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ABSTRACT With the utilization of deep learning approaches, the key factors for a successful application are
sufficient datasets with reliable ground truth, which are generally not easy to obtain, especially in the field of
medicine. In recent years, this issue has been commonly addressed with the exploitation of transfer learning
via fine-tuning, which enables us to start with a model, pre-trained for a specific task, and then fine-tune
(train) only certain layers of the neural network for a related but different target task. However, the selection
of fine-tunable layers is one of the major problems of such an approach. Since there is no general rule
on how to select layers in order to achieve the highest possible performance, we developed the Differential
Evolution based Fine-Tuning (DEFT) method for the selection of fine-tunable layers for a target dataset under
the given constraints. The method was evaluated against the problem of identifying the osteosarcoma from
the medical imaging dataset. The performance was compared against a conventionally trained convolutional
neural network, a pre-trained model, and the model trained using a fine-tuning approach with manually
handpicked fine-tunable layers. In terms of classification accuracy, our proposed method outperformed the

compared methods by a margin of 4.45% to 32.75%.

INDEX TERMS Deep learning, fine-tuning, medical imaging, optimization, transfer learning.

I. INTRODUCTION

In recent years the expansion of deep learning has been
tremendous, with a significant impact on almost every field.
The outstanding classification performance of modern deep
learning approaches has attracted many researchers from
various fields such as agriculture [1], seismology [2], infor-
mation security [3], software engineering [4], computational
biology [5], healthcare [6], and medicine [7] to employ
modern deep learning techniques to solve different domain
problems. One such field, where the increase of deep learn-
ing applications has led to a number of domain problems,
is medical image processing [8]-[10]. However, especially
in the medical image processing field, there is a problem
with regard to the availability of large datasets, with reliable
ground truth, which are needed in order to build a good
predictive model with high predictive performance, utilizing
deep learning methods.

Nowadays, the lack of adequate datasets is most commonly
addressed by the utilization of transfer learning approa-
ches [10]-[13]. Transfer learning enables us to transfer the
knowledge of a model, previously trained for a specific task,
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to a new model, trying to tackle a similar but not equiva-
lent task. Recent studies have shown that such approaches,
especially when utilizing deep convolutional neural networks
(CNN), are quite beneficial in terms of not needing a large
dataset. In addition to that, the time complexity of training is
also reduced since models are already somewhat pre-trained.
For example, in [11] the authors achieved great performance
results when classifying mammographic tumors with the use
of transfer learning trained only on 607 full-field digital mam-
mographic images. In [14] the authors utilize transfer learning
to effectively classify images for macular degeneration and
diabetic retinopathy.

However, with the application of transfer learning, there
are also downsides. In order to appropriately adapt a pre-
trained model to a new task, its specific parts (layers) need
to be retrained, while the others need to remain unchanged.
This adaptation is usually made with fine-tuning approaches
when facing a problem in determining which of the layers
should be enabled for training (fine-tuning) and which ones
to leave frozen [15]. Besides, there is a common problem
when setting the hyper-parameter values, the same as in
the conventional training of deep neural networks. All these
issues have a direct impact on training capabilities and also
on the classification performance. If the hyper-parameter
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values are not set correctly, the outcome of a model is most
likely to be unsatisfying [16]. Currently, there is no general
rule or recipe to follow in order to determine which layers
to fine-tune or which hyper-parameter settings to use. Most
of the decisions are based on previous experiences of deal-
ing with such problems. Solving the above-mentioned issues
is most commonly a recurring, time-consuming process in
which various settings are tried and tested out to find the
ones that will result in a high predictive performance of the
model.

The motivation behind the selection of fine-tunable layers
is based on the empirical evidence that the initial (bottom)
layers of CNNs preserve more abstract, generic features,
applicable to a broader range of tasks as presented in [15],
[17], [18]. In contrast, layers toward the end (top) of a CNN
tend to provide more specific, task-related features. There-
fore, it should generally be more reasonable to fine-tune more
top layers. However, recent studies [19] show that it is not
really clear if restricting the fine-tuning to the last layers is
the best option. Azizpour et al. [17] suggested that the success
of knowledge transfer depends on the dissimilarity between
the primary task for which the CNN was trained, and new
target task for which we would like to transfer knowledge.
When utilizing a fine-tuning strategy, the CNNs are most
often pre-trained on an ImageNet dataset [20] or datasets
similar to ImageNet. The distance between natural images
in an ImageNet dataset and medical imaging datasets is by
no means negligible, so at this point, the question regarding
which layers of CNN to fine-tune remains.

The mentioned empirical findings motivated us to take a
look at the problem from a different angle. We found an
analogy for this problem in the feature selection techniques
and mechanisms utilized in machine learning, which are
well explored. The problem of feature selection could be
easily translated to the problem of finding the most optimal
selection of layers for a given neural network architecture,
enabled for fine-tuning, which would produce a predictive
model achieving the best classification performance. Based
on those grounds, we set our goals to develop a new straight-
forward, automatic and CNN architecture agnostic Differen-
tial Evolution based Fine-Tuning (DEFT) method. The DEFT
method features an adaptive layer selection mechanism for
finding the most optimal combination of fine-tunable lay-
ers for achieving high classification performance in transfer
learning tasks.

The proposed method is evaluated against the task of
identifying the osteosarcoma from Hematoxylin and eosin
(H & E) stained images. The performance of the DEFT
method is compared against a conventional trained CNN
model, a pre-trained CNN model with all layers being fine-
tuned, a CNN model with handpicked layers fine-tuned, and
also specific state-of-the-art methods evaluated on the same
dataset.

We summarize our contributions as follows:

« We propose a novel adaptive fine-tuning mechanism for

transfer learning, which automatically determines how
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many and which layers of a CNN to fine-tune for a given
set of images.

« We conducted an empirical evaluation of the proposed
method tackling the problem of identifying osteosar-
coma from medical images.

« We performed an extensive performance analysis and
comparison of the results obtained from conducted
experiments.

o We analyzed the impact of different selections of fine-
tunable layers on the model’s performance.

Il. RELATED WORK

The problem of layer selection, when employing transfer
learning with fine-tuning, has been receiving a lot of attention
in recent years. With the general popularization of deep learn-
ing techniques, transfer learning with fine-tuning has become
the most common strategy for transferring knowledge in
the context of deep learning, which enables researchers and
practitioners to apply such deep learning methods to various
domain problems more quickly.

Various methods, following different strategies and
approaches, were presented in recent studies to improve the
standard fine-tuning. In general, there are two approaches
addressing the aforementioned problem. The first approach
focuses on selecting the input samples relevant to the target
task, as presented in [21]-[23]. The other approach — that
we also used in this paper — focuses on the selection of
the portions, or layers, of the network in order to opti-
mize information extraction from the pre-trained network.
Standard techniques adopting this approach either fine-tune
all network layers as presented in [24], or only fine-tune
the last few layers or blocks of the network as presented
in [10], [25]. Another interesting technique proposed in [26],
[27] is to use a pre-trained network as a feature extractor
with a classifier such as SVM on top of it. While those
fine-tuning methods have proven that they are capable of
delivering a promising performance when compared to con-
ventionally trained networks, the biggest drawback of such
techniques is their inability to adapt automatically. There-
fore, to apply such a method, one needs to adjust various
parameters manually or perform layer selection by hand,
which is commonly seen as a challenging, burdensome
task.

In 2018, Guo et al. [19] presented a method more related
to ours, which also works in an adaptive manner. The method
features the automatic layer selection per target instance.
Introducing the policy network, the authors achieved the
adaptiveness of the method. The policy network is used
to make routing decisions on whether to pass the image
through the fine-tuned layers or through the pre-trained lay-
ers. Combined with ResNet CNN architecture’s ability to
be resilient to residual block swapping and dropping [28],
the method delivers encouraging classification performance.
Although the authors stated that the method could be applied
to different neural network architectures, such an application
would most certainly not be a straight-forward task because
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of the method’s heavy dependence on the mentioned ResNet
architecture abilities.

In contrast to the mentioned methods, our proposed DEFT
method features an automatic adaptive layer selection mech-
anism, which works per target dataset, while also being CNN
architecture agnostic, since it does not rely whatsoever on the
capabilities of a particular architecture.

ill. METHODS

A. TRANSFER LEARNING

Conventional machine learning approaches make future pre-
dictions based on the statistical models, trained on previ-
ously collected, labeled, or unlabeled data. An approach that
utilizes the labeled data in the process of model training is
most commonly referred to as supervised learning, while the
utilization of unlabeled data in the process of model train-
ing is commonly known as unsupervised or self-supervised
training. When dealing with small, insufficient sets of labeled
data, building a good classifier is a hard and burdensome task.
Many studies [29]-[31] have been conducted to tackle this
issue, utilizing semi-supervised training or some variation of
such an approach where the usage of a large unlabeled set of
data and a small set of labeled data is combined. The most
common issue with such approaches is the assumption that
the labeled and unlabeled data distributions are the same [32].
In contrast to semi-supervised approaches, transfer learn-
ing enables the domains, tasks and data distributions to be
different.

The first studies to focus on transfer learning date back
to 1995 [33]. However, it can be found under different
names such as inductive transfer [34], multitask learning [35],
incremental/cumulative learning [36], with one of the most
closely related learning techniques for the transfer learn-
ing approach being the multitask learning framework [35].
In general, the transfer learning technique can be defined as
the improvement of learning a new task through the trans-
fer of knowledge from a related task that has already been
learned. In machine learning terms, as presented in Fig. 1,
transfer learning roughly translates to transferring the weights
of the already trained model, specialized for a specific task,
to the model solving a different, but related task [37]. With
the expansion of the deep learning field, transfer learning also
gained momentum, due to the requirements common to all
deep neural networks — the need for large datasets. Addition-
ally, the process of training deep neural network architectures
requires a lot of computational power and thus is a time-
consuming task. In such cases, with the utilization of the
transfer learning techniques, one could benefit significantly
in terms of time complexity as well as in terms of the large,
required dataset.

In general, transfer learning techniques are used in two
ways — one being the approach where the weights of the pre-
trained model are preserved (frozen) on some of the layers
and fine-tuned (trained) in the remaining layers, and the other
being the approach where the pre-trained deep neural network
is utilized as a feature extractor, while the extracted features
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FIGURE 1. The conceptual diagram of tr

learning techniq
are fed to the classifier of choice [38]. Our research focuses
on the first-mentioned transfer learning approach or strategy
known as fine-tuning — the mechanism which is presented
in-depth in the following section.

B. FINE-TUNING

A general transfer learning approach is to train a base network
and then copy its first n layers to the first n layers of the
target network. The new target network’s remaining layers
are most commonly randomly initialized and trained for a
specific target task. We can also choose to backpropagate the
errors from the new task into the base features to fine-tune
them for the new task, or we can freeze some of the feature
layers, which are not going to be trained (fine-tuned) against
the new task [15].

The fine-tuning approach is one of the most popular trans-
fer learning strategies among applications in neural networks.
Its use was pioneered in [39] by transferring knowledge from
a generative to a discriminative model, thereby achieving
high generalization. The initial pipeline was composed out
of a pre-trained network where the last classifier layer was
replaced with a randomly initialized one.

Nowadays, the concept of fine-tuning a strategy is quite
similar. While we do not, in general, replace the last classi-
fier layer with randomly initialized one, we most commonly
enable fine-tuning of some of the layers in a pre-trained
neural network instead of replacing them. However, at this
point, the question of how to select fine-tunable layers for a
pre-trained network model arises.
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The last few layers of a deep neural network are usually
fine-tuned, while the remaining initial layers are kept frozen
with their initial pre-trained values. The motivation behind
such a strategy is driven by a combination of size-limited
datasets and some empirical evidence that the initial layers
(bottom layers) of a deep neural network preserve more
abstract, generic features. Such features are commonly appli-
cable to a broader range of tasks, while the layers closer to the
top provide more specific task-related features [19]. However,
while the selection of fine-tunable layers is still a more or less
manual process, which most commonly requires a tremen-
dous amount of experimenting, and while there are significant
number of empirical studies [10], [18], [40] which show
great success with regard to limiting the fine-tuning of the
last few layers, there are also some recent studies [19], [28]
which diminish the assumption that the early or middle layer
features should be shared. Based on the mentioned empirical
findings and given that there is no general rule or recipe
to follow when selecting fine-tunable layers, we decided to
tackle the problem from the perspective of representing it as
an optimization problem and tried to solve it utilizing a well-
known optimization meta-heuristic algorithm.

C. DIFFERENTIAL EVOLUTION

Differential Evolution (DE) is one of the most popular
population-based meta-heuristic algorithms, introduced by
Storn and Price in 1997 [41]. Thanks to many wins at interna-
tional competitions, DE is considered one of the most appro-
priate algorithms for continuous optimization. Besides the
general popularity of the DE algorithm for solving optimiza-
tion tasks, it was also successfully applied to various machine
learning problems, such as the hyper-parameter optimization
problem [42], the problem of designing neural network archi-
tecture [43] or the feature selection problem [44].

The DE algorithm is composed of Np real-coded vectors
and three operators: mutations, crossovers and selections.
The Np real-coded vectors are representing the candidate
solutions (individuals) which can be formally defined as
presented in Eq. 1, where each element of the solution is in
the interval xi(fl) € [xi(L), xi(U)], while xi(L) and xi(U) denote the
lower and upper bounds of the i-th variable, respectively.

X0 = (00

i1 fori=1,...,Np, €))]

The DE’s basic strategy consists of mutation, crossover,
and selection operations. The mutation operation can be for-
mally expressed as follows:

®) (1) ) ®)
U =X +F- (Xr2 - Xr3)’

1

fori=1,...,Np, 2)

where F represents the scaling factor as a positive real number
that scales the rate of modification while r1, r2 and r3 are
randomly selected values in the interval 1 ... Np.

In order to increase the diversity of the parameter vectors,
the crossover operator is introduced as presented in Eq. 3,
where CR € [0.0, 1.0] controls the fraction of parameters that
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are copied to the trial solution.

ey Jul) randi(0, 1) < CRVj = jrana.
1

. 3
L X, j) otherwise, 3)

Finally, the selection operator is utilized to decide whether
a produced vector should become a generation member uti-
lizing the greedy criterion. The selection could be formally
expressed as follows:

0]
D [Wi

: () (1)
l 1 it <7, @

X; otherwise .

where f (xl@) denotes the fitness function defined for solving
a specific optimization problem. The DE algorithm works in
an iterative manner, where each produced solution is evalu-
ated using the given fitness function. Based on the selection
operator, presented in Eq. 4, the DE algorithm’s search mech-
anism seeks solutions for ever-better fitness scores. Naturally,
the DE algorithm is optimized for solving the minimization
optimization problems, and therefore the fitness function
should be tailored to give the lower score to the preferred
solutions.

The choice of DE parameters, namely Np, F, and CR can
have a enourmous impact on optimization performance. The
Np parameter, as presented, denotes the population size of
real-coded vectors (individuals) on top of which the muta-
tion, crossover, and selection operators are applied. Based on
research by Piotrowski [45], a too small population size limits
the number of available moves, which may lead to stagna-
tion (the population stops proceeding towards the optimum,
although population diversity remains high) or premature
convergence. On the contrary, a vast population slows down
individuals’ clustering and frequently wastes many function
calls on almost random explorative moves. The F' parameter
is a scale factor which controls the length of the exploitation
vector and thus determines how far from point x; the offspring
should be generated. Based on research from Das et al. [46],
a good initial choice of F is 0.5, while the effective range of F
is usually between 0.4 and 1. The DE parameter CR controls
how many parameters are expected to change in a population
member. When CR is set to a low value, a small number of
parameters are changed in each generation, and the step-wise
movement tends to be orthogonal to the current coordinate
axes. On the other hand, high values of CR cause most of
the mutant vector directions to be inherited, prohibiting the
generation of axis orthogonal steps [46].

IV. ADAPTIVE FINE-TUNING

To tackle the problem of finding and selecting which layers of
given a CNN architecture to fine-tune, we have developed the
adaptive DEFT (Differential Evolution based Fine-Tuning)
method. As the problem of finding and selecting the layers
to fine-tune can be easily translated into an optimization
problem, we adopted the DE algorithm for the purposes of
finding the most optimal solution to the problem. The solution
represents an optimal combination of layers, which should be
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FIGURE 2. The conceptual diagram of the Differential Evolution based
Fine-Tuning (DEFT) method.

selected for fine-tuning in order to train the best performing
CNN.

In Fig. 2 the conceptual diagram of the DEFT method
is presented. The DEFT method is composed of two com-
ponents: the layers selection mechanism and the evalua-
tion of selected layers. The layers selection mechanism
is responsible for providing the individual, i.e., array of
binary values, where each value in the array reflects whether
the corresponding layer of CNN architecture is selected
for fine-tuning or not. Based on the provided individual,
the evaluation component fine-tunes the CNN model and
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evaluates its predictive performance. The evaluation of CNN
is performed using a fitness function, for which we utilized
the well-known categorical cross-entropy (CCE) loss. The
performance evaluation score (fitness value) is passed back to
the layers selection mechanism, based on which the new indi-
vidual is produced. The process reiterates, trying to minimize
the fitness value, until the maximum number of model evalua-
tions is reached. The maximum number of model evaluations
is a parameter which can be set manually and represents a
total number of produced individuals within the DE loop. The
best individual (the selection of layers that produced the best
performing CNN — with the lowest categorical cross-entropy
loss) is deemed to be optimal under the given circumstances.
The optimal found selection of layers is then used for fine-
tuning the final CNN.

Each of the DEFT components is explained in detail in the
following subsections.

A. LAYERS SELECTION MECHANISM

The layers selection mechanism is based on the DE algo-
rithm, modified for the task of selecting which layers of
CNN architecture will be enabled for fine-tuning and which
will remain frozen. In order to be able to perform the layer
selection using the DE algorithm, it is mandatory to introduce
the modifications to the representation of the individuals for
the DE optimization process.

The individuals in the proposed DEFT method are pre-
sented as an array (a vector) containing real values, which
can be formally expressed as g)resented in Eq. 5, for i =
0, ..., Np, where each layer ng,to fori =0,...,N is selected
from the interval [0, 1] and N represents the total number of
layers of the selected CNN architecture.

X =, x TR, (5)

For the purpose of obtaining more diverse individuals,
we exploited the moving threshold method initially presented
in [47]. The mechanism behind the moving threshold method
is that the threshold value is part of an individual solution
vector and is therefore set dynamically for each solution
candidate, which removes the need for setting it manually.
In addition to that, it provides us with potentially more
diverse individuals. The Th denotes the threshold value, based
on which the mapping function presented in Eq. 6 deter-
mines whether a corresponding layer is enabled for fine-
tuning or not.

ae (D) @)
Sl(_z) _ 1, 1fxl-,j > Th ©)
J 0, otherwise

The individual vector s; presents the mapped array of
binary values (0 and 1) for i-th individual, where the value
0 for j-th layer reflects in a layer not being selected for fine-
tuning, while the value 1 reflects in j-th layer being selected
for fine-tuning.
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B. EVALUATION OF SELECTED LAYERS

For each produced individual s — described in the previous
subsection — the fine-tuning of CNN is conducted. To deter-
mine how good or bad the produced individual is, we define
a fitness function L. The fitness function is calculated after
CNN model fine-tuning based on the given individual is
finished and returned to the DE algorithm in order to enable
the DE to find better individuals. The fine-tuning is conducted
for a maximum number of epochs utilizing the early stopping
technique to stop the fine-tuning of not-so-promising layer
selections. The maximum number of epochs is a parameter
that can be set manually; in general, it should be set with
regard to a target dataset. To evaluate the performance of a
model, trained by fine-tuning the layers selected by the pro-
duced individual, we adopted a well-known categorical cross-
entropy (CCE) loss function [48], which can be formally
expressed as follows:

1 M C
L =CCE = 7 Z Z)’ijlog(pij) @)

i=1 j=1

where i indexes samples from the total of M samples,
j indexes classes from total of C classes, y denotes the sample
label, and p; € (0,1) : ZJ. pij = 1Vi,j represents the
prediction for a sample.

C. TRAINING THE FINAL CNN MODEL

To obtain the best performing selection of layers, a subset
of 80% of the training set was used within the DE loop for
training CNN models based on the DE algorithm’s individual
solution. The remaining 20% of the training set is then used
to evaluate the performance of trained CNN models using the
fitness function in Eq. 7.

After all candidate solutions are evaluated, the best per-
forming one is selected, based on which the combination
of layers selected for fine-tuning is used to fine-tune the
final CNN. In contrast to the models trained on candidate
solutions, this final CNN model is trained from the start upon
the whole training set. This final CNN model is the result of
the DEFT method.

V. EXPERIMENTAL SETUP

To evaluate the performance of the proposed adaptive DEFT
method, the experimental approach was utilized. Experiments
were conducted with four methods — the three compared
methods and our proposed DEFT method, tackling the task
of identifying the osteosarcoma from Hematoxylin and eosin
(H & E) stained osteosarcoma images:

« conventional where the conventional approach for train-
ing a CNN was utilized,

o pretrained where the CNN was trained using the con-
ventional approach with pre-trained weights,

o baseline where the transfer learning approach with the
fine-tuning of handpicked layers of CNN architecture
was used, and
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TABLE 1. The basic information about Osteosarcoma data from UT
Southwestern/UT Dallas for Viable and Necrotic Tumor Assessment
dataset class distribution.

Label Number of images
Non-tumor 536 (47%)
Necrotic tumor 263 (23%)
Viable tumor 345 (30%)
Total 1144

o DEFT where the transfer learning approach with our
proposed method was utilized to select the most optimal
fine-tunable layers.

To objectively evaluate the performance of compared
methods, the experiments were conducted in two different
scenarios. In the first scenario, the conventional, pretrained,
and baseline methods are utilizing the same early stopping
technique as the DEFT. In contrast, in the second scenario,
no early stopping criteria is used for the three compared
methods.

All of the conducted experiments were implemented in the
Python programming language with the use of the follow-
ing libraries: Keras [49] with Tensorflow [50] backend for
developing and training CNNs, NiaPy [51] for providing a DE
algorithm implementation, and PyCM [52] for classification
performance metrics calculation.

The experiments were executed on a single Intel Core
i7-6700K based PC, with 4 cores (8 threads) CPU running at
4 GHz, with 64 GB of RAM, and three Nvidia GeForce Titan
X Pascal GPUs each with 12 GB of dedicated GDDRS mem-
ory, running the Linux Mint 19 operating system.

A. DATASET

The proposed DEFT method is evaluated on the prob-
lem of identifying the osteosarcoma from hematoxylin
and eosin (H & E) stained osteosarcoma images. We used
a publicly available dataset Osteosarcoma data from UT
Southwestern/UT Dallas for Viable and Necrotic Tumor
Assessment [53], the properties of which are presented
in Table 1. The data were collected by clinical scientists
at the University of Texas Southwestern Medical Center,
Dallas. The archival samples of 50 patients treated at the
Children’s Medical Center, Dallas, between 1995 and 2015,
were used to create this dataset from which 942 histology
glass slides were digitized into whole slide images (WSI).
From those, two pathologists manually selected 40 WSIs
representing the heterogeneity of a tumor and response char-
acteristics under study. Thirty 1024 x 1024 pixel image tiles
at 10X magnification factor, as seggested by the patholo-
gists, were randomly selected from each WSI. From the
resulting 1,200 images tiles, 66 irrelevant image tiles such
as image tiles falling in non-tissue, ink-mark regions, and
blurry images were removed. The performed randomiza-
tion of tile-generation was conducted to remove any bias in
the dataset, prepared for feature-generation and subsequent
machine/deep-learning steps. Two medical experts performed
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FIGURE 3. Sample images from the dataset. The a) sample represents the
non-tumor image, b) represents the necrotic tumor image while c)
represents the viable tumor image.

the labeling and annotation, each labeling half of the image
tiles [54].

In the pre-processing data phase, images were scaled down
to 224 x 224 pixels, which is the default input size of
the utilized VGG19 CNN architecture. Additionally, numer-
ous studies have shown that such scaling when utilizing
VGGI19 architectures results in encouraging classification
performance [10], [12], [40]. Fig. 3 shows the samples of
the individual target class, namely non-tumor, necrotic tumor,
and viable tumor. The viable tumor can be identified based
on the nuclei (cells) densely aggregated together while the
necrotic tumor reflects on images with disintegrated nuclei
but with less color density than the viable tumor. In medical
terms, the necrotic tumor denotes the dying parts of the tumor
cells while the viable tumor denotes the H&E stained tissue
images where the tumor cells are capable of normal growth.

B. CONVOLUTIONAL NEURAL NETWORK

As a CNN architecture, we adapted the original VGG19 CNN
architecture presented in Fig. 4, initially presented in [55]
(denoted as configuration E in the original paper). At the bot-
tom of the VGG19 CNN convolutional base is an input layer
consuming the 224 x 224 pixel RGB images. The input layer
is followed by five convolutional blocks presented in Table 2.
Each convolutional block comprises several convolutional
layers chained one after another, followed by a maximization
pooling layer.

The choice of selecting the VGG19 CNN architecture is
based on the encouraging results presented in various studies
where the VGG19 CNN with transfer learning was utilized
for different target tasks. For example, the VGG19 is adopted
for automatic glaucoma classification in [12], for breast can-
cer histology images classification in [13], and for hologram
classification for molecular diagnostics in [56].

In the case of the pretrained, baseline and DEFT exper-
iment, the VGG19 convolutional base was pre-trained on
an ImageNet dataset, while in the case of a conventional
experiment, the CNN is trained from scratch.

C. PARAMETER SETTINGS
1) CNN SETTINGS

For the conventional method, the VGG19 convolutional
base is used with the random weights initialization; for the
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TABLE 2. VGG19 convolutional base. The convolutional layers are
denoted as “convolution (kernel size), number of kernels".

Block Layers

convolution (3x3), 64
conv_block1 convolution (3x3), 64

maxpooling

convolution (3x3), 128
conv_block2 | convolution (3x3), 128
maxpooling
convolution (3x3), 256
convolution (3x3), 256
convolution (3x3), 256
convolution (3x3), 256
maxpooling
convolution (3x3), 512
convolution (3x3), 512
convolution (3x3), 512
convolution (3x3), 512
maxpooling

conv_block3

conv_block4

convolution (3x3), 512
convolution (3x3), 512
convolution (3x3), 512
convolution (3x3), 512
maxpooling

conv_block5

pretrained method all layers were fine-tuned, while for the
baseline method the selection of layers enabled for fine-
tuning was done manually. Based on the encouraging results
from various studies [10], [40], we followed the strategy of
fine-tuning only the last convolutional block (in our case
block5 of VGG19 architecture) in the convolutional base,
while the layers towards the beginning of the convolutional
base were kept frozen. For the DEFT method, the fine-tunable
layers were dynamically chosen by utilizing the proposed
adaptive approach.

On top of the convolutional base from VGG19 CNN archi-
tecture, after the last convolutional block, in each experiment,
the following randomly initialized feed-forward layers are
added and trained in order to perform the classification task
(see Fig. 4):

« flatten layer,

« dropout layer with dropout probability set to 0.8,

o dense layer with 512 neurons and ReLU activation

function,

« dropout layer with dropout probability set to 0.5, and

« dense layer with 3 neurons (number of target classes)

and Softmax activation function.

2) TRAINING PARAMETERS

For each of the conducted experiments, the training parame-
ters were set as presented in Table 3. The training parameters’
values were picked based on previous experiences utilizing
CNNs for various image recognition tasks [10], [57], [58].
Each experiment was trained using the adam optimizer func-
tion with the initial learning rate set to 1 % 10™* and batch
size set to 128. For the conventional, pretrained and baseline

196203



IEEE Access

G. Vrbanci¢, V. podgorelec: Transfer Learning With Adaptive Fine-Tuning

2 512 512 512 512
Block 4

256 256 256 256
Block 3

\/\‘L

Dy i v
q) - -
LY s
6464 Block 2

Block 1

& 2 Q(b 4 <)\% ] Q% 1 &
A 1

> V

“ “ FC_2+
4 512 512 512 512 DO.1 pc 1 DO-2 Softmax
5 _

Block 5 -
1
Flatten

FIGURE 4. The presentation of the utilized CNN architecture. The convolutional base (Blocks 1 - 5) is adopted from VGG19 CNN
architecture. The dropout layers and fully connected layers are denoted with DO and FC, respectively.

TABLE 3. Used training parameters for the conducted experiments.

conventional, pretrained,

Parameter . DEFT
baseline
Optimizer Adam Adam
Initial learning rate 1%10~% 1%10~%
Batch size 128 128
Epochs 500 20

TABLE 4. Used parameter values for the DEFT method.

Parameter ‘ Value
Dimension of problem D 22 (N +1)
Population size Np 10
Scale factor F' 0.5
Crossover probability CR 0.8
Number of function evaluations 50

experiments, the training was performed for 500 epochs. For
the DEFT experiment, the maximum number of epochs was
set to 20, which means that the model was fine-tuned for
up to 20 epochs for each produced individual. Additionally,
the early stopping technique was utilized, which was con-
figured to stop the training if there were no improvement in
lowering the loss value for any three consecutive epochs. The
maximum number of epochs was selected experimentally,
as in the vast majority of cases the early stopping criteria was
met before reaching 20 epochs; in general, it should be set
with regard to a target dataset.

3) DEFT PARAMETERS

For the proposed DEFT method, we set the parameters as
presented in Table 4. The total number of function (model)
evaluations was set to 50, while each of the individuals had a
maximum number of epochs set to 20 to achieve the lowest
(best) possible loss. The selected combination of layers for
fine-tuning, which trained the CNN with the lowest (best)
loss value, was then used to fine-tune the final CNN from
the beginning for the whole 20 epochs; all the other fine-
tuned models were discarded. Due to the non-deterministic
nature of the underlying DE, the experiment conducted with
the DEFT method was executed in 10 independent runs.
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Therefore, all the reported results are the averages across all
those runs.

D. EVALUATION METHOD AND METRICS

To objectively evaluate the performance of the proposed
DEFT method against the compared methods, we conducted
a gold standard 10-fold cross-validation procedure, where
the given dataset was divided into training and testing sets
at a ratio of 90:10. In this way, the process was repeated
for a total of ten times, each time leaving a different 10%
of the initial dataset for testing. The 10-fold cross-validation
provides a more reliable evaluation of the classification per-
formance since, for each experiment, we train CNN on ten
different training sets and, more importantly, evaluate the
trained model on 10 test sets. It enables us to observe how
the method behaves when trained and evaluated on different
subsets of the target dataset. Additionally, such an approach
can also highlight the potential layer selection bias of the used
method.

In the process of conducting the 10-fold cross-validation,
we calculated well-known classification metrics such as accu-
racy, the F-I macro and micro score, and AUC. As we
are dealing with the a multi-class classification problem,
we utilized the AUC metric for multi-classification problems,
namely AUNP, and the Cohen’s Kappa coefficient, which
successfully handles multi-classification as well as imbal-
anced classification problems. Since we have both multi-
classification and a bit of an imbalanced dataset, it seemed
like the reasonable choice to use the Cohen’s Kappa coeffi-
cient as one of the performance metrics.

The AUNP metric is calculated as the AUC of each class
against the rest, using the a priori class distribution. The AUC
(Area under the ROC Curve) of a binary classifier, formally
defined in Eq. 8, is equivalent to the probability that the classi-
fier’s rank of randomly chosen positive instance is higher than
a randomly chosen negative instance. The f (i, j) represents
the actual probability of the example i to be class j, where we
assume that f (i, j) always takes a value of O or 1 and is strictly
an indicator function. With m; = sz=1 f(@,J), we denote
the number of class examples j, and with p(i, j), we denote
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TABLE 5. Averages of classification performance metrics over 10 folds
when classifiers were trained for up to 500 epochs with early stopping
criteria.

conventional pretrained baseline DEFT

Accuracy 0.5485 0.5382 0.5985 0.8657
AUNP 0.5860 0.6009 0.6479 0.8939

Fl-macro 0.3652 0.3612 0.4159 0.8483
Kappa 0.1726 0.1961 0.2873 0.7866

Epochs 71 7.3 10.4 461.7
Time 79.6 41.5 40.1 2447.5

TABLE 6. Averages of classification performance metrics over 10 folds
when classifiers were trained for full 500 epochs.

conventional pretrained baseline DEFT

Accuracy 0.8209 0.6476 0.6945 0.8657
AUNP 0.8592 0.7206 0.7198 0.8939

Fl-macro 0.8053 0.5491 0.5641 0.8483
Kappa 0.7172 0.4423 0.4383 0.7866

Epochs 500 500 500 461.7
Time 2162.7 1457.5 1077.1 2447.5

* The DEFT method uses the early stopping mechanism in both experi-
ments.

the prior probability of class j. In other words, the p(i, j)
represents the estimated probability of example i to be of class
Jj taking the values in [0, 1]. The I(-) is a comparison function
satisfying l(a,b) = lifa > b, l(a,b) = Oif a < b and
l(a,b) =0.5if a = b [59].

YL FG DG, ), p(t, j)

mj-mk

The AUNP metric introduced in 2001 by Fawcett [60]
computes the AUC treating a c-dimensional classifier as ¢
two-dimensional classifiers, taking into account the prior
probability of each class (p(j)). Formally, the AUNP can be
expressed as follows:

AUC(j, k) = ®)

AUNP =" p(DAUC(, rest;). ©)
j=1

where rest; represents all classes different from class j.

VI. RESULTS

Using the presented experiment setup, evaluation method
and classification metrics, we obtained the results, which are
presented and discussed in detail in the following subsections.

A. CLASSIFICATION PERFORMANCE COMPARISON

The classification results obtained from the conducted exper-
iments identifying the osteosarcoma from H&E stained
osteosarcoma images, using the dataset Osteosarcoma data
from the UT Southwestern/UT Dallas for Viable and Necrotic
Tumor Assessment, are presented in Table 5 and Table 6.
Table 5 shows the averages of various classification perfor-
mance metrics over ten folds when using the three compared
methods (conventional, pretrained and baseline), which were
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trained up to 500 epochs with the aid of early stopping
criteria. On the other hand, the results presented in Table 6
reveal the same metrics for the case where all three com-
pared methods had been trained for a full 500 epochs. Our
DEFT method uses the same approach (up to 50 iterations
of 20 epochs with early stopping) in both cases.

In both cases, for all the classification metrics (accuracy,
AUNP, FI-macro and Cohen’s Kappa coefficient), the results
of the DEFT method stand out, outperforming all the com-
pared methods by a great margin, although the difference is
smaller in cases where compared methods are trained for a
full 500 epochs. For all three compared methods, the results
are better in cases when they were trained for 500 epochs.
In terms of accuracy, the DEFT method outperforms the
second-best conventional method by a margin of 4.5% and
the other two methods by a margin of 17.1-21.8%. Focus-
ing on AUNP, FI-macro and Cohen’s kappa coefficient the
performance improvements are 3.5-17.4%, 4.3-29.9% and
6.9-34.8% respectively.

It is interesting to observe that in cases where early stop-
ping was used, the results of all three compared methods
are quite similar, with the best of them being the baseline.
However, in the case of a full 500 epochs of training, the con-
ventional method outperformed the other two methods by
a significant margin, while the other two performed very
similarly. This is an intriguing behavior since, due to the small
dataset, we would expect that the pretrained and especially
the baseline method would, overall, perform better than the
conventionally trained one, due to the high risk of extreme
over-fitting of such deep CNN architectures trained against a
small dataset. Also, the handpicked selection of fine-tunable
layers of a baseline method was made based on the previous
empirical results in which such a selection of layers proved
to be successful.

1) CLASSIFICATION PERFORMANCE METRICS: ACCURACY,
F1-SCORE, AUNP AND KAPPA

In order to perform a more in-depth classification perfor-
mance analysis of our proposed DEFT method, we present
the performance comparison among the compared classifier
methods on 10 folds using the box-dot-plot visualizations for
accuracy, Fl-score, AUNP and Cohen’s kappa coefficient.
For each metric, we performed two experiments: a) first,
we compared the results of training the classifiers for up to
500 epochs using the early stopping criteria, and b) second,
we compared the results of training the classifiers for a full
500 epochs.

Fig. 5 presents the accuracy performance comparison
among the compared methods in the case of using early
stopping. We can easily observe that the DEFT method out-
performs the three compared methods, both in terms of mean
accuracy over 10-folds as well as in terms of the standard
deviation of the accuracy. The small standard deviation of
accuracy also shows the capability of our method to gen-
eralize well. The second best method in terms of overall
accuracy seems to be the baseline, followed by the pretrained
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FIGURE 5. Accuracy of compared methods trained for up to 500 epochs
with early stopping; each dot represents one fold.
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FIGURE 6. Accuracy of compared methods trained for full 500 epochs;
each dot represents one fold.

one, while the conventional method performed the worst. The
accuracy results of the three compared methods are in line
with expectations. While the conventional method, trained
from scratch, was not able to achieve good performance
within a few epochs, the pretrained method benefited from
the pre-trained weights. The baseline method benefited even
more as the CNN with the pre-trained weights was fine-tuned
with regard to reasonably hand-picked layers only rather than
all layers as the pretrained method.

Although all four methods used the same early stopping
criteria and could have been theoretically trained for the same
amount of epochs, it turned out that the three compared meth-
ods used much fewer epochs to train (see Table 5). In order
to make a more fair comparison, in the second experiment,
we fixed the number of epochs at 500 for all three compared
methods by removing the early stopping mechanism (Fig. 6).
We can see that the results of all three compared methods
improved, but were still not able to outperform our DEFT
method, both with regard to the overall accuracy and stan-
dard deviation. The method which benefited the most from
prolonged training was the conventional, while the other two
methods clearly finished in local minima in several folds.
This benefit could be attributed to the quite drastic regular-
ization applied in the top layers with the utilization of two
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FIGURE 7. F1-macro of compared methods trained for up to 500 epochs
with early stopping; each dot represents one fold.
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FIGURE 8. F1-macro of compared methods trained for a full 500 epochs;
each dot represents one fold.

conventional  pretrained baseline

dropout layers. The side effect of the applied regularization
in the case of the conventional method resulted in a slow but
steady convergence throughout training. In contrast, for the
methods that utilized fine-tuning, some sort of regularization
was necessary to mitigate the over-fitting, which is generally
a quite common effect when dealing with transfer learning
approaches.

Very similar results can also be observed for the other three
performance metrics: F1-score, AUNP, and kappa.

The Fl-score can be, in general, interpreted as a har-
monic mean of the precision and recall score. When dealing
with a multi-classification problem, we obtain a per class
F1-score, which we would like to represent in the form of one
value representing the classifiers’ performance. One possible
way to achieve that is to use a macro-averaged F1-score,
which is computed as the simple arithmetic mean of per-class
Fl1-scores. The Fl-score results are presented in Fig. 7 and
Fig. 8.

The results of AUNP metric performance for all compared
methods are presented in Fig. 9 and Fig. 10. AUNP is a
metric that combines the AUC measure of each class against
the rest, using the a priori class distribution. It is one of the
most common AUC variations when dealing with multi-class
classifiers, as in our case.

VOLUME 8, 2020



G. Vrbanci¢, V. podgorelec: Transfer Learning With Adaptive Fine-Tuning

IEEE Access

L
0.9 . "‘l;
L 2
0.8
* °
[ ]
[ ]
0.7 L] o
(]
(]
L]
0.6 °
o
L] L]
0.5 eco00 o000 000
L g
conventional  pretrained baseline DEFT

FIGURE 9. AUNP of compared methods trained for up to 500 epochs with
early stopping; each dot represents one fold.
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FIGURE 10. AUNP of compared methods trained for a full 500 epochs;
each dot represents one fold.

Fig. 11 and Fig. 12 shows a comparison of Cohen’s Kappa
coefficient values for all of the compared methods. Essen-
tially, the Cohen’s Kappa metric compares an observed accu-
racy with an expected accuracy (random chance), which is
generally less misleading than the accuracy metric itself, due
to the Cohen’s Kappa taking random chance into account.
Fleiss’s characterization [61] of the Kappa coefficient val-
ues are translated into a poor agreement when the value
is < 0.40, fair to a good agreement when the value is
0.40 — 0.75 and an excellent agreement when the value
is > 0.75. Following the above-mentioned characterization
of Cohen’s Kappa coefficient values, our proposed DEFT
method, on average, achieves an excellent agreement with
an average of 0.7866. On the other hand, the remaining
compared methods achieved, on average, a poor agreement
in the case of using early stopping (see Table 5) and fair to
good agreement in the case of not using early stopping (see
Table 6).

2) COMPUTATIONAL AND TIME COMPLEXITY: NUMBER OF
EPOCHS AND TOTAL TRAINING TIME

When focusing on the number of epochs, in cases when early
stopping criteria was applied, the proposed DEFT method
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FIGURE 11. Kappa of compared methods trained for up to 500 epochs
with early stopping; each dot represents one fold.
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FIGURE 12. Kappa of compared methods trained for a full 500 epochs;
each dot represents one fold.

consumed a lot more epochs due to its iterative nature. For
the DEFT method, such behavior was expected. On the other
hand, we expected other methods to use more epochs before
stopping, but it turned out that the training stopped after no
more than 10 epochs on average (see Table 5). When the
full 500 epochs were used for training, the three compared
methods’ classification performance improved but were still
unable to outperform our proposed DEFT method.

The overall time spent on training was highly correlated
with the number of used epochs, although it turned out that
there were some differences. Interestingly, although trained
for the same amount of epochs, the baseline method seems
to consume the least amount of time, being followed by the
pretrained and conventional methods, while our proposed
DEFT method used the highest amount of time. This could
be attributed to the fact that the DE optimization algorithm’s
inner workings consume a significant amount of time.

The analysis of the total spent training time is presented
in Fig. 13. Observing it, we can easily see that the time
consumption does not vary greatly on a per fold basis, which
is encouraging and proves that the layer selection mechanism
of our DEFT method is capable of finding the most optimal
solution based on the given constraints. Additionally, it also
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TABLE 7. Average ranks (the best result is shown in bold) and statistical comparison (all differences are significant) of the four methods trained with

early stopping.

average rank Friedman Wilcoxon test
conventional pretrained baseline DEFT test v. conventional v. pretrained v. baseline
acc 1.7 2.0 23 39 0.0006 0.0051 0.0051 0.0069
AUNP 1.7 2.1 22 3.9 0.0007 0.0051 0.0051 0.0069
F1 1.7 2.1 22 3.9 0.0007 0.0051 0.0051 0.0069
kappa 1.7 2.1 22 39 0.0007 0.0051 0.0051 0.0069
epochs 1.7 1.7 1.5 2.8 0.0074 0.0069 0.0166 0.0166
time 2.9 1.6 1.5 4.0 0.0000 0.0051 0.0051 0.0051

TABLE 8. Average ranks (the best result is shown in bold) and statistical comparison (only time and epochs have significant differences) of the four

methods trained for full 500 epochs.

average rank Friedman Wilcoxon test
conventional pretrained baseline DEFT test v. conventional  v. pretrained v. baseline
acc 2.2 25 2.5 2.8 0.7766 - - -
AUNP 2.2 2.5 2.5 2.8 0.7766 - - -
F1 2.2 2.5 2.5 2.8 0.7766 - - -
kappa 22 2.5 2.5 2.8 0.7766 - - -
epochs 2.9 29 2.9 1.3 0.0002 0.0069 0.0069 0.0069
time 3.0 2.0 1.0 4.0 0.0000 0.0051 0.0051 0.0051
2600 R TABLE 9. Accuracy performance comparison with similar studies.
%ee
2400 o foure ‘ CNN Accuracy
2200 . Mishra [63] @ LeNet based 0.84
2000 .E Mishra extended [64] # | Mishra [63] based 0.92
Arunachalam [54] ®|  LeNet based 0.93
1800 DEFT VGG19 0.8657
1600 ¢ 4 Using smaller patches instead of tiles.
...i. b Using expert-guided generation of features.
1400 >
1200 o
o To further compare the results of our DEFT method
1000 20 with the remaining three methods, the Wilcoxon signed-
conventional _ pretrained baseline DEET rank test was applied next (using «=0.05), as suggested by

FIGURE 13. Time spent training a full 500 epochs; each dot represents
one fold.

gives us a solid basis to further investigate how to make
the selection mechanism even more effective in terms of
consumed epochs and time.

3) STATISTICAL COMPARISON
To evaluate the statistical significance of these results, we first
applied the Friedman test as suggested by DemsSar [62] by
calculating the asymptotic significance for the four compared
methods on all 10 folds (using =0.05). As the results are not
normally distributed, the Friedman test was applied, which is
a non-parametric statistical test used to detect differences in
the results of various methods across multiple test attempts.
When early stopping was used, the results of the performed
Friedman test, with regard to all six metrics, show that differ-
ences between the four methods are statistically significant
(Table 7). In the case of using the full 500 epochs for training,
the Friedman test results show significant differences for time
and number of epochs (Table 8).
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DemSar [62]. If the Wilcoxon test resulted in a statistically
significant difference between the two methods, the method
with a better average rank could be regarded as the better
method. Our proposed DEFT method achieved the highest
average rank (which is the best) among the four methods
for accuracy, AUNP, F1, and kappa, both when using early
stopping or not (see also Figs. 5-12). In the case of using early
stopping, our DEFT method performed the worst in both the
time and number of epochs spent on training. When the clas-
sifiers were trained for the full 500 epochs, however, DEFT
achieved the lowest amount of epochs, but still performed a
bit slower than the remaining three methods (see also Fig. 13).

4) A COMPARISON WITH OTHER SIMILAR STUDIES

The problem of identifying osteosarcoma has already been
addressed in previous studies using the same presented
dataset. However, the authors of those studies split the
original images into smaller patches and performed a classifi-
cation over those patches taking into account additional con-
textual information about the tumor. Even though the reported
results are quite similar to ours, as presented in Table 9.
In [63], the authors proposed a CNN architecture with
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FIGURE 14. Layer selection analysis, based on a DEFT method results. The
y-axis denotes the average selections from the best 5 performing
individual candidates to the worst 5 performing ones. On the x-axis there
are numbers denoting the layers of the VGG19 architecture.

7 layers, 3 of them being convolutional layers, 3 of them
being maximization pooling layers, and two being fully con-
nected layers. In terms of accuracy, our proposed method
outperforms the mentioned one by a margin of 2.57%. In [64]
and [54], the reported accuracy was somewhat higher than it
is in our case (by 5.83% and 4.63%, respectively). However,
we must also consider that the authors in [54] are using mech-
anisms for the expert-guided generation of features, while on
the other side, our proposed DEFT method does not utilize
any domain expert knowledge in the process of building the
predictive model.

B. LAYER SELECTION ANALYSIS

In this section, we analyze the DEFT method’s selection
of fine-tunable layers and the performance of such various
solutions produced by the method. As presented in previous
sections, there is no general rule or recipe to follow when
selecting which layers of CNN to fine-tune and which ones
to leave frozen. So we dove deeper into the performance of
various layer combinations, conducted by our method in the
process of finding the most optimal solution under the given
constraints.

Fig. 14 shows a heat-map of layer selection probabilities
averaged from the best five found solutions to the worst five
found solutions by our DEFT method. The rationale behind
grouping the individual based candidate models is that, inter-
estingly, the best performing individuals are quite different in
terms of selected layers but still deliver similar classification
performance. As can be seen from the figure, the most obvi-
ous thing is that the better performing individuals in general
have a lower selection probability rate than the worse per-
forming individual-based candidate models. In other words,
the CNN architectures with fewer layers enabled for fine-
tuning are achieving better performance results than the ones
with more layers. This effect is also consistent with the
low classification performance achieved by the pretrained
method, where all convolutional layers are being trained.
An interesting observation is also the occurrence of higher
selection probabilities for layers 2, 8, 14, 16, and 17 when
looking at the best performing individuals, which could be
explained by the fact that the features extracted on those
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layers have a more significant impact on final prediction
than the others. We can also generally observe relatively
low selection probabilities for layers towards the end, which
diminishes the assumption that early or middle layer features
should be shared, as has already been noted in previous
sections.

C. THREATS TO VALIDITY

Commonly, in the machine learning field, the validity threats
often relate to the diversity, quality and quantity of the data.
Since all supervised machine learning methods, techniques,
and approaches rely on how the given data is labeled or pre-
classified, for our research we picked the dataset that was
collected by clinical scientists and labeled by two medical
experts to minimize potential threats to validity. Nevertheless,
our obtained results and findings may not be generalized to
all specific situations.

Splitting the data into a training and test set could also be a
potential a threat to validity. To reduce the possibility of such
a threat, we adopted a well-known 10-fold cross-validation
procedure.

Due to the stochastic nature of our proposed DEFT
method, in order to reduce the internal threat to validity,
the experiment conducted with the DEFT method was exe-
cuted in 10 runs, and the reported performance metrics were
the averages of those runs.

VII. CONCLUSION

In this work, we presented a novel DEFT adaptive method
for transfer learning with fine-tuning, featuring the layer
selection mechanism based on the DE algorithm. The method
addresses the problem of selecting which layers of given
CNN architecture to fine-tune and which ones to leave
frozen, in order to achieve the best possible classification
performance. The exploited DE algorithm enables the DEFT
method to find the most optimal layer selection solution given
the constraints and available dataset in an automatic, straight-
forward, adaptive manner.

The presented method was evaluated against three other
methods, one where the CNN is trained conventionally (from
scratch), one where the CNN was trained using the conven-
tional approach with convolutional layers being pre-trained
on the ImageNet dataset, and one where the transfer learning
was utilized and the fine-tunable layers were handpicked
based on general recommendations and our previous expe-
riences. For our experiments’ target task, we selected the
image classification task of identifying the osteosarcoma
from H&E stained osteosarcoma images. The results obtained
from the conducted experiments show that our proposed
DEFT method outperformed the compared methods in all
predictive performance metrics. On the other hand, the pro-
posed method is significantly more time-consuming, utilizing
an iterative optimization mechanism.

The DEFT method could be easily utilized with any kind
of task, where a standard fine-tuning methodology is appli-
cable. Furthermore, the proposed DEFT method could also
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be utilized with any other CNN architecture regardless of
the number of convolutional layers, with respect to adjusting
method parameters such as the dimension of the problem and
the number of function evaluations. Generally, the latter one
should be increased when utilizing deeper CNN architectures
since such architectures feature a larger number of layers,
which translates to a larger search space and increased time
complexity in order to find the most suitable combination
of layers selected for fine-tuning. Similar to the utilization
of more conventional methods, when applying our proposed
DEFT method against various datasets with a different num-
ber of samples, one should also revise and appropriately adapt
the classifier layers as well as initial training parameters to
achieve the best possible outcome.

In the future, we would like to extend our research to
the utilization of various optimization algorithms such as
the Firefly algorithm or the Particle Swarm Optimization.
We would also like to apply the proposed DEFT method on
different medical imaging datasets, and possibly also to other
image classification tasks. To analyse how the method per-
forms regardless of the classification domain, it would have
been useful to test it on several datasets on multiple tasks,
including those from other domains. Additionally, we would
like to explore the possibilities of how to make the layers
selection mechanism more efficient, which would enable the
DEFT method to deliver better classification performance
with lower time complexity, closer to the one where con-
ventional training is utilized. Finally, we would also like to
investigate the possibilities of combining our DEFT method
with active learning approaches.
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