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ABSTRACT This paper suggests a method to place and size the battery energy storage system (BESS)
optimally to minimise total system losses in a distribution system. Subsequently, the duck curve phenomenon
is taken into consideration while determining the location and sizing. The locations and sizing of BESS were
optimised using a metaheuristic algorithm with high exploration and exploitation ability which is known as
the Whale Optimisation Algorithm (WOA). Meanwhile, the performance of WOAwas validated using other
algorithms, i.e., Particle Swarm Optimisation and Firefly Algorithm. The results demonstrated the capability
of WOA to determine the optimal BESS location and sizing for all cases, with and without considering the
duck curve issue for loss reduction. Besides that, the duck curve issue can be mitigated by appropriately
optimising the energy storage system (ESS) to reduce the steep ramp of the duck neck and ducktail and
to lift the duck belly. In conclusion, although less loss reduction was achieved as a tradeoff to fulfil the
constraint on net load ramp limit, the required BESS sizing was much smaller than the case without those
constraints and charging operation, which makes this solution economically viable.

INDEX TERMS Battery energy storage, duck curve, optimal size, optimal location.

I. INTRODUCTION
A. MOTIVATION AND INCITEMENT
Power systems are experiencing a change from the conven-
tional passive system to the active system through the inte-
gration of distributed generations and energy storage. Such
a change is attributed to the need to reduce greenhouse gas
emissions, deferral of transmission and distribution system
expansion together with the improvement of power system
reliability and quality [1]. Having said that, the energy storage
systems (ESSs) are recognised for their contribution to the
power systems due to the ability to store and release energy
according to the power systems’ requirement. The ESSs are
capable of providing different functions in the power systems
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such as spinning reserve, peak shaving, generation output
smoothing, voltage control, reverse power flow reduction,
power losses reduction and uninterruptible power supply.
These functions depend on the technical characteristics of
the ESSs, including storage capacity, efficiency, cost, lifetime
and power rating [2], [3]. Therefore, key aspects like the opti-
mal placement and capacity of ESS should not be neglected
to maximize the benefits provided by the ESS [4]. Optimal
planning of ESS in the power systems ensures overall reli-
ability and performance while reducing the investment and
operation cost [5], [6].

B. LITERATURE REVIEW
Various methods have been proposed in the extant literature
on the optimal allocation of ESS in the power systems.
For instance, an approach using mixed-integer linear
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programming was proposed in [7] for optimal placement
and sizing of the battery energy storage system (BESS) to
alleviate the transmission network congestion. The study
revealed that the location of the distributed generation in
the network did not affect the overall capacity of the BESS,
but changed the optimal placement of the BESS. In another
study [8], the optimal size of ESS was obtained using an
interior point algorithm, particularly the Jacobian analytical
gradient to enhance the optimisation outcome by minimising
the system operation cost. Furthermore, a scenario-based
two-stage method was introduced [9] to attain optimal ESS
sizing to minimise the installation and operation cost. The
first stage of the work focused on the optimisation of ESS
sizing, while the second stage focused on the optimal control
of ESS. This two-stage scenario reduction approachwas iden-
tified to have performed better than that of the conventional
clustering method proposed in a separate study [10] as it
exploited the structure of the optimisation problem [2]. Apart
from the analytical and mathematical optimisation methods,
meta-heuristic optimisation methods were also proposed
for optimal ESS allocation. The meta-heuristic optimisation
methods are popular optimisation approaches compared to
other conventional optimisation methods due to its advan-
tages including simplified implementation, reduced complex-
ity of calculation and ability to thoroughly explore the search
space [11], [12]. Another method was proposed in [13] to
obtain the optimal location of the BESS using genetic algo-
rithm (GA) to reduce the net present value related to system
power losses. In addition, a GA based two-level optimisation
algorithmwas introduced in [14] for optimal BESS allocation
to reduce the voltage fluctuation of the power systems. The
first stage involved the BESS optimal allocation, followed by
the second stage which determined the BESS dispatch curves
during the steady-state power flow analysis. On the other
hand, a fuzzy particle swarm optimisation was employed in
another study [15] for optimal ESS placement and sizing to
minimise the power losses in the distribution network. The
study also included a detailed study on cost-benefit based on
energy arbitrage through the reduction of operation cost to
increase the profit of the service provider. Meanwhile, some
other studies proposed and employed the firefly algorithm
[5], [16], [17] to solve the BESS allocation problem to
mitigate the voltage fluctuation in the distribution system.
The studies demonstrated that the BESS should be located
close to the photovoltaic distributed generation (PVDG) to
best mitigate voltage fluctuation. On the other hand, optimal
placement and sizing of the BESS were determined using
whale optimization algorithm (WOA) to minimise total sys-
tem losses [18]. Based on case studies with different numbers
of photovoltaic (PV) and BESS in the distribution system,
it was concluded that the BESS should be placed close to a
heavy load for effective total losses reduction.

C. CONTRIBUTION AND PAPER ORGANIZATION
This paper proposes a method to obtain the optimal location
and sizing of BESS to minimise total system losses. WOA,

a meta-heuristic optimisation method [11], was proposed to
perform all the optimisation processes in this work because
it has good exploration and exploitation abilities. The main
contributions of this study are summarised as follows:
• The novelty of the proposed method is the incorpora-
tion of the duck curve mitigation for the optimisation
process. Hence, the proposed method is expected to
optimally locate and size the BESS to solve the duck
curve issue and simultaneously minimise total system
losses.

• The modelling of the duck curve is performed according
to the Malaysia PVDG generation and load pattern with
issues like steep ramp rate and over-generation. BESS’s
potential in alleviating the duck curve issue is validated
through optimal placement and sizing of BESS.

• This work is carried out in a dynamic time-domain,
whereby the simulation included the hourly data
collected for up to one month (28 days). Hence,
the research outcome will be more operationally
relevant compared to those reported in previous
literature.

• The effectiveness of the proposed approach will be val-
idated with other well-known optimisation algorithms.

As Section I represents the introduction, Section II
describes the duck curve phenomenon. Section III presents
an overview of the optimisation algorithm, WOA. While
Section IV demonstrates the problem formulation of the opti-
misation work. Section V presents the implementation of
the optimisation process including the flowchart, while the
results and discussion are presented in Section VI. Finally,
Section VII concludes the findings of the study.

II. DUCK CURVE PHENOMENON
In year 2013, the Californian Independent System Oper-
ator presented the net load for a spring day, as shown
in Fig.1, by considering different levels of PVDG penetra-
tion [19]. The net load at a specific point on the network
represents the differences between the estimated load and
the forecasted electricity produced from different genera-
tion sources (including PVDG) connected at (or below) that
point. The mathematical link between the generation, load
and net load is depicted in (1). Based on Fig. 1, the mid-
dle part of the curves forms a belly shape during day-
light hours, in which the curves ramp up quickly looking
like the neck of a duck. Hence, the chart is known as the
‘duck curve’.

Net load = Estimated load − PVDG (1)

The sinking ‘duck-belly’ indicates the risk of over-
generation when the net load decreases with the increased PV
generation that is estimated for future years (Fig. 1). Gener-
ally, the local power generation exceeds the local load when
over-generation occurs. This condition can cause the incre-
ment of the rotational speed of other generators connected
to the distribution system leading to damages. The effects
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FIGURE 1. The duck curve [19].

can be harmful if the excess power generated by the PV is
not regulated by reducing the output of other conventional
generators. On the other hand, the ‘duck neck’ reflects a steep
ramp-up in net load as the PV generation decreases due to the
reduced solar radiation, combined with a typical evening load
increase. Therefore, the utility needs to bring on or shut down
more generation sources quickly to fulfil the load, which then
significantly affects the efficiency and the daily operation
cycles of the generators [20], [21].

Some approaches that have been proposed to solve the
duck curve problem include adjusting the orientation of
solar panel [22], employing the combination of ESS and
demand side’s controllable generator [23], besides replac-
ing the conventional thermal generation with the concen-
trated solar power generation [24]. However, this study
proposes the BESS to mitigate the duck curve problem
while minimising the total system losses in the distribution
network.

III. WHALE OPTIMIZATION ALGORITHM
The optimisation formulation of WOA was modelled based
on the hunting pattern of the humpback whales [11]. This
algorithm consists of two main elements namely, exploration
and exploitation processes.

A. EXPLOITATION PROCESS
Bubble-net feeding is one behaviour of the humpback whales
which happens in groups. Hence, this behaviour inspired
the mathematical modelling of the exploitation process. The
exploitation process can be further divided into two parts
which are the shrinking encircling pattern and the spiral
position update.

1) SHRINKING ENCIRCLING PATTERN
After detecting the prey, the humpback whales encircle their
prey in which each whale is denoted as a search agent. In the
current context, however, no prior knowledge of the optimal
location (solution) in the search space is available. Hence,
the location obtained by the current best search agent will be
considered as the target prey. Other search agents will then
update their locations according to the location of the current

best agent. This pattern can be modelled as:

EY =
∣∣∣C2 · X∗ (t)− EX (t)∣∣∣ (2)

EX (t + 1) = X∗ (t)− C1 · EY (3)

where t denotes the current iteration, C1 and C2 are the
coefficient vectors, X∗ is the position vector for the current
best solution and EX is the position vector. The expressions
for vectors C1 and C2 are indicated as follows:

C1 = 2Ec · rn− Ec (4)

C2 = 2 · rn (5)

where rn is a random vector within the interval [0,1], while
Ec is a vector decreasing linearly from two to zero along with
the iteration.
C1 is a random number within the range [−c, c], where

the shrinking encircling pattern is demonstrated through the
reduction of the variation for C1 during the iteration process.
When the magnitude ofC1 is less or equal to one, the updated
location for the subsequent search agent will fall between the
current location of the agent and the location of the current
best agent.

2) SPIRAL POSITION UPDATE
The spiral position update equation was modelled based on
the spiral movement of humpback whales as illustrated in (6).

EX (t + 1) = Y t · ebl · cos (2π l)+ X∗ (t) (6)

where Y t represents the distance between the whale and the
prey at jth iteration with the formula, Y t =

∣∣∣X∗ (t)− EX (t)∣∣∣,
while b denotes a logarithmic spiral shape constant and l is a
random number between the interval [−1, 1].

However, during the location update process, the same
probability is assumed for the whale to employ either the
shrinking encircling pattern or the spiral model. The overall
equation to update the location of the humpback whales in the
process of exploitation is presented as:

EX (t + 1) =

{
X∗ (t)− C1 · EY if p < 0.5
Y t · ebl · cos (2π l)+ X∗ (t) if p ≥ 0.5

(7)

B. EXPLORATION PROCESS
The humpback whales search for their prey randomly based
on their relative locations from other agents during the explo-
ration process. This process employs the same approach
based on the variation ofC1 vector.When the value of

∣∣C1∣∣ is
randomly allocated to be larger than 1, the search agents are
driven to move away from a reference whale. The updated
locations are then decided according to a randomly chosen
search agent. The global search process deployed by WOA
can be illustrated using the mathematical expressions below:

EY =
∣∣∣C2 · Xrnd (t)− EX (t)∣∣∣ (8)

EX (t + 1) = Xrnd (t)− C1 · EY (9)
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FIGURE 2. The flowchart of WOA.

where Xrnd denotes a position vector selected randomly from
the current population. The concept of WOA is further illus-
trated in Fig. 2.

IV. FORMULATION OF OPTIMIZATION PROBLEM
The first part of the work involved the formulation of the
optimization problem to obtain the optimal BESS placement
and sizing to reduce total system losses. While the latter part
added the constraint of the duck curve problem to the problem
formulation. Then, the outcome and the system performance
for both parts were compared.

A. OPTIMAL BESS PLACEMENT AND SIZING FOR TOTAL
SYSTEM LOSSES REDUCTION
The placement and sizing of BESS in the distribution system
were simultaneously optimised to reduce the total system
losses. The objective function, ObjF that was formulated
in (10) is bound by the constraints specified in (11) and (12).

ObjF = min
∑Nbranch

ith=1
|Iith|2 Rith (10)

PBESS,min ≤ PBESS ≤ PBESS,max (11)

Vmin ≤ Vk ≤ Vmax (12)

FIGURE 3. Monthly net load curve based on typical PVDG and load profile.

FIGURE 4. Daily net load curve in a microgrid.

where Nbranch denotes the total number of branches in the
system, Iith is the current magnitude of the ith branch, Rith is
the resistance of the i-th branch, whilePBESS andVk represent
the BESS power and the bus voltage at bus k , respectively.

B. OPTIMAL BESS PLACEMENT AND SIZING TO REDUCE
TOTAL SYSTEM LOSSES CONSIDERING DUCK CURVE
PHENOMENON
The typical monthly profile of a PVDG [25] adopted in this
study includes some fluctuations that were added to repre-
sent the intermittent nature of PVDG generation. The PVDG
generates power from 7 am until 7 pm. The weekly load
profile in Malaysia is created based on the general electricity
usage pattern in an urban area. The weekly net load curve is
plotted assuming a microgrid with maximum load demand
of 3.83 MW and the maximum output of PVDG power of 3
MW (Fig. 3). Fig. 4 illustrates the daily net load pattern.
Based on the curve, the shape of a duck starts with a ducktail
in the morning, followed by the duck belly in the middle of
the curve and the duck neck. Both the duck belly and duck
neck denote the over-generation and steep ramping problem
as faced by the California Independent System Operator.

The second part of the work considered the duck curve
phenomenon in the optimisation process. As mentioned ear-
lier, the major problems posed by the duck curve include
the sudden ramp up and ramp down of the net load (the
load to be supplied by conventional generator) along with
the over-generation due to PVDG in the power systems.
Therefore, the ramp rate control is required to solve these
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issues. This study incorporates BESS to control the ramp rate
by absorbing or injecting the necessary amounts of power
when the hourly ramp rate exceeds the ramp limit of the con-
ventional generator. Thus, apart from the objective function
and constraints stated in (10) – (12), an additional constraint
considering the ramp limit of the conventional generator as
given in (13) was added to the optimisation process. Hence,
the net load equation following the introduction of BESS in
the system is demonstrated in (14).

rampnetload,min ≤ rampnet load ≤ rampnetload,max (13)

NetloadBESS = Estimated load − PVDG generation

− total BESS power (14)

where rampnetload is the hourly ramp rate of the net load
curve, rampnetload,min and rampnetload,max represent the ramp
down and ramp up limits of the generator respectively,
Net loadBESS represents the net loadwith BESS introduced in
the power systems. Meanwhile, positive and negative values
of total BESS power represent the total BESS power during
discharging and charging operation, respectively.

V. IMPLEMENTATION OF WOA FOR BESS APPLICATION
The implementation steps to obtain the optimal location and
sizing using WOA are presented as follows:

A. PROCEDURES TO OBTAIN THE OPTIMAL BESS
LOCATION USING WOA FOR TOTAL SYSTEM LOSSES
REDUCTION
Even though only optimal location is obtained in this step,
both location and sizing of BESS for every hour are optimized
simultaneously, since assuming a non-optimal BESS sizing
will affect the optimal BESS location. However, the final
optimal BESS sizing is decided in the following part upon
deciding on the optimal location.

a. The first part of optimisation involves the modelling
of the BESS and PVDG integrated generic distribution
network in Simulink.

b. The optimisation process is initiated from the first hour
of the time domain.

c. The whale population (searching agents) representing
the possible BESS locations and sizing is initiated.

d. The power flow in Simulink is run with the proposed
solutions given by the whale searching agents.

e. The performance is evaluated based on the objective
function, ObjF after obtaining the data from the power
flow.

f. The parameters and the current best positions for the
population of whale searching agents are updated.

g. Optimisation process from steps (d) to (f) is repeated
until a maximum number of iterations are fulfilled.

h. The optimal location and sizing obtained for the first
hour are stored. Steps (c) to (g) are repeated for the
subsequent hours.

Fig. 5 provides a more detailed flow of the first part of
the optimisation process. The optimal locations for each hour

FIGURE 5. Flowchart for the optimal BESS location using WOA (first part).

are compared following the first part of optimisation. The
location with the highest repetition throughout all the hours
is assigned as the final optimal location. Then, BESS is
placed at the final optimal location for the second part of the
optimisation process to determine the optimal BESS sizing
needed for each hour using the same distribution network.
Steps (b) to (h) were repeated (only to optimise the BESS
sizing) for the second part of optimisation. The flowchart
for the second part of the optimisation process is illustrated
in Fig. 6.

B. PROCEDURES TO OBTAIN THE OPTIMAL BESS
PLACEMENT AND SIZING USING WOA FOR TOTAL SYSTEM
LOSSES REDUCTION AND CONSIDERING DUCK CURVE
PROBLEM
To ensure that the ramp rate for each hour does not exceed the
ramp limit, the possible location proposed by the search agent
is subjected to the optimisation of BESS sizing continuously
for each hour. The procedures are as follow:

a. The BESS and PVDG integrated generic distribution
network are modelled in Simulink.

b. Whale searching agents representing the possible
BESS locations are initialised.
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FIGURE 6. Flowchart for the optimal BESS location using WOA (second
part).

c. The suggested/updated BESS locations to be used in
the power flow are stored.

d. The BESS sizing optimisation process is initiated from
the first hour of the time domain with the suggested
locations from step (c).

e. Whale searching agents representing the possible
BESS sizing is initialised.

f. The net load ramp rate are examined and maintained
within the ramp limit.

g. The power flow is run in Simulink with the proposed
locations and sizing provided by the whale searching
agents.

h. The performance is evaluated based on the objective
function, ObjF after obtaining the data from the power
flow.

i. The parameters and the current best positions for the
population of whale searching agents for BESS sizing
are updated.

j. The optimisation process from steps (f) to (i) was
repeated until the maximum number of iterations is
fulfilled.

FIGURE 7. Flowchart for the optimal BESS placement and sizing by
considering the duck curve problem.

k. The suggested optimal sizing with the corresponding
BESS locations obtained for step (c) is stored. Steps
(e) to (j) were repeated for subsequent hours.

l. Parameters and the current best positions for the pop-
ulation of whale searching agents for BESS locations
are updated.

m. The optimisation process from steps (c) to (l) is
repeated until a maximum number of iterations is ful-
filled.

Fig. 7 illustrates the flowchart of the BESS placement and
sizing optimisation processes by considering the duck curve
problem.

VI. RESULTS AND DISCUSSION
This section discusses the outcomes for BESS placement and
sizing optimisation obtained usingWOA. The performance of
WOA was compared with that of the simulation results from
other algorithms namely particle swarm algorithm (PSO) [26]
and firefly algorithm (FA) [27]. The parameter settings of the
initial value of the vector Ec and constant b in WOA were set
at 2 and 1, respectively. Meanwhile, the cognitive and social
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FIGURE 8. Single line diagram of the generic distribution system.

coefficient for PSO was set at 2. As for FA, the random factor
α (0.2) decreased with a factor of 0.97 in the subsequent
iterations, while the attractiveness βo and light absorption
coefficient γ were both set to 1.
On the other hand, Fig. 8 represents the generic distribution

system that was employed in this study. The nominal voltage
of the distribution systemwas 11 kVwith the load and branch
data adapted from [18]. In total, there were 48 buses in the
system with a total active and reactive load of 3.83 MW and
1.35 MVAr, correspondingly. Moreover, two PVDGs with a
capacity of 1.50 MW each were installed in bus 18 and bus
30. Simulink was used to model the distribution system and
to perform the load flow analysis.

A. OPTIMAL BESS PLACEMENT AND SIZING FOR TOTAL
SYSTEM LOSSES REDUCTION
The first part of the optimisation process considered four
optimization variables (locations and sizing for two BESS),
while for the second part considered two optimisation vari-
ables (sizing for two BESS). The population capacity and the
maximum iteration number for all algorithms (WOA, PSO
and FA) were set to 50. The optimisation processes were
repeated five times for both parts of the work, where solutions
with the least total system losses are acknowledged as the
optimal solutions.

1) OPTIMIZATION TO OBTAIN OPTIMAL BESS LOCATIONS
FOR EACH HOUR
The optimal placement of BESS 1 and BESS 2 for each hour
(total of 672 hours for onemonth) was decided during the first
part of the optimisation. Locations with maximum repetition
were then considered as optimal locations for BESS 1 and
BESS 2. Table 1 summarises the repetition results.

The result indicated that bus 7 and bus 18 were consid-
ered as the optimal bus locations for BESS 1 and BESS 2
(Table 1) based on WOA and PSO for up to 67 and 48-hour

TABLE 1. BESS bus location with maximum repetition.

FIGURE 9. Hourly BESS power for total system losses reduction.

repetitions, respectively (from a total of 672 hours). Mean-
while, FA yielded a maximum repetition of only 5 times.
Since FA’s outcome was not convincing due to poor repeata-
bility, the bus locations obtained here will be excluded from
the optimal solution. Once the optimal bus locations were
determined, the second part of the optimisation determined
the optimal BESS power for each hour.

2) OPTIMIZATION TO OBTAIN OPTIMAL BESS POWER
FOR ALL HOURS
In the second part of the optimisation, BESS 1 and BESS
2 were placed at bus 7 and bus 18 based on the observation
from the previous optimisation. The optimal BESS power for
each hour was optimised to minimise total system losses as
depicted in Fig. 9. BESS 1 at bus 7 supplies less power for
loss reduction compared to BESS 2 at bus 18 because the
total load at the feeder for bus 18 was much higher than that
of bus 7.

The total BESS energy required for all hours to achieve
total losses reduction using WOA, PSO and FA is summa-
rized in Table 2. Based on the observation, WOA and PSO
possessed similar ability in searching for the optimal solu-
tions, however, the total BESS energy attained using FA for
672 hours was higher than that was attained using WOA and
PSO. Table 3 also revealed that FA achieved less total losses
reduction compared to WOA and PSO. WOA and PSO lost
42.91% from the original value (without BESS), while FA
lost 1.91% more than the former methods.

B. OPTIMAL BESS PLACEMENT AND SIZING FOR TOTAL
SYSTEM LOSSES REDUCTION CONSIDERING DUCK
CURVE PROBLEM
In this section, the number of dimension involved in the opti-
mization are two-D (locations/ sizing for two BESS) for both
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TABLE 2. Total BESS energy required for all hours obtained using WOA,
PSO and FA for total system losses reduction.

TABLE 3. Total system losses reduction achieved by WOA, PSO and FA for
672 hours.

FIGURE 10. Mismatch between net load and actual generator generation
for 672 hours.

BESS placement and sizing optimization processes. The pop-
ulation capacity and maximum iterations for all algorithms
were set to 30 and 20, respectively. Moreover, the optimisa-
tion processes were repeated five times before the solutions
with the least total system losses were acknowledged as the
optimal solutions.

The power generator used to supply the load in this study
was assumed to be a small scale run-of-the-river system with
a capacity of 3.83 MW and a ramp rate of 25.6% per hour
[28]. The mismatch between the actual generator generation
and the net load is illustrated in Fig. 10. Due to the ramp
limit of the generator, the actual generation did not meet
the net load requirement at a certain time. Thus, two BESS
were placed in the distribution to solve the net load mismatch
problem and also to minimise the power system losses by
considering the constraint given in (12).

On the other hand, Table 4 indicates the total losses
reduction achieved by different algorithms after optimisation.

TABLE 4. Total system losses reduction achieved by WOA, PSO and FA for
672 hours considering the duck curve problem.

FIGURE 11. Optimal BESS power required for each hour obtained by WOA.

TABLE 5. Optimal locations for BESS 1 and BESS 2 based on WOA, PSO
and FA considering duck curve issue.

Based on the results, WOA yielded the highest losses reduc-
tion of 27.18 MWh compared to PSO and FA with losses
reduction of 27.15 MWh and 26.66 MWh, respectively. With
BESS location and sizing determined using WOA, losses
were estimated at 43.10% of their original value, with an
improvement in performance by 0.07% and 1.09% for PSO
and FA, respectively.

Therefore, it can be concluded that WOA performed better
than the other two methods in obtaining the optimal BESS
allocation to reduce the total system losses while maintain-
ing the ramp limit of the net load curve. Thus, the optimal
allocations obtained by WOA was considered as the optimal
solutions for this problem, where the optimal locations of
BESS 1 and BESS 2 were assigned as bus 7 and bus 19
(Table 5). Meanwhile, Fig. 11 illustrates the optimal BESS
power required for each hour obtained by WOA. Neverthe-
less, BESS 1 at bus 7 supplied less power for losses reduction
compared to BESS 2 at bus 19, since bus 19 is located at a
feeder with higher load demand.

The total BESS energy required at all hours for losses
reduction considering the duck curve problem using WOA,
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TABLE 6. Total BESS energy required for all hours considering the duck
curve problem.

PSO and FA is provided in Table 6. The optimisation out-
come of WOA suggested a slightly higher total BESS energy
of 1050.20 MWh compared to PSO with 1047.40 MWh,
0.27% lower than of WOA. However, the FA was observed to
have performed poorly since it required a higher total BESS
energy of 1051.45 MWh, approximately 0.12% higher than
WOA.

Referring to Table 2 and Table 6, when the duck curve
problem involving the net load ramp rate is considered in the
losses reduction optimisation process, the total BESS energy
required to solve the optimisation problem was estimated
at 1050.20 MWh using WOA. This value was 2.76% lesser
than the case for losses reduction only (1079.97 MWh). The
reduction in total BESS energy is a result of achieving differ-
ent BESS optimal locations after the net load ramp rate was
added as an optimisation constraint. This new set of optimal
locations required less BESS energy to minimise total system
losses. However, the reduced total BESS energy required did
not significantly influence total system losses, since the losses
were only 0.19% greater when Table 3 was compared to
Table 4.

Fig. 12 illustrates the comparison of net load curve, where
the net load at the base case (power to be supplied by
generator when no BESS in the network, blue curve) was
reduced (red curve) after BESS were added into the network
considering the duck curve problem.

1) ANALYSIS CONSIDERING BESS DAILY CHARGING
CAPACITY
It is essential to charge the BESS for several hours to sustain
the BESS operation. In this case, BESS was charged during
the low net load period from 8 am to 6 pm (10 hours)
every day. During this period, all the discharged amount of
the same day is divided equally to be charged among the
charging hours. However, based on Fig. 13, a large amount
of BESS charging energy (to cover all the discharged energy)
causes the BESS charging to exceed the generator ramp limit

FIGURE 12. Comparison of net load curve for cases with and without
BESS.

TABLE 7. Total system losses reduction based on the charging of BESS for
672 hours.

FIGURE 13. Net load curve with BESS charging exceeding the ramp limit.

especially for the first and last hours of the daily charging
period. The violation of the net load ramp limit is denoted by
the high rising edge of the green dotted curve. To solve the
net load ramp limit violation, total BESS discharging power
was reduced to 10% of the suggested optimal amount.

The reduced BESS power of the BESS charging and the
respective net load curve is illustrated in Fig. 14 and Fig. 15,
respectively.

Fig. 16 exhibits the net load curve comparison for only
one day to observe the changing of the net load pattern. The
observation revealed that with the BESS operation, the net
load curve was flattened, whereby a steeper ramp at the
ducktail and duck neck was reduced apart from elevating
the duck belly. On the other hand, the total losses reduc-
tion achieved by each optimisation algorithm considering the
duck curve problem is presented in Table 7. Based on Table 8,
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TABLE 8. Daily BESS energy obtained using WOA, PSO and FA including BESS discharging and charging operations.
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TABLE 8. (Continued) Daily BESS energy obtained using WOA, PSO and FA including BESS.

FIGURE 14. Reduced BESS power for 672 hours with BESS charging.

the total losses increased when the BESS power for each
hour was reduced to fulfil the net load ramp limit. Among
all algorithms, the performance of WOA was the best with

FIGURE 15. Net load curve comparison for cases with and without BESS
with BESS charging.

the highest total losses reduction of 1.75 MWh, followed
by PSO and FA with total losses reduction of 1.72 MWh
and 1.40 MWh, respectively. The losses recorded with BESS
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FIGURE 16. Improved duck curve phenomenon with elevated duck belly
and reduced ramp at duck neck after BESS were placed in the power
system.

location and sizing using WOA that was 96.34% of their
original value, is an improvement of approximately 0.06%
of PSO and 0.73% of FA. The decrease in the performance
of total losses reduction is a tradeoff between the losses
reduction and maintenance of the net load ramp limit.

The daily BESS energy for discharging and charging of
BESS is summarised in Table 7. For BESS 1, the highest daily
sizing required was 1.38MWh, 1.59MWh and 1.88MWh for
WOA, PSO and FA, respectively.While for BESS 2, the high-
est sizing required was 6.37MWh, 6.46MWh and 7.39MWh
forWOA, PSO and FA, respectively. WOA yielded the small-
est sizing with 13.20% less than PSO and 26.60% less than
FA for BESS 1, compared to 1.39% and 13.80% less than
PSO and FA, respectively, for BESS 2. In brief, WOA was
the best in losses reduction while maintaining the net load
ramp limit. Since WOA was deemed the best performer in
the optimal sizing problem, the results obtained using WOA
was adopted as the optimal solution. According to the BESS
minimum and maximum state of charge (SOC) (20% and
80%, respectively) following BESS operation, the optimal
sizing for BESS 1 and BESS 2 was estimated at 2.30 MWh
and 10.62 MWh, respectively.

VII. CONCLUSION
In conclusion, WOA performed well in achieving the optimal
BESS placement and sizing for losses reduction with and
without considering the duck curve problem. Although PSO
achieved similar optimisation results with WOA to minimise
the power losses, it did not perform as well as WOA when
the constraints for the duck curve problem were considered.
Comparatively, FA performed poorly in achieving the optimal
BESS allocation. Therefore, the optimal BESS location and
sizing proposed by WOA was acknowledged as the optimal
solutions for all studies.

For the first study involving the optimisation for total
system losses reduction alone, the BESS was proposed to be
placed optimally at bus 7 and bus 18 with total BESS energy
of 1079.97 MWh. As for the latter study involving the duck
curve problem, the optimal locations were proposed to be at
bus 7 and bus 19 with total BESS energy of 1050.20 MWh,
which is 2.76% lesser than the former case. Meanwhile,

the total losses reduction achieved by both studies were not
significantly different with 27.18 MWh and 27.27 MWh,
for studies with and without the implementation of the duck
curve problem, respectively.

Nevertheless, when BESS daily charging was considered
as an effort to maintain BESS operation, the BESS discharg-
ing power was required to be reduced up to 90% of the
initially proposed amount to maintain the net load ramp limit.
Also, the SOC of the BESS was considered in deciding the
sizing of the BESS. Finally, BESS are placed optimally at bus
7 and bus 19 with a total-sizing of 12.92 MWh, to minimise
the total system losses and solve the duck curve problem.
Even though the performance on power losses reduction
decreased as a tradeoff to maintain the net load ramp limit,
the proposed BESS sizing for the charging and ramp rate
constraint was still lesser compared to the case without con-
straints and charging operation.
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