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ABSTRACT In traditional fault diagnosis methods in power systems, it is difficult to accurately classify
and predict the types of faults. With the emergence of big data technology, the fault classification and
prediction methods based on big data analysis and processing have been applied in power systems.
To make the classification and prediction of the fault types more accurate, this paper proposes a hybrid
data mining method for power system fault classification and prediction based on clustering, association
rules and stochastic gradient descent. This method uses a three-layer data mining model: The first layer
uses the K-means clustering algorithm to preprocess the original fault data source, and it proposes to use
self-encoding to simplify the data form. The second layer effectively eliminates the data that have little
impact on the prediction results by using association rules, and the highly correlated data are mined to
become the regression training data. The third layer first uses the cross-validation method to obtain the
optimal parameters of each fault model, and then, it uses stochastic gradient descent for data regression
training to obtain a classification and prediction model for each fault type. Finally, a verification example
shows that compared with a single data mining algorithm model, the proposed method is more comparative
in terms of the data mining, and the established power system fault classification and prediction model
has global optimality and higher prediction accuracy, which has a certain feasibility for real-time online
power system fault classification and prediction. This method reduces the disturbances from low-impact or
irrelevant data by mining the fault data three times, and it uses cross-validation to optimize the multiple
regression parameters of the regression model to solve the problems of low accuracy, large errors and easily
falling into a local optimum, given the conduct of fault classification and prediction.

INDEX TERMS Association rules, data mining, K-means, machine learning, power system fault, stochastic

gradient descent algorithm.

I. INTRODUCTION

To ensure the reliability and stability of the power system,
predicting power faults in advance and making the corre-
sponding preventive measures can effectively prevent the
occurrence of power accidents and reduce economic losses.
Short-circuit faults are relatively common faults in the dis-
tribution lines of power systems, and they can easily cause
other corresponding electrical faults; therefore, their hazards
are large. To prevent the occurrence of short-circuit faults,
the following steps can be taken: (1) combining big data
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knowledge with machine learning algorithms, (2) mining
fault historical data to find the correlation and potential laws,
and then (3) building a predictive model through training data.
These steps demonstrate an important and valuable research
direction.

Early power fault diagnosis methods have mainly used
protection devices at all levels to work. The staff can deter-
mine the fault location based on the real-time voltage data
and the status of the alarm device by patrolling and inspecting
the electrical equipment. The shortcomings of this traditional
diagnostic method are lower efficiency and higher cost. Thus,
a new mathematical analysis model has drawn the attention
of researchers, and through the improvement of equipment
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functions, the control and protection ability of the power
system was improved [1], [2]. Although the performance of
these new mathematical analysis models and equipment is
enhanced, the intelligence, interaction and automation of the
equipment are not sufficient. It is possible to judge the occur-
rence of the fault and take protective actions for the power
system in time, but it cannot predict the type of the fault, and
thus, the adopted protective measures could cause protection
failure due to inappropriate choices, and even enlarge the fault
loss. Therefore, it is necessary to further study the prediction
of the power system fault types, which will help the operators
to take correct protection and remedial measures in time to
minimize the fault loss.

Compared with early fault diagnosis methods, artificial
intelligence diagnosis methods have been applied in the fields
of fault diagnosis and prediction, such as fuzzy diagnosis
methods [3], diagnosis methods based on genetic algo-
rithms [4], [5], fault diagnosis methods using expert sys-
tems [6], [7], methods based on neural networks [8]-[10],
and diagnosis methods using the support vector machine
(SVM) [11], [12]. The effective use of these artificial intel-
ligence technology methods has been superior to early diag-
nosis methods to a certain extent.

However, with a power system that generates massive
amounts of data every moment, the traditional artificial intel-
ligence diagnosis method cannot process the big data system-
atically, and the accuracy of the system fault diagnosis results
cannot be further improved, which affects the efficiency
of the diagnosis. The emergence of the data mining meth-
ods [13], [14] improved the performance of the fault diagnosis
to a large extent. Data mining is a cutting-edge technology of
data analysis, which can quickly obtain valuable information
from various types of data. The functions are mainly the
following: 1) Automatically predicting trends and behaviors.
2) Association analysis can find hidden associations in the
data. 3) Clustering can enhance people’s understanding of
the similarities among things. 4) Deviation detection can look
for meaningful differences between the observations and the
reference values. However, most of the data mining diagnosis
methods are implemented using a single algorithm model. For
example, one study [15] proposed a fault diagnosis method
based on decision trees for vehicle test data mining. Since
the decision tree ignores the correlations of the attributes in
the vehicle test data set, overfitting is prone to occur. Another
study [16] developed a social network analysis management
framework for the industry environmental risks using associ-
ation rules based on frequent patterns, which is suitable for
discrete data, but it is more difficult to implement, and its
performance will decrease on some data sets. Therefore, the
models achieved by a single algorithm are not ideal.

Some researchers began to pay attention to the improve-
ment and optimization of the selected algorithms [17]. Some
optimization algorithms used to solve the optimal solution
problem of the algorithm model have been applied, which
mainly include the gradient descent method [18], Newton
method [19], and the meta-heuristic algorithm [20]-[25].
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Gradient descent is one of the most commonly used meth-
ods when solving for the model parameters of machine
learning algorithms, especially unconstrained optimization
problems. Newton’s method provides a method for solving
nonlinear optimization problems whose convergence rate is
fast, but each iteration requires solving a complex Hessian
matrix. Meta-heuristic algorithms are based on an intuitive
or empirical construction, which can give a feasible solution
to the problem for an acceptable calculation time and space
when the degree of deviation of the feasible solution from
the optimal solution might not necessarily be predicted in
advance. However, it cannot guarantee that the global optimal
solution will be obtained absolutely, and it often falls into
a local optimum on some problems. As a result, the hybrid
data mining method, which combines multiple algorithms,
has emerged. One study [26] proposed a power system line
trip fault prediction method based on an long-short term
memory (LSTM) network and SVM. Another study [27]
proposed an optimized neural network fault diagnosis strat-
egy for heating systems based on data mining, which used
an association rule mining method to optimize the selec-
tion of the feature sets. A data driven modeling method for
an aeroengine aerodynamic model that combined stochastic
gradient descent (SGD) and support vector regression was
proposed [28]. In addition, one study [29] proposed a port
cargo throughput prediction method based on empirical mode
decomposition (EMD) recurrent neural network and adaptive
grouping algorithm. Another study [30] proposed a similarity
grouping-guided neural network modeling method for mar-
itime time series prediction. The experiments on both port
cargo throughput and vessel traffic flow have illustrated its
superior performance in terms of prediction accuracy and
robustness. It can be seen that the fault diagnosis and pre-
diction model of the hybrid data mining method is excellent
and exceeds other methods.

Cluster analysis as one of the most important research
branches in the field of data mining, which classifies clustered
objects according to their own characteristics. Cluster analy-
sis has been widely used in software engineering, machine
learning, statistics, image analysis, web clustering engines
and text mining. Association rules, as an inductive learning
algorithm, have a strong ability to discover certain rules and
associations in the data. As the representative algorithm of
association rules, Apriori [31] uses a layer-by-layer search
strategy to traverse the solution space. SGD is often used to
train various machine learning models due to its fast learning
rate and online update [32]. When addressing big data, SGD
has a small number of calculations in a single iteration, and
thus, the convergence speed is significantly higher than that
of other algorithms. The optimization efficiency is better than
that of the classic algorithm, and therefore, the application of
SGD in data regression training is extended to many different
fields.

Based on the above-mentioned considerations, this paper
proposes a hybrid data mining algorithm based on K-means
clustering, Apriori association rules and SGD to classify
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and predict power system faults. The hybrid algorithm per-
forms three-layer mining on the fault data to establish dif-
ferent fault prediction models: Firstly, K-means clustering
and self-coding are used to preprocess the raw data. Then,
the association rules filter the samples for the second layer of
the data mining. Finally, SGD is used for the data regression
training and completes the third layer of the data mining. This
mining mode solves some of the current problems faced by
data mining. Firstly, it reduces the interference between the
complex data and avoids obtaining results from local opti-
mization. Secondly, the complementary functions between
the algorithms ensure the integrity of the data mining. Thirdly,
the method adjusts parameters according to the different fault
prediction models, in such a way that the fault prediction
model has good robustness and fault tolerance, which can
be applied to various actual fault prediction scenarios. Com-
pared with the single algorithm model, the proposed method
has greatly improved the accuracy and reliability of power
system fault classification and prediction, which can be used
to optimize parameters online and can be applied to different
operating states.

The paper originally proposes the three-layer data mining
structure, each layer structure has a special data mining func-
tion, and cooperate with each other to complete the classifi-
cation and prediction work of the power system fault types.
The main contributions are outlined as follows:

1) The clustering algorithm and self-encoding were used
to preprocess complex source data, which classifies the
source data and simplifies the form of the classified
data.

2) The method uses association rules to filter the samples
in advance and classifies them according to the type of
fault, which increases the correlations in the data.

3) The cross-validation method finds the optimal parame-
ters that correspond to different fault models, and then,
stochastic gradient descent is used to train the fault
models, which improves the accuracy of the power
system’s fault prediction.

4) A multi-layer data mining model based on K-means,
association rules and stochastic gradient descent is
built, which improves the completeness of the data
mining.

The remainder of this paper is organized as follows: the
description of the problem is presented in Section II. The
proposed algorithm model framework and the theory of each
part are explained in Section III. Then, in the fourth section,
the whole test example is introduced, and the results are
verified. Finally, the fifth section concludes the study.

Il. PROBLEM STATEMENT

Short-circuit faults are very common faults in power systems,
which can cause large-scale power outages. When faults
occur, the power protection components can decide only
whether to act according to the current operating conditions,
but they can fail to determine what type of fault has occurred,
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which affects the timely handling of the fault. Therefore, this
paper uses three layers of data mining on the original data
of the power system short-circuit faults, and it establishes a
fault classification and prediction model (FCPM) to predict
whether a fault is about to occur and to predict the type of
fault that will occur.

Ill. FAULT CLASSIFICATION AND PREDICTION METHOD
This section will introduce the structure and implementation
process of the proposed method, and the mathematical model
of each algorithm will be introduced in detail.

A. OVERALL METHOD ARCHITECTURE

This paper proposes a fault classification and prediction
method based on K-means clustering, association rules and
SGD. The source samples are the node voltage data after
a certain fault occurs in the power system. The fault types
are mainly single-phase ground fault (SPGF), two-phase
phase-phase fault (TPPF), two-phase ground fault (TPGF)
and three-phase fault (TPF). After the data collection is
completed, the source sample library is shown as follows:
{AQ, G;}, where, AQ = {X1, X3 ... X;} is the voltage data set
in the source sample library, and {G;} is the fault type of the
fault node, G; € {1, 2, 3, 4}, where G; = 1 is SPGF, G; = 2
is TPPF, G; = 3 is TPGF, and G; = 4 is TPE.

The overall architecture of the three-layer data mining
method is shown in Fig. 1. The proposed method integrates
three data mining algorithms: K-means clustering, Apriori
association rules and SGD. In the process of three-layer data
mining, the K-means method and self-coding method are
used to preprocess the raw data, simplify the data form,
reduce the complexity of the data set, and accelerate the data
processing speed. After using the Apriori algorithm to mine
the data for the second time, the relevant samples are sorted
out according to the fault type for regression training, which
can prevent the SGD from falling into a local optimum due to
using random data samples and improves the accuracy of the
regression training.

B. THE FIRST LAYER OF THE DATA MINING PROCESSING
METHODS AND RULES

After obtaining the source samples, the K-means clustering
algorithm clusters the source samples and preprocesses the
data. Moreover, a data encoding rule is proposed to encode
the clustered data samples and simplify the data form, which
cooperates with K-means clustering to conduct first-layer
data mining and the sorting of samples to obtain sample
library I. The specific methods and rules are as follows:

1) K-MEANS CLUSTERING METHOD

The K-means clustering method in this paper includes three
main aspects: the Euclidean distance is used to classify the
data samples; The criterion function is used to judge whether
the sample clustering is completed; and the number of best
classification clusters is determined by comparing contour
coefficients.
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FIGURE 1. The three-layer data mining process of the proposed method.

a: EUCLIDEAN DISTANCE JUDGMENT METHOD

The K-means clustering method classifies the samples
according to the Euclidean distance between the data sample
and the center of each cluster, and they are classified into the
cluster with the minimum Euclidean distance. The Euclidean
distance is calculated as in formula (1):

4 (.77) = (1) 4 (s2m) et (50h)
> (s -)° (1)

i=1

where X = (x1, x2,...,%,) is any unclassified sample
in n-dimensional space that corresponds to the elements
(the voltage data on the non-faulty node) in the AQ of the
source sample library. Y/ = (y’l y/2 e, y’,,) is the center
of the jy, cluster. When classifying the samples for the first
time, any sample can be randomly selected as the cluster
center.

b: CRITERION FUNCTION

The average of all samples in each cluster is used to update the
cluster center, and the criterion function is used to determine
whether the cluster center stops updating. The criterion func-
tion is to minimize the sum of the squared errors between the
samples in the cluster and the cluster center, which is shown
in formula (2):

K
minY) Y () @
j=1 x,/-ler,yi:eY-/

where Y7 is the ji cluster center, y, is the iy element data in
Y/, K is the number of the clusters, X/ is any samples in the
Jth cluster, and x; is the iy, element data in X/.
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When the criterion function of formula (2) converges,
which is when the cluster center does not change signifi-
cantly, the cluster center stops updating. At this time, the
sample classification into K clusters is completed.

¢: THE CONTOUR COEFFICIENT

To obtain the optimal number of clusters in K-means clus-
tering in the first-layer data mining, the method of calcu-
lating the contour coefficients of different clusters is used.
Then, by comparing those contour coefficients, the number
of clusters with the largest contour coefficient is found to
be the optimal number of clusters. For each sample of a
cluster, the contour coefficient calculation method is shown
in formula (3):

(1) First, the cluster cohesion « is calculated. (The aver-
age distance from x to all other points in the cluster to
which it belongs).

(2) Then, the separation degree by between the cluster and
the other clusters is calculated. (The average distance
between x and all points that are not in the same
cluster).

(3) Lastly, the contour coefficient Si is calculated. (The
difference between o and by is divided by the larger
of the two).

br — ok

Sp= — 3)

max (by, o)

The value of the contour coefficient is in the range [—1, 1].
The closer it is to 1, the larger the value of S is. The average
value of the contour coefficients of all samples is used as
the contour coefficient under the current cluster number K.
The larger the contour coefficient is, the farther the distance
between the clusters, and the better the classification effect.
Therefore, the K value with the largest contour coefficient
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is taken to be the optimal number of clusters for the source
sample library.

2) K-MEANS CLUSTERING RULES

The rules for clustering AQ in a source sample library
using the K-means clustering method are shown in Fig. 2:
To obtain the optimal number of clusters, the enumeration
method is used to increase K from 2. When the number of
clusters is K, the clustering rules are described as follows:

1) Firstly, K samples are randomly selected as the initial
cluster center.

2) According to formula (1), the distance between each
sample and the center of each cluster is calculated,
and each sample is classified into the cluster with the
minimum Euclidean distance.

3) The average of all samples in each cluster is taken
as the new cluster center, and the criterion function
is calculated to determine whether the minimum is
reached. If the minimum of the criterion function is not
reached, then return to 2). This process will be repeated
until the criterion function of formula (2) reaches the
minimum.

4) The contour coefficient under the value of K is cal-
culated according to formula (3), which is compared
with that of the completed clusters, and the value of
K that corresponds to the maximum is taken as the
cluster number; then, the clustering of AQ is completed.
If the maximum value of the contour coefficient does
not appear, the value of K will be updated and returned
to 1) to continue the clustering.

When the source samples are clustered in the case of the
different fault types, the optimal K values of the clusters
on the different nodes are different. All of the source sam-
ples in different nodes must go through the above process
to determine their respective optimal K and complete the
clustering of the source samples on every node. After the
source samples are clustered, the samples in each cluster have
some similarities.

3) SAMPLE SELF-CODING AND CODING LIBRARY
FORMULATION RULES

Although the samples of each cluster after clustering have
a certain similarity, the data form is not simple enough to
handle. Therefore, after the AQ of the source sample library
is clustered, self-encoding is performed on the classified sam-
ples to simplify the data form. To keep the important attribute
information of the encoded data, such as the node that the
sample belongs to and the cluster that the sample belongs to,
the rules are formulated as follows: For the each sample in
the AQ after clustering, the node (7") to which it belongs is
queried first, and then, the cluster (W) that it belongs to is
queried, and the final coding form is 70W. For example, the
TOW is 103, which represents that the sample is the voltage
data sample classified into the third cluster on the first node,
where T € N (N is a natural number, which represents the
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FIGURE 2. The clustering preprocessing process of the samples.

node number except for the faulty node), 0 < W < K and
W e N. The coding rules are shown in Fig. 3:

After the source

TOW
clustering is completed

samples {AQ}

FIGURE 3. Self-encoding rules.

AQ is recorded as BQ after the clustering and the self-
encoding. After the source samples are clustered and self-
encoded, the sample data have a concise form, which is easier
to manage.

After processing the source samples through K-means
clustering and self-encoding, the source sample library
{AQ, G;} is transformed into the sample library I {BQ, G;},
and the first-layer data mining is completed. It digs out the
inner connections of the unlabeled different data samples in
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the source samples, makes the data sample in the same cluster
as relevant as possible, and prepares for the second-layer data
mining.

C. THE SECOND LAYER OF THE DATA MINING
PROCESSING METHODS AND RULES

Because there are some potential laws between the voltage
at the node and the fault types in the power system, the
association rules are used in the second-layer data mining to
find out the samples that are highly correlated with a certain
fault type. Training the FCPM with these highly correlated
samples will greatly improve the accuracy of the FCPM.

1) APRIORI ASSOCIATION RULE METHOD
The Apriori algorithm is an association rule algorithm that
is based on mining frequent item sets: the elements in BQ
and G; in sample library I were correspondingly combined
into a whole sample library M: {Zy, Z», ..., Z;}, and each
row of the sample library M was taken as a sample group.
The association rules for frequent item sets are used to find
the association between two or more samples in the sample
group. By calculating the support, the confidence, and the lift
of these frequent item sets, the correlation degree between
the samples is measured, and the non-empty sets that meet
the requirements of the support, the confidence and the lift
are selected.

Assuming that Zy and Zy are non-empty sets of M, the
support, the confidence and the lift are calculated as follows:

a: SUPPORT
Support is the probability of Zx and Zy appearing simultane-
ously.

Support (Zx — Zy) =P (Z,C N Zy) @)

b: CONFIDENCE
Confidence is the probability that Zy appears at the same time
when Zy appears.

Confidence (Z, — Z,) = P(Zx N Z,)/P(Z) &)

c: LIFT
Lift represents the ratio of the probability of Zy appearing
at the same time that Zy appears and the probability of Zy
appearing.

_ P(Z:NZy)

Lift (Zx g Zy) - P(Zx)P(Zy)

(6)
2) THE SECOND-LAYER MINING RULES BASED ON APRIORI
ASSOCIATION RULE
The Apriori association rule method is used to conduct the
second-layer data mining of BQ in the sample library I:
1) Firstly, the minimum support and the minimum con-
fidence are set, and the sample library M is scanned

to find all of the frequent N item sets. (N increases
from 1.)
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2) The candidate N+41 item sets are found by connect-
ing and pruning based on the frequent N item sets
N+1=2,3..).

3) By scanning the sample library M, all of the non-empty
sets larger than the minimum support in the candidate
N+1 item set are found as the frequent N4-1 item sets.

4) If the frequent N+1 item sets are empty sets, then the
confidence and the lift of the rules composed of all
of the frequent item sets are calculated, and the rules
that meet the minimum confidence and that have a lift
greater than 1 are found to be the strong association
rules. Otherwise, return to 2) to search the higher order
frequent item sets.

The sample sets that satisfy the strong association rules
constitute the association library; then, all of the sample sets
related to G; are extracted, where the samples are sorted out
according to the fault types. These samples form the sample
library II: {CQj, Gj}, where Gj is the jy, fault type, and
CQ; is the strong association sample sets that correspond to
G;. The difference between the source sample library, the
sample library I and the sample library II is as follows: the
source sample library and the sample library I are the same
in their dimension and in the number of samples, and the
source sample library standardizes the form of the samples
through clustering preprocessing and self-encoding to form
sample library 1. After association mining, the associated
library obtained from sample library I is very large, but
only the samples related to G; are extracted to form sam-
ple library II, and thus, the data size of sample library II
is much smaller than that of the complete association
library.

After the association rules mining, the samples are highly
correlated in their attributes, and the information associated
with the fault types is stored, which is helpful for mining
valuable results during the SGD data regression training.
In this way, the result deviation caused by data redundancy is
avoided, and the performance and accuracy of the regression
analysis are improved.

D. THE THIRD LAYER OF THE DATA MINING PROCESSING
METHODS AND RULES

After the first two layers of data mining, K-means clus-
tering and Apriori association rules have mined the strong
correlation samples that correspond to the different types
of power system faults. The third layer of the data mining
uses these strong association samples of sample library II to
establish the FCPM for each fault type, and it achieves the
goal of fault classification and prediction. To accelerate the
prediction speed and further improve the prediction accuracy,
the cross-validation method is used to obtain the optimal
parameters in each fault prediction model. Then, the SGD
obtains the solution of the optimal parameters for each fault
prediction model by performing regression training on the
strong association samples. The specific description is as
follows:
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1) FAULT CLASSIFICATION AND PREDICTION MODEL BASED
ON STOCHASTIC GRADIENT DESCENT

SGD is an iterative optimization algorithm that is often used
to solve and optimize model parameters of machine learning
algorithms. SGD is a deformed form of the gradient descent
algorithm, which has been successfully applied to text clas-
sification [33] and large-scale sparse machine learning prob-
lems in natural language processing [34], [35]. The gradient
is to obtain the partial derivative of the unknown parameters
of a multivariate function and obtain the vector composed
of these partial derivative functions. When all of the partial
derivatives in the gradient are 0, the optimal solution of the
model parameters can be obtained. SGD uses only one sample
per iteration. When processing large-volume samples, only
a small number of samples can be used to iterate the model
parameters to obtain the optimal solution. Therefore, SGD
has the advantage of having a fast training speed.

a: PREDICTION MODEL FUNCTION

Given sample library II: {CQj, Gj}, assuming that the weight
coefficients of the samples at each node are linear, a linear
model function is obtained:

f(€g) =w"(cg) +b %

where w is the model parameter vector, and b is the intercept.
wl CQj is the inner product of CQj and w.

b: THE PARAMETER OPTIMIZATION METHOD BASED ON

SGD OF THE FAULT PREDICTION MODEL

i) LOSS FUNCTION

The loss function is used to estimate the difference between

the actual value G; and the model predicted value f(CQj)

that corresponds to the sample, which is expressed by L(Gj,

f(CQy)). This article uses the following two loss functions:

the SVM type loss function is shown in formula (8), and the

logistic regression type loss function is shown in formula (9):
Hinge: equivalent to SVM classification:

L(G.f (€Q)) =max (0.1- Gy (CQ))) @

Log: equivalent to Logistic regression:
L(Gy.f (CQ))) =log (1 +exp (=Gyf (CQ))) )

i) RISK FUNCTION
The risk function is the expectation of the loss function, and
it is also called the empirical risk:

1 n
Br=- > L(Gy.f(CQ)) (10)
i=1

Although the objective function is to minimize the empirical
risk, because of learning historical data and the complexity
of the functions, it could lead to overfitting of the predic-
tion results. Therefore, the structural risks is used to avoid
over-fitting:

Sr = aR (w) (11)
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where « is a hyperparameter. By setting « to reduce the
parameter scale, the purpose of model simplification is
achieved, which means that the model has better generaliza-
tion ability. The regular item R(w) is used to measure the
complexity of the loss function, and it limits the parameters
of the loss function. The regular items R(w) mainly include
L1 regularization and L2 regularization:

m
L1 = Z,-:1 wl; = lIwll, (12)
1 2 2
L2=2%  wi=Iwl (13)

where L1 regularization can produce a sparse weight matrix,
which can be used for feature selection. L2 regularization can
prevent the model from overfitting by reducing the weight
coefficient. To a certain extent, L1 can also prevent overfit-
ting, but the effect is not as good as L2.

c: THE OPTIMIZED OBJECTIVE FUNCTION

The smaller the empirical risk and structural risk are, the bet-
ter the model fit; as a result, the final objective optimization
function is

l n
min : E (w,b) = - ZL (Gj.f (CQ))) +aR(w) (14)
j=1

SGD considers a set of training samples each time to find the
true gradient of the objective optimization function. For each
set of samples, the iterative model parameters are updated by
the update rule given by formula (15):

T . .
e (aaR(w) L AL (W€ +D, G,)) s

ow ow

where 7 is the learning rate of the step size in the control
parameter space. To prevent the parameter w from oscillating
near the solution, 7 is decreased according to the following
formula (16):
1
@ - - 16
T T X+ (16)
where t is the time step, and f is the initial step size, which
is the same as the initial value of the weight by default;
additionally, « and ¢ jointly affect the learning rate.

d: K-FOLD CROSS-VALIDATION PARAMETER OPTIMIZATION
METHOD

The K-fold cross-validation method is used to find out the
optimal parameter group (loss function L, hyperparameter
o, regular term R(w) and iteration number N); then, the
optimal model parameter w is solved by the iteration cal-
culation of SGD. The strong correlation samples that corre-
spond to a certain fault type in sample library II are used to
train the parameter group, and the solution with the highest
cross-validation score under the fault type is regarded as the
optimal solution of the parameter group. The optimal value
of the parameter group and its cross-validation scores that
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correspond to different faults are different. The method steps
are as follows:

1) Firstly, all of the samples in the ji, sample set (CQ;, G))
are divided into K parts in equal proportion, and each
part is used as the cross-validation set; the other K-1
parts are used as the training set.

2) After completing the cross-validation K times, the
average of the correct rate over K times for the
cross-validation results is used as the cross-validation
score.

3) By comparing the cross-validation scores, the parame-
ter group (L, R, a, N) with the highest score is selected
as the optimal parameter set.

4) The optimal model parameter w is solved by substi-
tuting the optimal parameters (L, R, «, N) into for-
mula (14) and (15) for the current iteration.

2) THE THIRD-LAYER DATA MINING RULES BASED ON THE
STOCHASTIC GRADIENT DESCENT METHOD

The SGD optimization algorithm performs third-layer data
mining on sample library II, as shown in Fig. 4:

1) Firstly, a prediction model function is established.

2) The K-fold cross-validation method optimizes the four
parameters (L, R, o, N) of the SGD under the prediction
model function.

3) By comparing the cross-validation scores, the optimal
parameter set is determined.

4) The training set is retrained under the optimal parame-
ter group to obtain the FCPM.

5) Finally, the test set is used to test the performance of
the FCPM.

The optimal model parameter w can be obtained through
the optimal loss function and the optimal regular terms; then,
the fitting law of the samples in CQ; to the fault resultin Gj is
found, in such a way that the optimization model can classify
and predict the faults from the new data.

E. ALGORITHMIC MODEL EVALUATION: CONFUSION
MATRIX AND ROC CURVE

Model evaluation can more intuitively see the quality of the
model based on the corresponding indicators. The confusion
matrix and the ROC curve are used in this article to evaluate
the results.

1) CONFUSION MATRIX
The confusion matrices are also called the probability tables
or the error matrices. This type of matrix is a specific matrix
that is used to visualize the performance of the algorithm. The
calculation formula of the overall model accuracy of FCPM,
the precision of each fault type, the recall rate, and the F1
score are as follows:
Assuming that the test sample set has a total of S samples:
1) Accuracy: the ratio between the number of correct
predictions and the total number of predictions:
TP+TN

S

Accuracy = 17
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FIGURE 4. The third-layer data mining based on SGD.

2) Precision: the ratio of the correct positive number to the
true and false positives number:

TP

TP+FP
3) Recall: the ratio of the correct positive number to the
true and false negatives number:

TP

TP+FN
4) F1: Harmonic average of the Precision and the Recall.

Pr ecision =

(18)

Re call = (19)

2 x Pr ecision * Re call
Fl =

— (20)
Precision + Re call
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The multi-class classification confusion matrix of the
model is converted into a binary classification confusion
matrix to calculate the above indicators. Each type of fault
is considered separately from the other three types of fault.
The three-phase fault (Gj = 4) is taken as an example:

TABLE 1. The meaning of TP, TN, FN and FP in the confusion matrix.

TP TN FN FP
true value true value true value true value
G4 G4 G=4 Gi#4
predicted predicted predicted predicted
value Gi=4 value Gi#4 value Gi#4 value G=4

where TP, TN, FN, and FP in formulas (17) (18) (19) are the
number of samples that meet the above.

According to these performance indicators of the FCPM,
it can be compared with other methods to find the advantages
and disadvantages of the method’s performance.

2) ROC CURVE
The Receiver Operating Characteristic Curve (ROC) is an
important and common model evaluation method to judge the
classification results. The ROC space defines the false posi-
tive rate (FPR) as the X axis and the true positive rate (TPR)
as the Y axis.

TPR: The rate of being correctly judged to be positive
among all of the actually positive samples.

TP

~ TP+FN
FPR: the rate of being falsely judged to be positive among

all of the actually negative samples.

FP

" FP+TN
Given a classification model, a coordinate point (X=FPR,

Y=TPR) can be calculated from the true and predicted values

of all of the samples. In a model, the coordinates (FPR, TPR)

under different thresholds are drawn in the ROC space, which
becomes the ROC curve of the specific model.

TPR 1)

FPR (22)

F. STATISTICAL TEST AND ALGORITHM TIME COMPLEXITY
To judge about the significance of the results, the statistical
test method is added to the discussion. In addition, in con-
sideration of the effectiveness of the proposed method, the
time complexity and the computational running time are also
discussed.

1) FTEST

The statistical test method used in this paper is the F test,
which tests the overall significance of the linear regres-
sion equation. The multiple variables in the model are used
to judge the significance of the impact, and the following
assumptions are constructed:

Hy=p=p=...==0 (23)
Hy=3ie{l,2,...,n}, st.Bi#0 (24)
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Then, the test statistics are constructed as follows:
yi = Bxi+ & (25)

where x; is the sample vector, y; is the predicted value vector,
B is the variable coefficient, and ¢; is the difference between
the average value of a single sample and the average value of
the overall sample.

Regression sum of squares:

n

SSR= 3" (i — )’ (26)
i=1
Sum of squared residualls for regression:
n
SSE=) (i—)’ 27)
i=1
Then, the F statistic is colnstructed:
- SEo——T /S(ili/’; — Fz0 (28)

where y is the actual value that corresponds to the sample
vector, y“ is the average value of y, p is the degree of freedom,
and n is a small number of samples extracted from the sample
library.

The F value is used to test and measure the overall signifi-
cance level of the model. When the F statistic is close to zero,
it proves that the original hypothesis Hy holds, which means
that the overall significance level of the model is low. The
larger the F statistic is, the higher the significance level of the
model, which proves that the model fits well and the model
is built successfully.

2) BIG O NOTATION

The more statements that are executed in the algorithm,
the more time it takes for the computation. The number of
executions of a statement in an algorithm is called the time
frequency, which is denoted as V (n), where n is the number of
samples. If there is an auxiliary function f(n) such that when n
approaches infinity, the limit value of V (r)/f (n) is a constant
that is not equal to zero, then f(n) is said to be a function
of the same magnitude as V(n), and thus, it is denoted as
V(n) = O(f (n)), which is called the time complexity.

The calculation method is called Big O notation, whose
derivation rules are as follows: 1) O(1) represents the time
complexity of all constant functions. 2) The time complexity
of other functions retains only the highest order, and its
coefficient is 1.

G. REALIZATION PROCESS OF HYBRID ALGORITHM
PREDICTION METHOD

The flowchart of the method’s implementation is shown in
Fig. 5:

IV. EXAMPLES

The calculation examples in this section are compiled and run
in the jupyter notebook of Anaconda with the help of some
SK-learn toolkit functions in the Windows 7 environment.
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A. SIMULATION ESTABLISHMENT

The U.S. Western Power Grid WSCC 9 bus system is taken as
an example, and some parameters were modified to establish
a simulation model of the power system. The classification
and prediction of common short-circuit faults in power grids
is studied. As shown in Fig. 6, the fault simulation model is
established using PSCAD, which is electromagnetic transient
simulation software [36]. Firstly, the node load and network
parameters of the IEEE 9 bus system were set, where node 8 is
set as the faulty node, and a universal meter on each node
was installed to obtain the real-time voltage data. Then, the
occurrence of the faults was controlled through time fault
logic, to ensure the timeliness of addressing faults in practice,
and the time for the occurrence of a fault is set to 0.2 s. The
control type is external control, a dial was set that can change
the fault type by manual interactive control, and the number
on the dial corresponds to a certain fault. For example, if the
value of the dial is 1, it corresponds to SPGF, and the dial
was linked to the control panel user interface, which changes
the fault type by changing the digital position on the control
panel. When a type of fault occurs, the voltage data are
collected separately. This simulation mainly collects the data
within the visible range of the waveform graph. Faults in
multiple time periods are set, and the time of the voltage
sample collection is the same after all of the faults.

Find all the strong association
rules and classify the samples
according to the types of fault

FIGURE 5. Overall method flow.

200906

B. DATA COLLECTION AND PREPROCESSING

When different fault types occur at 8 nodes, the voltage data
on the other nodes are collected. After the simulation is
completed, the waveform is obtained, and the voltage data
are established in the data table. The calculation example is
shown in Fig. 6, where more than 20,000 sets of data on the
different fault types are used as source sample data to train
the different fault models. When the three-phase short-circuit
fault occurs at node 8, the voltage waveforms of node 7 and
node 8 are shown in Fig. 7. The horizontal axis of the figure
is the time, and the vertical axis is the voltage value.

The first-layer clustering preprocessing is to randomly
select K as the initial number of the classification clusters,
and after the criterion function converges, the contour coeffi-
cient method is used to find the best K value of the samples
on each node. When four types of short-circuit faults occur
at 8 nodes, all of the voltage data samples at node 2 in
the voltage data source sample library are extracted, and
then, they are clustered according to the clustering process
mentioned in section III.B. Finally, the contour coefficient
method is used to match the best K value of the voltage data
samples at node 2, and the result is shown in Fig. 8. It can be
seen that when K = 10, the contour coefficient S is the local
maximum, and therefore, the K value of the cluster number
of the voltage data samples at node 2 is set to 10, and all of the
voltage data samples are divided into 10 clusters. The voltage
data samples at other nodes are also divided into the most
suitable number of clusters according to the above method,
where the data samples in each cluster have large similarity
after clustering.

After the data preprocessing of all nodes is completed,
the classified data samples are encoded through encoding
rules. For example, when the amplitude of the voltage data
at node 2 ranges from 108.26 to 226.82, the optimal K
value is 10, and thus, the voltage data samples are divided
into 10 clusters. The sample value ranges of each clus-
ter are [108.26,113.45], [113.46,151.40], [151.41,164.36],
[164.37,177.85], [177.86,182.45], [182.46,185.66],
[185.67,188.49], [188.50,192.15], [192.16,206.17], and
[206.18,226.82]. When the voltage of a certain classified data
sample is 158.60, the value falls in the third cluster of the
voltage range at node 2, and thus, the data sample is recorded
as 203. The voltage data samples at the other nodes are also
encoded in the same way to obtain sample library 1. The
self-encoding form of some samples in sample library I is
shown in Table 2:

C. ASSOCIATION MINING AND REGRESSION TRAINING

After the source samples’ clustering is preprocessed, the
Apriori algorithm is used to mine the association rules for
the data samples of sample library I: Firstly, the minimum
support is set to 0.3, and the minimum confidence is set to
0.7. The sample sets in sample library I whose support degree
is greater than 0.3 are determined to be the frequent itemsets.
Then, all of the frequent itemsets that meet the conditions of
the confidence being greater than 0.7 and the lift being greater
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FIGURE 6. IEEE 9 bus system fault simulation model.
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FIGURE 7. The voltage waveform of node 7 and node 8.

than 1 are screened out as samples of the strong association
rules. The mining result of the frequent itemsets is partially
listed in Table 3:

The brackets and arrows in the second column of
Table 3 represent that the preceding event could cause the
subsequent event to occur. The corresponding values of the
support degree, the confidence degree, and the lift degree are
given in the third, fourth and fifth columns, respectively. For
example, the strong association rule of {101,206,906}— {3}
in the seventh row and second column of Table 3 is that
when the voltage data at node 1 are in the first cluster, the
voltage at node 2 are in the sixth cluster, and the voltage at
node 9 is in the sixth cluster, which could cause two-phase
ground faults at the faulty node. All of the sample groups
with strong association rules are sorted from sample library II
according to the type of faults. The self-encoding form of
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those samples in sample library II that are highly related to
single-phase ground faults is shown in Table 4:

Before the training on sample library II, to avoid the
sensitivity of the proposed method to the parameter value,
the 10-fold cross-validation method is used to optimize the
parameters of L, R, « in formula (14) and hyperparameter
N, and the model is retrained by the training set under the
optimal parameters to obtain the optimal model; finally, the
model result is verified by the test set. The specific imple-
mentation is as follows:

1) All of the samples of a certain fault in sample library II
are subjected to 10-fold cross-validation. All of the
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TABLE 2. The self-encoding form of some samples in sample library I.

Node Node Node Node Node Node Node Node Fault

Group 1 2 3 4 5 6 7 9 type
1 105 201 304 409 505 606 702 908 3
2 102 203 305 407 502 602 701 909 4
3 102 201 306 402 506 601 701 905 1
4 106 202 304 405 501 608 708 905 1
5 103 204 305 405 501 607 702 906 2
6 105 204 301 408 504 604 706 905 1
7 104 202 306 406 503 606 707 907 2
8 106 203 305 407 502 605 708 908 2
9 102 203 302 402 507 607 704 903 2
10 103 204 305 408 502 604 705 905 1
11 101 207 306 401 507 604 701 902 2
12 106 205 302 405 505 603 707 902 2
13 105 206 304 409 505 605 705 903 2
14 105 203 305 407 503 605 703 908 1
15 104 204 306 406 504 606 702 905 1
16 104 202 306 405 504 607 701 905 1

TABLE 3. Partial rules mined from the frequent itemsets.

Group Sample group Support  Confidence  Lift
1 {905} —{1} 0.35 0.749 2.14
2 {306} —{1} 0.42 0.749 1.78
3 {205,407} —{1} 0.33 0.850 2.56
4 {306,905} —{1} 0.41 0.846 2.06
5 {205,606,701}— {2} 0.55 0.884 1.61
6 {606} —{2} 0.44 0.738 1.74
7 {403,505} —{2} 0.45 0.749 1.68
8 {101,206,906}— {3} 0.53 0.874 1.64
9 {305,406} — {3} 0.57 0.765 1.34
10 {105,406,502}—{3} 0.55 0.889 1.62
11 {405,506,901}— {3} 0.5 0.889 1.61
12 {205,506} —{3} 0.45 0.714 1.59
13 {105,604,908} — {4} 0.36 0.659 1.83
14 {108,303} — {407} 0.45 0.683 1.52
15 {402,503,607}— {105} 0.48 0.702 1.46

TABLE 4. The self-encoding form of the some samples of sample

library I
Group Node Node Node Node Node Node Node Node Fault
1 2 3 4 5 6 7 9 type
1 104 204 306 406 504 606 702 905 1
2 104 203 305 407 503 605 701 906 1
3 104 202 306 405 504 607 701 905 1
4 103 202 306 405 503 607 702 905 1
5 103 204 305 405 503 607 702 905 1
6 106 204 305 405 504 604 701 905 1
7 105 205 306 406 503 606 702 907 1
8 105 205 305 407 503 605 703 908 1
9 105 203 306 406 504 607 702 905 1
10 106 204 305 405 503 604 702 905 1
11 103 202 306 407 504 604 701 905 1
12 103 204 306 405 503 605 702 907 1
13 105 202 304 406 503 605 701 905 1
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samples are divided into 10 parts, each of which
is used as a cross-validation set in turn, and the
other 9 parts are used as a training set. The samples
were trained 10 times in total. The parameters with the

highest cross-validation score are taken as the optimal
parameters.

2) Sample library II is divided into training set A and test

set B.

3) Training set A retrains the model under the optimal

parameters.

4) Finally, test set B tests the model and obtains the results.

To prove that the regression training accuracy of the sample
library after the clustering and association rule mining is
higher than after only clustering (without mining by asso-
ciation rules), sample library I is also subjected to 10-fold
cross-validation. For example, in the parameter optimization
process of the single-phase short-circuit fault model, after
each group of parameters is substituted into the SGD algo-
rithm program, the cross-validation scores of sample library I
and sample library II that correspond to these solutions are
listed, as shown in Table 5. Then, the cross-validation scores
are compared, and the optimal solution of the parameters
(L, R, a, N) of each fault model is selected. It can be seen that
the cross-validation score is the highest at 0.556 during the
regression of sample library I, and the corresponding optimal
parameters group is (Log, L1, 0.1, 1000). During the regres-
sion of sample library II, the cross-validation score is the
highest at 0.788, and the corresponding optimal parameters
group is (Log, L2, 0.1, 500). In addition, the cross-validation
scores of sample library II is higher than those of sample
library I under the same parameter groups.

It can be seen from Table 5 that under the mathemat-
ical model of SGD, the optimal loss functions of sample
library I and sample library II both selected logistic regres-
sion. Because the amount of classification calculation in
Logistic regression is less and the storage resource is less, the
training data can be quickly integrated into the model. Com-
pared with SVM, it is easy to obtain the probability scores of
the samples. For the optimal regularization items, the sample
library I chooses L1, because the features between the sam-
ples are not obvious in sample library I, and thus, the features
must be sparse, which reduces the number of weight parame-
ters and the complexity of the model. Sample library II selects
L2, which reflects that the features between the samples in
sample library I have a certain similarity after the association
rules, and therefore, the complexity of the model is reduced
only by reducing the value of the weight. In addition, L2
can also be combined with logistic regression to solve mul-
ticollinearity problems. Both choices for « are 0.1, which
reflects the same degree of simplification of the parameter
scale. For the optimal number of iterations N, sample library
I iterated 1000 times, while sample library II iterated only
500 times. It can be seen that the cross-validation training
of sample library II has a short convergence time, fast fitting
speed, and lower model complexity.

To further explain that the data mining process using the
clustering and association rules is more accurate than that
using only clustering, training set A in sample library I and
training set A in sample library II are used to retrain the model
separately under each group of parameters, and the SGD test

VOLUME 8, 2020



Y. Wang et al.: Power System Fault Classification and Prediction Based on a Three-Layer Data Mining Structure

IEEE Access

TABLE 5. Cross-validation scores of the sample library | and the sample
library 11 in the single-phase short-circuit fault model.

Cross- Cross-

validation validation
Group Alternative parameters score score

(Sample (Sample

library [ ) library 11>
1 Hinge, L1, 0.1, 500 0.475 0.565
2 Hinge, L1, 0.1, 1000 0.325 0.614
3 Hinge, L1, 0.05, 500 0.378 0.588
4 Hinge, L1, 0.05, 1000 0.356 0.656
5 Hinge, L1, 0.01, 500 0.348 0.505
6 Hinge, L1, 0.01, 1000 0.454 0.586
7 Hinge, L2, 0.1, 500 0.325 0.686
8 Hinge, L2, 0.1, 1000 0.316 0.624
9 Hinge, L2, 0.05, 500 0.346 0.446
10 Hinge, L2, 0.05, 1000 0.445 0.554
11 Hinge, L2, 0.01, 500 0.418 0.528
12 Hinge, L2, 0.01, 1000 0.356 0.596
13 Log, L2, 0.1, 500 0.456 0.788
14 Log, L2, 0.1, 1000 0.435 0.628
15 Log, L2, 0.05, 500 0.215 0.436
16 Log, L2, 0.05, 1000 0.248 0.548
17 Log, L2, 0.01, 500 0.336 0.578
18 Log, L2, 0.01, 1000 0.236 0.536
19 Log, L1, 0.1, 500 0.345 0.546
20 Log, L1, 0.1, 1000 0.556 0.698
21 Log, L1, 0.05, 500 0.315 0.535
22 Log, L1, 0.05, 1000 0.326 0.554
23 Log, L1, 0.01, 500 0.328 0.624
24 Log, L1, 0.01, 1000 0.384 0.588

scores of each group of parameters are compared. As shown
in Fig. 9(a), it can be seen that sample library I obtains the
highest SGD test score at the 20, group of the parameters
(Log, L1, 0.1, 1000), which is 0.71. Sample library II obtains
the highest SGD test score at the 13, group of the parameters
(Log, L2, 0.1, 500), which is 0.82. Furthermore, the parame-
ters of the other fault models have also been optimized, and
the SGD test scores of sample library I and sample library II
are obtained; the results are shown in Fig. 9(b), 9(c) and 9(d).

It can be seen from Fig. 9 that under the same parameters,
the SGD test score of sample library II is always higher
than that of sample library 1. This finding occurs because
the parameter optimization directly uses SVM or SGD or
other algorithms in sample library I, which is slow and can
easily fall into a local optimum. However, the samples in
sample library II, which were processed by the clustering
and association rules, are more closely related to each other,
and thus, the parameter optimization speed is faster, and the
best classification point or the best classification line or the
best classification surface will be found accurately. More-
over, the proposed method optimizes the unknown parameters
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in advance by adopting the cross-validation method, which
greatly accelerates the training speed of the fault prediction
model and improves the accuracy of the model.

Through the obtained optimal parameter set (L, R, «, N),
the optimal solutions of the model parameters w of different
fault types are solved by SGD iterations according to formu-
las (14) and (15), which are shown in Table 6, where a positive
value indicates a positive correlation that makes the variable
and the dependent variable change in the same direction; a
negative value indicates a negative correlation that makes the
variable and the dependent variable change in the opposite
direction.

TABLE 6. The model parameter w of the different fault types.

Single-phase two-phase two-phase three-phase
ground phase-phase ground fault model

nodel  6.3923  nodel 4.2268  nodel 5.0025 nodel 4.6894
node2  1.7931 node2 3.4426  node2 3.2284 node2 4.6473
node3 42512 node3 2.6687 node3 3.1131 node3 3.2485
noded  -0.2413  noded 0.3695 noded 0.6123 noded  -0.2356
node5 47168  node5  -3.2456  node5  -25535  node5  3.4236

node6  -2,5159  node6 3.2258 node6 3.5721 node6  -2.4264
node7  -2.0162  node7  -21145  node7  -3.0361 node7  -4.2364
node9  -3.4614 node9  -32536 node9  -42364  noded  -4.2525

D. TEST SET VERIFICATION
To measure the performance of the fault prediction model
obtained by the proposed method, the test set of the
source sample library is selected to test the model. There
are 2658 group samples, which are randomly selected from
the source sample library to participate in the test, and the
confusion matrix is used to evaluate the accuracy of the test
results and the precision of each fault type. The result of the
confusion matrix of the test is shown in Fig. 10, in that the
predicted and actual value distributions of each fault type can
be found, where each row represents the real fault type, and
each column represents the fault type predicted by the model.
The darker the color is, the larger the number of samples.
The test results of the test set show that the overall accuracy
of the model is 93.8%. The precision of each fault model
is the following: the single-phase ground fault is 94.7%, the
two-phase phase-phase fault is 91%, the two-phase ground
fault is 95.4% and the three-phase fault is 93%. Therefore, the
accuracy of the FCPM of sample library II under the optimal
parameters is high, and the prediction precision of each fault
model is also high.

E. STATISTICAL TEST AND COST EFFECTIVENESS OF THE
PROPOSED METHOD

Because the classification prediction model is a multiple lin-
ear regression model, the F test mentioned in section III.F.1)
is used to test the significant difference of the model and
whether the selection of multiple parameters in the model is
appropriate. 100 sets of samples were selected for the F test,
and 8 non-faulty nodes decided the degree of freedom p = 8.
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FIGURE 9. SGD test scores of the different fault models. (a) Single-phase ground fault model. (b) two-phase phase-phase fault
model. (c) two-phase ground fault model. (d) three-phase fault model.
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FIGURE 10. Confusion matrix for various types of faults.

The variance analysis of the regression equation is shown in
Table 7:

It is calculated that F=87.58, which refers to the F-value
table with a significance level of 0.05 and a confidence level
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TABLE 7. The variance analysis of the regression equation.

Types of sum of Degree of freedom F value
squares
SSR r=8
SSE n-p-1=91 87.58

of 95%. When p = 8, F, = 1.94, F > F,. Therefore, there
are significant differences between the variables and depen-
dent variables in this model, and the model is constructed
reasonably.

To measure the computational complexity of the model
algorithm, the Big O notation method mentioned in
section III.F.2) is used to calculate the time complexity of the
algorithm. The time complexity of each method is shown in
Table 8:

The time complexity of the overall model is O (n2), and
the commonly used time complexity from small to large is
O(1)<O(n)<O(n10gn)<O(n2)<O(n3)<0(2n)<0(n!), thus, the
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TABLE 8. The time complexity of each method.

algorithm time complexity
K-means O(Kn?)
Self-coding O(n)
Apriori O(4n?)
Cross-validation O(10n)
SGD O(n)
Overall model O(n?)

time complexity of the overall model is feasible. In addition,
the overall running time of the program is 3.7 s. The over-
all cost effectiveness of the proposed method is not large,
which guarantees the timeliness of the fault classification and
prediction.

F. METHODS COMPARISON AND VERIFICATION

The proposed method is compared with other methods to
accomplish its algorithm verification, which further illus-
trates the effectiveness and scalability of the proposed
method. The regression algorithms involved in the compari-
son include logistic regression [37], SVM [38], [39], random
forest [40], [41], SGD and the proposed method. The con-
structed model is shown in Fig. 11(a), and the test scores of
the performance indexes are shown in Fig. 11(b).

To compare the performances of several algorithms, the
ROC curve of each algorithm is shown in Fig. 12. The larger
the area under the ROC curve (AUC) is, the better the per-
formances of the algorithms. In addition, the F1 scores, the
precision and the recall rate of the algorithms are shown in
Fig. 13.

As can be seen from Fig. 12, the AUC values of the
proposed method, logistic regression, random forest, SVM,
and SGD are 0.921, 0.822, 0.782, 0.753, 0.633, respectively,
which proves that the proposed method has the best classifi-
cation and prediction effect.

In addition, it can be seen from Fig. 13 that the perfor-
mance index scores of all of the algorithms sorting from the
largest to the smallest are as follows: the proposed method,
logistic regression, random forest, SVM and SGD. Before
the parameter optimization and the association rules, the F1
value, the precision rate and the recall rate of the model are
64.5%, 66.6%, and 67.2%, respectively. After the parameter
optimization and the association rules, the F1 value, the pre-
cision rate and the recall rate of the model are 90.9%, 93.8%,
and 91.2%, respectively. The experimental results show that
compared with logistic regression, SVM and random forest,
the performance indexes of the proposed method are signif-
icantly better. The reason is that there is a common prob-
lem with SVM, random forest and logistic regression: When
faced with a small amount of data and ambiguous features,
it cannot classify or perform regression very well, and thus,
the performance will be defective. However, the proposed
method clarifies the features in advance through clustering
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FIGURE 12. Comparison of the ROC curve of the different regression
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and association rules. The parameter optimization makes
the model results better, and thus, the performance indexes
are better than the above three algorithms. In addition, the
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FIGURE 13. The F1 score, precision and recall of the algorithm model.

proposed method also proves that the performance index
scores of the SGD when directly used for regression is not
high. However, after the source samples are processed by
the clustering preprocessing and association rules, SGD after
parameter optimization is used to train the processed samples
again, and the performance index scores are significantly
improved. The reason is that the loss function used by SGD
each time is only determined by a small batch of data, and
the loss function is different from the real complete set loss
function; thus, the gradient of its solution also contains a
certain degree of randomness. At a saddle point or local
minimum point, it will oscillate and jump, and thus, the result
is that the prediction accuracy is not high. Applying clustering
and association rules to filter the samples in advance can
reduce the irrelevance between small batches of data and
reduce the shock. Therefore, the performance indexes of SGD
are improved based on the fast data training speed of the
clustering preprocessing and association rules.

G. PRACTICAL APPLICATIONS

To prove the scalability of the proposed method, a short-
circuit fault classification and prediction test is carried out
with the help of a power grid cooperation project in a certain
urban area distribution network. The distribution network
has 8 generators, 12 transformers, and 56 data collection
points. According to the method in the article, in the dis-
tribution network, more than 20,000 sets of voltage data on
the different fault types are used as source sample data, the
amount of the source sample data and the types of the fault
are the same as the WSCC 9 bus system. In this experiment,
the voltage data on the 56 collection points in the distribu-
tion network affect the fault types together, the data at each
collection point have been processed by the algorithm model
for a total of 210 times, therefore, the computational cost
of the classification and prediction model in the distribution
network is 56 x 20000 x 210 = 0.235B. In addition, the
computational cost of the classification and prediction model
in the WSCC 9 bus system is 9 x 20000 x 78 ~ 0.014B. This
experiment was also done on a personal computer. After the
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test is completed, the accuracy of the fault classification, the
runtime and the computational cost of two systems are shown
in Table 9:

TABLE 9. Comparison of fault classification accuracy, runtime and
computational cost in the different systems.

. Computational
Systems Accuracy  Runtime(s) cost(B)
WSCC9 bus 93.8% 37 0.014
system
Practical 89.2% 116 0.235

application system

Among them, B stands for billion, which is the unit of the
number of the times the computer runs. It can be seen from
the table that, compared with the WSCC 9 bus system, the
accuracy of the fault classification results has little change,
being 93.8% and 89.2% respectively. The computational cost
is 0.235B, which proves that the proposed method can be
computationally efficient to be used in practical applications.
It is concluded that with the increase of the system nodes,
the runtime and the computational cost will increase, which
is because the runtime and the computational cost are related
to the complexity of the actual system, such as the number of
nodes, the number of line branches, etc. Therefore, it can be
predicted that in a more complex actual system, the compu-
tational cost will be greater.

V. CONCLUSION

Through multiple data mining methods, including clustering,
association rules, cross-validation optimization and SGD, the
proposed method identifies the data samples that are strongly
related to the specific faults and determines the potential
laws for building a more accurate fault classification and
prediction model. Moreover, through the existing operating
data, the proposed method can predict which type of fault will
occur soon, and it plays an important role in the classification
and prediction of fault types. For the specific fault models,
the proposed method uses an optimization algorithm to deter-
mine the optimal parameters of the fault models after clus-
tering and association mining of the training samples; then,
the fault models are obtained from training samples under the
optimal parameters, and thus, the effect of the classification
and prediction is better than other methods mentioned in this
paper.

The proposed method processes the source data in advance,
avoiding the low accuracy of the fault classification and
prediction model due to the low-impact or irrelevant data,
and it can realize the fault classification and prediction of
the power system in time and accurately. Otherwise, the pro-
posed method can be widely applied to the fault classification
and prediction of various busbars, transformers, transmis-
sion lines in the power system and the classification and
prediction of the other systems that involve multi-attribute
classification. In addition, it can also be extended to medical
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disease prediction, electronic communication fault detection
and other fields.

However, the proposed method has some limitations:
through the experiment test on the distribution network in
an urban area, it is found that the proposed method can-
not achieve rapid and real-time fault prediction in practical
applications, and the timeliness needs to be further improved.
In addition, this paper only considers the voltage data of each
node in the same time period under different fault conditions,
without further analysis the high-dimensional data sample
composed of voltage data of each node, current data of each
branch and time. Therefore, the future research work will
focus on the practical engineering applications of the multi-
dimensional data of power systems for fault classification and
prediction.

APPENDIX

The nomenclature of the article:

Terms Abbreviations
support vector machine SVM
long-short term memory LSTM
stochastic gradient descent SGD
empirical mode decomposition EMD
fault classification and prediction
model FCPM
single-phase ground fault SPGF
two-phase phase-phase fault TPPF
two-phase ground fault TPGF
three-phase fault TPF
structural risks SR
empirical risk ER
loss function L
receiver operating characteristic ROC
true positive TP
true negative TN
false positive FP
false negative FN
true positive rate TPR
false positive rate FPR
regression sum of squares SSR
sum of squared residuals for
regression SSE
area under receiver operating
characteristic curve AUC
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