black-boxmotionmodel [20], as shown in (3).

ri = f(ri−1,ui) = ri−1 · ui
= ri−1 · (z−1r|i−1 · zr|i) (3)

where (·) is a matrix multiplication operator and u denotes an
action that causes the robot to move from step i− 1 to i.

F. ROOM DETECTION/CREATION
RoomSLAM starts with an empty map and the robot is in
the origin of the global frame of reference. If the robot
measures some walls, a room is created according to one of
the measured wall (Fig. 5[a]). Otherwise, a rectangular room
from 4 virtual walls is created.

A wall is principally an infinite line. However, as a part
of a room, the wall will be seen as a line segment due to
intersection with other walls.

As mentioned earlier in Section III-B, a robot is detected
to leave a room when it crosses a real wall of the room
(Fig. 5[d]). Algorithm DetectRoom in the following gives
detail of the process.
1: DetectRoom (Ri, rj, rj−1,R):
2: path = f (rj−1, rj)
3: for all wm ∈ Ri do
4: if path intersect wm then
5: if tm = virtual then
6: ρ

j−1
m ← ρ

j−1
m + constant

7: updateRi
8: returnRi
9: else

10: for allRn ∈ R do
11: if rj is insideRn then
12: returnRn
13: end if
14: end for
15: R` = createRoom(rj,wm)
16: returnR`

17: end if
18: end if
19: end for
20: returnRi

FIGURE 5. [a] A robot is in a room with only one real wall. [b] The robot crosses a virtual wall and the wall is pushed away to create a
larger room. [c] The virtual wall in [b] is associated with a measurement and becomes real. [d] The robot crosses the real wall and
leaves the room to create a new room or enter a previously visited room.
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In line 1, a path is created from two consecutive robot
poses. The path is then checked against all walls in the current
room to find intersections. If the path intersects a virtual wall
(line 4), then distance (ρj−1m ) to the wall is increased (line 6)
by a constant value (Fig. 5[b]) and the algorithm returns the
current room. On the other hand, if the path intersects a real
wall, then the current robot pose is checked against all rooms
(line 10). If the current robot pose is in one of the rooms, the
algorithm returns that room. Otherwise, the algorithm creates
a new room (line 15) and returns it. The following is the
algorithm to create a new room.
1: createRoom (ri,wj):
2: Rk ← {wj}

3: for `← 1, 3 do
4: create new virtual wall w`
5: ρi`← max(constant, ρij )
6: wi

`← (ρi`, θ
i
j + `× π/2)

7: Rk ← Rk ∪ w`
8: end for
9: returnRk

Anew room is initialized using a real wall (wj) and 3 virtual
walls (w` in line 4). The virtual walls are oriented such that
the four walls create a rectangular room (line 6). The current
robot pose should be in this newly created room and the
distance of each virtual wall to the robot (ρi`) depends on the
distance between the real wall and the robot (ρij ). However,
to prevent the algorithm creates a too-small room, ρi` is taken
to be the maximum between ρij and a constant value (line 5).

G. DATA ASSOCIATION
Data association is a process of finding associations between
current measurements and all previousmeasurements. Room-
SLAM needs to do two data associations, i.e. objects associ-
ations and walls associations. For objects associations, two
simple criteria are used, i.e. Squared Mahalanobis Distance
(SMD) and object’s class. For walls associations, due to
unknown wall measurement covariance, Euclidean distance
is used.

1) OBJECTS ASSOCIATIONS
For each object, zio|k of class c`, that is measured from the
current robot pose, RoomSLAM calculates its SMD, (Dio|jk )

2,
to every object of the same class, oij, in the current roomwhere
oij is given by (1).

(Dio|jk )
2
= (oij − zio|k )

T (Sijk )
−1(oij − zio|k ) (4)

with Sijk is

Sijk =
∂oij
∂o
6o|j

∂oij
∂o

T

+Qi
o|k

= R−1i 6o|j(R−1i )T +Qi
o|k (5)

All objects in the current room with SMDs lie within 95%
confidence interval of chi-square distribution are candidates

FIGURE 6. Estimated trajectories of sequence 2012-04-06-11-15-29.

for associations. However, to avoid ambiguity whenever there
is more than one object lie within the interval, the one with
the smallest SMD is picked as the best candidate.

(Dio|jk )
2 < χ2

1,0.05

As mentioned earlier in Section III-C, Qi
o|k in (5) is an

object measurement covariance when the object is treated
as a rigid body. The covariance is taken to be a diagonal
matrix, i.e. no correlation between x and y positions, and the
variances are set to be twice the dimensions of the object. The
dimensions of the object itself are set to twice the standard
deviation when the object is treated as a point.

2) WALLS ASSOCIATIONS
Euclidean distance is used to find an association between a
wall measurement and a wall already on the map. However,
because both the measurement and the wall are parameter-
ized in the polar coordinate system, RoomSLAM treats each
parameter separately. Mathematically, for each wall measure-
ment ziw|j = (zir|j, z

i
θ |j), RoomSLAM calculates an Euclidean

distance of each parameter to every wall, wi
k = (r ik , θ

i
k ), in

the current room.

Dijk =

[
Dir|jk
Diθ |jk

]
=

[
|zir|j − r

i
k |

|ziθ |j − θ
i
k |

]
(6)

where wi
k = (r ik , θ

i
k ) is from (2).

A measurement is associated with a wall if bothDir|jk < τr

and Diθ |jk < τθ where τr and τθ are thresholds with values of
0.2 and 25◦ respectively.

H. LOOP-CLOSURE DETECTION
One of the benefits of the room model is the ability to exploit
similarities in rooms to detect a loop-closure. However, in the
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FIGURE 7. Floorplan-like map estimated with RoomSLAM for sequence
2012-04-06-11-15-29. Red lines are virtual walls and green lines are real
walls. Global orientation is adjusted manually. The room appears
triangular in the center of the figure is a quadrilateral. The missing side is
a short virtual wall on the upper side of the room.

FIGURE 8. The number of nodes, edges, and optimization time during
robot exploration in sequence 2012-04-06-11-15-29. The algorithm
maintains a graph for each room which makes the back-end never
optimize large graphs.

current implementation, RoomSLAM only exploits similari-
ties in corridors. A room is considered a corridor if two of
their walls are parallel or near parallel with a distance less
than 2.5 m. Two corridors are the same if their Euclidean
distance and the difference in their orientations are below
certain thresholds.

I. OPTIMIZATION
Optimization runs in the background, parallel to the front-end
module in RoomSLAM. Every robot pose, object pose, and
wall are estimated in a graph optimization process. There
are two kinds of optimization, i.e. room optimization and
loop-closure optimization. In principle, both optimizations
are having the same objective functions. The difference is
that room optimization is applied to nodes within a room
whereas loop-closure optimization is applied to nodes across
multiple rooms. Equation (7) shows the objective function for

FIGURE 9. Loop closure in corridor in sequence 2012-04-06-11-15-29
(frame of reference is shifted and rotated).

FIGURE 10. Estimated trajectories of sequence 2012-04-06-11-28-12.

the optimization process in RoomSLAM.

{X∗}R = argmin
{X}R

∑
i,j,k

(e2r|i + (eio|j)
2
+ (eiw|k )

2) (7)

where {X}R means all r, o, and w in roomR and

e2r|i = (ri − zr|i)TQ−1r|i (ri − zr|i)

(eio|j)
2
= (oij − zio|j)

T (Qi
o|j)
−1(oij − zio|j)

(eiw|k )
2
= (wi

k − ziw|k )
T (Qi

w|k )
−1(wi

k − ziw|k )

The optimization module is implemented using the g2o
framework [21].

IV. EXPERIMENTAL EVALUATIONS
RoomSLAM is evaluated with two datasets, i.e TUM RGBD
dataset [22] and MIT Stata Center dataset [23]. TUM dataset
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TABLE 3. Root Mean Squared Error (RMSE) in trajectories estimation of sequences from MIT and TUM dataset by RoomSLAM, ORBSLAM, and RGBDSLAM.
All figures are in meter.

FIGURE 11. Floorplan-like map of sequence 2012-04-06-11-28-12.

FIGURE 12. Estimated trajectories of sequence 2012-01-25-12-33-29.

is chosen because it is widely used in SLAM community
as a means of benchmarking and MIT dataset is chosen
because it is a challenging indoor dataset for the following
reasons.

1) It has an irregular structural layout;
2) It has large spaces that make an RGBD sensor fre-

quently failed to reach space boundaries (walls);
3) It has walls with large glass windows; and
4) It is a highly cluttered environment.

FIGURE 13. Floorplan-like map of sequence 2012-01-25-12-33-29.

FIGURE 14. RGBDSLAM performed well at the beginning of the trajectory
but then failed in the end.

In TUM dataset, RoomSLAM uses wheel odometry as
a source for robot motion data whereas, in MIT dataset,
RoomSLAM uses visual odometry from ORBSLAM.

Results of RoomSLAM evaluation in mentioned datasets
are compared to those of ORBSLAM [24] and RGBDSLAM
[25] which are considered state-of-the-art. Trajectory com-
parisons between methods and groundtruth are done with the
help of the Umeyama alignment method [26] whereas map
comparisons are done by manually overlaying the resulted
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FIGURE 15. Estimated trajectories of TUM SLAM dataset. Left-top: fr2/pioneer_360, right-top: fr2/pioneer_slam,
left-bottom: fr2/pioneer_slam2, right-bottom: fr2/pioneer_slam3.

map with groundtruth (only for MIT dataset). Table 3 shows
the evaluation results.

A. MIT STATA CENTER DATASET
1) SEQUENCE 2012-04-06-11-15-29
This sequence covers an area of 50 m × 25 m where the
robot travels a 230 m long trajectory in 11 minutes. In this
sequence, the robot makes an important close loop that occurs
in a corridor. RoomSLAM exploits the fact that corridor
detection is reliable and uses it tomake a significant trajectory
correction.

The estimated trajectory compared to those of ORBSLAM,
visual odometry, and groundtruth is shown in Fig. 6. The
estimated floorplan-like map is shown in Fig. 7.
The map is not accurately model the structural layout of

the environment. There are misaligned walls and overlapped
rooms. Although this needs improvement, RoomSLAM still
makes benefit out of the model.

Rooms are space-partitioning components. RoomSLAM
uses it to limit the size of the graph in the back-end so it never

FIGURE 16. Derivation of wall measurement model.

grows unbounded. Fig. 8 shows the number of nodes, edges,
and optimization time during robot exploration in sequence
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FIGURE 17. Result of RoomSLAM for sequence 2012-04-06-11-15-29.

FIGURE 18. Result of RoomSLAM for sequence 2012-04-06-11-28-12.

2012-04-06-11-15-29. As shown in the figure, the number of
nodes and edges always jumps back to a low number which
happens when the robot leaves a room.

Another benefit of rooms is that RoomSLAM can search
for room-to-room matches to find a close loop. Fig. 9 shows
a loop-closure that occurs in a corridor which is relatively
easy and reliable to detect. A corridor is detected when the
robot measures two walls oriented to the left and right of

the robot. Typically, the two walls are narrowly separated.
This makes those walls are in a good area of sensing of
RGBD sensors. RoomSLAM detects that the robot revisits
the corridor when its pose is within or near the area of the
corridor.

The complete estimation of sequence 2012-04-06-11-15-
29, i.e. trajectory, walls (rooms), and objects are shown in
Fig. 17.
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FIGURE 19. Result of RoomSLAM for sequence 2012-01-25-12-33-29.

FIGURE 20. Results of RoomSLAM for sequences in TUM dataset. Clockwise from top-left: fr2/pioneer_360,
fr2/pioneer_slam, fr2/pioneer_slam3, and fr2/pioneer_slam2. RoomSLAM falsely approximates structural
layout in sequence fr2/pioneer_slam and fr2/pioneer_slam3 into two rooms. This is because there is a
panelboard in the middle of the room which is detected as a wall.

2) SEQUENCE 2012-04-06-11-28-12
In this sequence, the robot starts in the same place as that of
the previous sequence. However, the robot explores further to
the right side area of the building which has a different main

orientation from that of the center area. This adds complexity
to room detection and creation algorithm.

The sequence covers an area of 70 m × 30 m and the
robot runs along a 620 m trajectory in 23 minutes. However,
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RoomSLAM was unable to finish the trajectory because of
visual odometry module in ORBSLAM failed to track ORB
features once during exploration and unsucceeded to recover
from it. This happened when the robot was close to a white
wall where the detector failed to detect ORB features. The
algorithm itself failed to recover because the close loop detec-
tion module, which was responsible for relocalization was
turned off.

The estimated trajectory of this sequence is shown in
Fig. 10 and the floorplan-like map is shown in Fig. 11. The
complete estimation is shown in Fig. 18.

3) SEQUENCE 2012-01-25-12-33-29
This is a very challenging sequence because the robot has
many pure rotational moves. The sequence covers an area
of 50 m × 35 m and the robot travels along a 270 m path
in 13 minutes. The estimated trajectory is shown in Fig. 12
and the floorplan-like map is shown in Fig. 13. The complete
estimation is in Fig. 19.

4) RGBDSLAM IN MIT DATASET
RGBDSLAM [25] is one of the state-of-the-art in SLAM.
However, it did not perform well in MIT dataset. As shown
in Fig. 14, RGBDSLAM showed a good estimation at the
beginning but failed in the rest of the trajectory.

B. TUM BENCHMARK DATASET
RoomSLAM uses four sequences from RGBDSLAM
Dataset and Benchmark from the Technical University of
Munich (TUM) [22] as another dataset for evaluation.
Those sequences are from robot SLAM category, i.e.,
fr2/pioneer_360, fr2/pioneer_slam, fr2/pioneer_slam2, and
fr2/pioneer_slam3. The quantitative results are shown in
Table 3 and trajectories comparison are shown in Fig. 15.
As shown in the figures, ORBSLAM generally has

poorer performances compared to those of RoomSLAM and
RGBDSLAM. This is because ORBSLAM frequently lost
track of points whenever the robot crossed an uneven floor
and the camera bumped quickly. Mostly, ORBSLAM could
recover from it but it still affected the overall performance.

V. CONCLUSION
This article presents a method for Simultaneous Localization
and Mapping (SLAM) in indoor environments. The proposed
method uses objects and walls as elements of the environment
model. The method also combined walls into space parti-
tioning entities, i.e. rooms, to generate a floorplan-like map
model. Such a model gives benefit to SLAM as shown in the
evaluation with MIT Stata Center dataset and TUM RGBD
dataset. RoomSLAM made a comparable performance to
that of ORBSLAM and performed better than RGBDSLAM.
RoomSLAM also offers a rich model of environments which
is absent in ORBSLAM and RGBDSLAM.

In the future, usage of a more accurate wall detector, e.g.
deep learning-based detector is considered. A more accurate
projection from 2D bounding boxes to 3D is also considered.

The assumption that a room has to be quadrilateral will be
dropped and a boolean operator for rooms will be utilized to
avoid overlapping rooms.

APPENDIX
DERIVATION OF WALL MEASUREMENT MODEL
Consider two points, p = (px , py) and q = (qx , qy), that
define a line w. Relative to the global frame of reference r0
and robot pose r1, the points are related by a homogeneous
transformation matrix T.

p0 = T0
1p

1 q0 = T0
1q

1 (8)

with

T0
1 =

cosα − sinα u
sinα cosα v
0 0 1

 (9)

with (u, v) is position of r1.
With respect to the global and local frame of reference

respectively, the line w has equation

y0 = m0x0 + c0

y1 = m1x1 + c1 (10)

The gradient of the line w could be derived from points p
and q

m0
=
q0y − p

0
y

q0x − p0x
m1
=
q1y − p

1
y

q1x − p1x
(11)

also with the intercepts

c0 = p0y − m
0p0x c1 = q1y − m

1q1x (12)

The relation betweenm0 andm1, c0 and c1 could be derived
by plugging in (8) into (11),

m1
=
− sinα + m0 cosα
cosα + m0 sinα

(13)

c1 =
c0−v+ m0u

cosα + m0 sinα
(14)

Fig. 16 shows that

ρ0 = |c0| sin θ0 (15)

This is a general equation relating ρ to c. Therefore, a similar
equation is also applied in the local frame of reference.

ρ1 = |c1| sin θ1 (16)

The orientation of line w with respect to the global frame
of reference is

θ0 = arctan(−1/m0)

⇒ m0
= −

cos θ0

sin θ0
(17)

Plugging in (17) to (14)

c1 =
ρ0 − v sin θ0 − u cos θ0

sin(θ0 − α)
(18)

VOLUME 8, 2020 197003



I. Rusli et al.: RoomSLAM: SLAM With Objects and Indoor Layout Structure

Finally, plug in (18) to (16), and with the fact that
θ0 = θ1 + α

ρ1 = ρ0 − v sin θ0 − u cos θ0

�
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