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ABSTRACT Machine learning methods have made great development in data-driven fault diagnosis of
rolling bearings. But the intelligent fault diagnosis of intershaft bearing faces the following two dilemmas:
1) the fault vibration is extremely weak, and it is difficult to extract features that can distinguish different
classes; 2) due to the complex and variable working condition, the intershaft bearing does not always fail in
same working conditions. That is, the labeled training data is not sufficient for every source domain. These
challenges lead to the failure of traditional machine learning based fault diagnosis for intershaft bearings.
Therefore, a novel intelligent fault diagnosis scheme is investigated for intershaft bearings of dual-rotor
equipment under variable working conditions. The paper focuses on two key issues: 1) developing a feature
extraction approach with which the fault features with excellent clustering and separation are extracted from
vibration signals. This approach addresses the dilemma of weak fault feature extraction of intershaft bearing
and creates a feasible precondition for subsequent feature transfer; 2) proposing a feature transfer method
transforming the labeled sample features in multiple source domains into the trainable sample features in the
target domain. This new transfer achieves the sharing of labeled training samples under working conditions
and enriches the trainable samples in target domain. Ultimately, the faults of intershaft bearings can be
diagnosed with the help of the neural network classifier trained by the transferred samples with labels.
Experimental results verify that this established scheme is effective and superior to other comparablemethods
for the transfer diagnosis task from multiple source domains to target domain.

INDEX TERMS Intelligent fault diagnosis, feature transfer, weak fault extraction, neural networks.

I. INTRODUCTION
Intershaft bearing, as a key component, is widely used in dual-
rotor equipment such as gas turbine. Its functional reliability
has an extraordinary effect on the stability and safety of dual-
rotor equipment. Even a small incipient defect may produce
chain reaction and further lead to heavy casualties [1]. Intel-
ligent fault diagnosis serves an essential role in pursuing
the relationship between the monitoring data and the health
states of bearings to prevent unpredictable failure in dual-
rotor equipment [2], [3].

The framework of traditional intelligent fault diagnosis
includes three main steps: 1) Data acquisition; 2) feature
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extraction and selection; 3) fault recognition. In the step of
data acquisition, acceleration sensors are widely employed to
detect the incipient faults of intershaft bearings. As both the
inner and outer races of intershaft bearing rotate, it does not
have fixed bearing housing. As shown in Figure 1, the inter-
shaft bearing vibration is indirectly measured after passing
through a complex transmission path [4].

For the second step, deep learning models are popular
for mining the differences between different types of sig-
nals automatically, such as convolutional neural network
(CNN) [5], [6], deep auto-encoder (DAE) [7] and deep belief
network (DBN) [8]. However, due to the complex transfer
path, the originally weak vibration of the intershaft bearing
will be greatly attenuated and buried in strong vibration and
interference, as the dotted line presented in Figure 1. Deep
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FIGURE 1. Schematic diagram of a gas turbine support structure.

learning could fail in the signal of weak fault features if the
fault features are not clearly exposed. In contrast, it is more
appropriate to use hand-created features based on profes-
sional knowledge [13]–[15]. To enhance weak fault features,
the raw vibration signal of intershaft bearing can be prepro-
cessed. There are many mature developments in weak feature
enhancement for rolling bearings [9], such as discrete random
separation (DRS), autoregression (AR), minimum entropy
deconvolution (MED). The combination of AR andMED has
been verified effectively to enhance the vibration generated
by the faults of bearings, especially for large and high-speed
machines such as gas turbines [10]–[12]. Further, mutual
information (MI), as a kind of filter model, is an effective tool
for feature selection after manual features creation, in order to
reduce the adverse effect of redundant features in the dataset
[16]–[19]. Thus, it is well worth trying to combine AR, MED
and MI, named AMI, for feature extraction. AMI features
could help the classifier model get better recognition results
in the intelligent fault diagnosis for intershaft bearings.

In fault recognition step, the extracted features are used
to train intelligent classifier, such as support vector machine
(SVM) [20], [21], k-nearest neighbor (KNN) [22], artificial
neural networks (ANN) [23] and so on, and the fault states
can be determined by these classifiers. Because of the high
self-learning ability, the ANN-based diagnosis model can
automatically learn diagnosis knowledge from input data by
minimizing the experience risk. It has become a popular
method to classify health conditions of different machines.

The aforementioned fault diagnosis works have achieved
fault classification effectively when satisfying a general con-
dition: the training samples and testing samples are drawn
from the same probability distribution, while they may fail
in classifying unlabeled samples drawn from another distri-
bution. In real-world application, due to the various working
conditions, the fault samples collected from two domains
show great differences in distribution, causing the decline
of classification accuracy. Especially, the power performance
of the dual-rotor gas turbine, the study object of this paper,
depends on the speed of the high and low rotors. Any variation
of the rotating speed of the two rotors will cause changes
in the working conditions. This will adversely affect the
intelligent fault diagnosis of the intershaft bearing from the
following two aspects: 1) as mentioned above, the variation of

working conditions affect easily the data distribution of inter-
shaft bearing vibration, thus causing the failure of traditional
intelligent diagnosis methods; 2) due to the complexity of
working conditions, the intershaft bearing will not always fail
in one certain working condition, so the training fault sam-
ples are usually collected from different working conditions.
In this circumstance, the number of labeled samples in each
source domain is very small. Although the classifier can be
trained with all the labeled data of multiple source domains,
the classifier performs badly in the target domain due to the
divergence of data distribution in various source domains.

Transfer learning (TL) has provided a fine insight for
tackling the first dilemma of fault recognition in the target
domain through known source domain knowledge. Domain
adaptive methods have been developed and received wide
concern. Transferred component analysis (TCA) achieves
feature transfer by searching a feature mapping to minimize
the difference between source domain and target domain [24],
but the shortcomings are much computation time and the
poor nonlinear fitting. Joint distribution adaptation (JDA)
adapts the source domain and target domain distribution by
reducing the joint distribution distance [25]. However, as a
supervised learning model, it will be affected by sample size
and classifier performance. Differ from the TCA and JDA,
Deep adaptation network (DAN) relies on the deep learning
network, and it introduces three domain adaptation layers
before a classifier [26]. But its limitation is enough labeled
samples are necessary in training process. Besides, there are
some other transfer learning methods, such as correlation
comparison (Coral), adversarial domain adaptation (ADA)
and so on [27], [28]. The above methods have been used
widely by combining shallow learning or deep learningmodel
in machine fault diagnosis under variable working conditions
[29]–[31]. However, it is hard to get satisfactory results when
applied in fault diagnosis of intershaft bearing owing to the
lack of labeled data in one certain source domain, which
is mainly considered by this paper. Therefore, there is still
plenty of improvement room for the intelligent fault diagnosis
of intershaft bearing.

In this paper, a novel intelligent fault diagnosis scheme
for intershaft bearings is presented to promote the diagno-
sis accuracy under variable working conditions. Specifically,
an AMI based feature extraction method (AMI-based FE) is
developed for extracting distinguishable features from vibra-
tion signals. What’s more, a feature transfer approach based
on K-means and space transformation (KMST-based FT) is
proposed, which transfers the labeled sample features from
several source conditions to the target condition, and realizes
the sharing of labeled samples across domains. After feature
transfer, the labeled sample features from each source domain
to the target domain are used to train the ANN classifier that
can be adopted further to realize fault recognition in target
condition. Even if the labeled samples number of each source
domain is small, this procedure can improve the recogni-
tion results significantly. The proposed scheme is applied to
analyze the experimental signals, and the results show the
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effectiveness of this scheme compared with state-of-the-art
methods.

The main contributions of this paper are summarized as
follows.

1) This paper considers the fault signal characteristics of
intershaft bearing in dual-rotor equipment, and develops the
AMI-based FE method to extract weak fault features.

2) This paper makes full use of the labeled samples under
various source domains to increase the number of trainable
samples. The KMST-based FT approach is proposed to trans-
fer the labeled sample features from multiple source domains
to the target domain.

3) This paper has a low dependence on classifiers and
can be extended from ANN to other classification models
according to the practical application.

The remainder of this paper is organized as follows.
Section II presents the proposed FET-NN for intershaft bear-
ings under variable working conditions. Section III conducts
the experimental results and analysis. Section IV and V draw
the conclusion and discussion, respectively.

II. THE FRAMEWORK OF FET-NN
As introduced in Section I, the vibration signal characteristics
of intershaft bearings that weak fault features and insuffi-
cient samples under variable working conditions lead to the
accuracy degradation of traditional intelligent fault diagno-
sis. To overcome these obstacles, we need to extract robust
features from the enhanced fault vibration signals of the
intershaft bearing, and realize the transfer of labeled samples
across working conditions, i.e., the sharing of the labeled
samples in various working conditions. In this section, we
present the proposed intelligent fault diagnosis scheme,
which consists of FE based on AMI (AR, MED and MI), FT
based on KMST (K-means and space transform), and fault
diagnosis based on ANN. Therefore, the scheme is referred
to be FET-NN, that is, feature extraction transfer and neural
network. The framework of FET-NN is illustrated in Figure 2.
The details of each method are elaborated in the following
subsections.

A. FEATURE EXTRACTION
The odious working environment and complex transmission
path make the fault features of intershaft bearings in the
measured signal extremely weak, and mixed with strong
vibration components such as rotor and blade vibration, air
flow noise and other interference. However, despite of the
weak fault feature, the raw vibration signal contains rich
fault information. Once the fault occurs, the periodic impact
would appear in the collected signal due to the rotation of
the defective bearing. Thus, these fault information can be
identified in time domain and frequency domain.

In our work, the developed AMI-based FE consists of
feature space generation and feature selection. In the former
step, the raw vibration signals are preprocessed to expose
fault impacts of intershaft bearings by AR, MED de-noising.
Further, we extract multiple feature parameters from the de-

FIGURE 2. The framework of the proposed scheme FET-NN.

noised signal in time domain and frequency domain to gen-
erate high-dimensional feature space. After the raw signal
is enhanced, the generated high-dimensional feature space
can represent health state of intershaft bearings. In the next
step, MI based feature selection aims to optimize the high-
dimensional feature space and construct a robust feature rep-
resentation for training data and test data. It is capable of
improving the performance of classification model in terms
of recognition accuracy and reduction in training time. The
main steps of AMI-based feature extraction are as follows:

Step 1: Collect the vibration data of intershaft bearings
under d + 1 working conditions as samples: Vdata ∈ Rn×1,
where n represents the number of samples, d denotes the
number of source domains. Take the labeled data under con-
dition 1∼ d with different fault types from Vdata as training
samples of source domain with labels: Xsr ∈ Rnsr×1Ysr ∈
Rnsr×1, and take the labeled data of the last condition with
different fault types from Vdata as training samples of target
domain with labels: Xtr ∈ Rntr×1Ytr ∈ Rntr×1, and testing
samples of target domain without labels Xte ∈ Rnte×1 where
n = nsr + ntr + nte, and ntr � nsr .
Step 2: Preprocess each sample in source domain and

target domain to enhance the fault feature by using AR and
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TABLE 1. Feature dimension and statistical features.

MED de-noising as follows:

i. E (n) = X (n)+
p∑

k=1

akX (n− k)

ii. DX (n) =
L∑
l=1

f (l)E (n− l) (1)

where X = [Xsr ,Xtr ,Xte], and ak denotes the AR fil-
ter obtained by the Yule-Walker equation. f (l) represents
the inverse filter of MED, respectively. Ref. [10] provides
detailed algorithm principle of MED. Then the de-noised
signals DX = [DXsr ,DXtr ,DXte] can be obtained.
Step 3: Extract the commonly-used statistical features,

displayed in Table 1, for each de-noised signal from the time
domain and frequency domain to generate high-dimensional
feature space F = [Fsr ,Ftr ,Fte] ∈ Rn×d , d = 25 in this
paper.

Step 4: Based on the labeled high-dimensional features
and labels in source domain, feature subset sensitive to fault
type can be selected by using mRMR-based MI from high-
dimensional feature space:

max
fj∈Fsr−Sm−1

MI (fj; y)− 1
Sm−1

∑
fj∈Sm−1

MI (fi; fi)

 (2)

where y ∈ Ysr is the sample label and S denotes the feature
subset. The mutual informationMI (X ; Y ) of discrete random
variables X and Y is defined as:

MI (X;Y ) =
∑
x∈X

∑
y∈Y

p (x, y) log
p (x, y)
p (x) p (y)

(3)

According to Equation (2), obtain d mRMRvalues and sort
them, based on which k optimal features can be selected to
form a new feature set. The d-dimensional feature spacesF =
[Fsr ,Ftr ,Fte] ∈ Rn×d generated in Step 3 is optimized to
SF = [SFsr , SFtr , SFte] ∈ Rn×k , the k-dimensional feature
space, where k < d .

B. FEATURE TRANSFER
Although AMI-based FE can extract weak features with
excellent dispersion and clustering from vibration signals
of intershaft bearings under one certain working condition,

it cannot solve the performance degradation problem caused
by the insufficient samples of each source domain and the
distribution divergence under various working conditions.
Besides, the working conditions of dual-rotor equipment are
complicated, so it takes too much labor and time to collect
the enough labeled training data and reestablish the fault
diagnosis model under each working condition.

In this section, we propose a KMST-based FT approach
where the labeled features under each source domain are
transferred to the target domain to realize the sharing of
labeled samples across domains. This will significantly
increase the labeled samples size without recollecting the
labeled samples. The procedure of feature transfer can be
described in details as follows.

Step 1: Give k-dimensional feature space SFsr ∈ Rnsr×k

with labels Ysr ∈ Rnsr×1 in source domain (Sor 1∼Sor d) and
SFtr ∈ Rntr×k with labels Ytr ∈ Rntr×1 in target domain by
feature extraction where the sample size of each condition is
s1, s2,. . . , sd and nsr = s1 +s2+. . .+sd .
Step 2: Establish the clustering centers in training feature

space of source domain and target domain respectively by
using K-means as follows, and more details about K-means
can be seen in the Ref. [32]. Here, the numberm of fault types
is the number of clustering centers in the feature space.

min
m∑
j=1

n∑
i=1

dji
∥∥xi − Cj∥∥2 dji =

{
1, if xi ∈ cj
0, f xi /∈ cj

(4)

where each subclass is expressed cj (j = 1, 2, . . . , m),
and every cj has its own clustering center Cj. The cluster-
ing centers

[
C1−m,s1 ,C1−m,s2 , . . . ,C1−m,sd

]
∈ Rm×d and

[C1t ,C2t , . . . ,Cmt ] ∈ R1×d in source domain and target
domain can be established respectively.

Step 3:The translationmatrix [Ts1−sd ,1,T1−sd ,2,. . . ,T1−sd ,m]
of each class’s cluster center from the source domain to the
target domain can be calculated according to Equation (5)-
(6), where Cjsi ∈ Cjs, Cjti ∈ Cjt , i = 1, 2, . . . , d, j =
1, 2, . . . ,m

Cjt1
Cjt2
...

Cjtd
1

 = T


Cjs1
Cjs2
...

Cjsd
1



=


1 0 · · · 0 t1
0 1 · · · 0 t2
...

...
. . .

...
...

0 0 · · · 1 td
0 0 · · · 0 1




Cjs1
Cjs2
...

Cjsd
1

 (5)

Tj =


1 0 · · · 0 t1
0 1 · · · 0 t2
...

...
. . .

...
...

0 0 · · · 1 td
0 0 · · · 0 1
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FIGURE 3. The schematic diagram of the feature transfer processing.

=


1 0 · · · 0 Cjt1 − Cjs1
0 1 · · · 0 Cjt2 − Cjs2
...

...
. . .

...
...

0 0 · · · 1 Cjtd − Cjsd
0 0 · · · 0 1

 (6)

Step 4: The labeled features can be transferred through
multiplying the features in each class cjs ∈ cj of one source
domain by the translation matrix corresponding to that class.
The labeled features of each source domain are processed as
above, and the sample features of multiple source domains
are transferred. Then the transferred features TFsr ∈ Rnsr×d

from each source domain to target domain can be achieved.
Figure 3 presents the feature transfer process with three

fault types from a source domain to the target domain.

C. FAULT DIAGNOSIS
Input the transferred features TFsr ∈ Rnsr×d with labels Ysr ∈
Rnsr×1 into ANN with related parameters set for training the
fault diagnosis model. It consists of input layer, one hidden
layer and output layer.

Let f , l be the input vector and output vector of neural net-
works, respectively, where f ∈ [TFsr ,TFtr ] , y ∈ [Ysr ,Ytr ].
The commonly used objective function is the least square
error (MSE), and the updating rule of parameters is as fol-
lows, where m is the total number of training samples, yi is
the target value, li is the network output. η is the learning
rate which can be set appropriately, and ω, b are the training
parameters of the neural network.

minL =
m∑
i=1

1
2
(yi − li)2

ω = ω − η ·
∂L
∂ω

b = b− η ·
∂L
∂b

(7)

L gets closer and closer to the minimal value by fine-tuning
these parameters for hundreds or thousands of times, thus
finishing the training of neural network model.

FIGURE 4. Dual-rotor vibration test rig.

FIGURE 5. Transfer path of vibration signal of #1 intershaft bearing.

Finally, the features SFte to be classified are input into
the trained ANN based diagnosis model to realize the fault
recognition of intershaft bearings in the target domain.

III. EXPERIMENT AND DISCUSSION
In order to verify the effectiveness and superiority of the
proposed fault diagnosis scheme, the weak fault signals of
bearings under variable operating conditions are collected.

A. CASE1: FAULT DIAGNOSIS BASED ON DATASET
COLLECTED IN DUAL-ROTOR TEST RIG
1) EXPERIMENTAL SETUP AND DATASET PREPARATION
A dual-rotor test rig is designed and built to simulate the oper-
ating conditions andworking state of the intershaft bearing on
the actual dual-rotor gas turbine. As illustrated in Figure 4,
it consists of two driving motors, #1 intershaft bearing, #2
bearing, #2 bearing housing and dual rotors. In particular,
#2 bearings are fitted with thin-walled supports.

In actual dual-rotor equipment, since the inner and outer
rings of intershaft bearings are rotating, there is no fixed
bearing housing for the installation of sensors, which must
require indirect measurement of vibration. The indirectly
measured vibration response needs to be transmitted to the
adjacent bearing via the shaft, and then to sensor position
through the elastic support and complicated thin-wall paths
so that the intershaft bearing’s signal is buried in the strong
vibration and interference.

Be similar to actual dual-rotor equipment, #1 intershaft
bearing, in the dual-rotor test rig, has no directly linked
bearing housing. Thus, although the #1 intershaft bearing
is machined defectively, the accelerometer is installed at
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FIGURE 6. The signal waveforms of #1 bearing under condition A1. (a)
normal. (b) outer race fault. (c) inner race fault. (d) rolling element fault.

#2 bearing housing. Figure 5 presents the transfer path of
vibration of #1 intershaft bearing in the dual-rotor test rig.
It can be seen that the test rig reproduces the running status
of an actual intershaft bearing: the vibration response of
#1 intershaft bearing should be transferred to adjacent bearing
via the inner rotor; then, via elastic supports and thin-walled
structure that comes from a real aero-engine, the response
is transmitted to the #2 bearing housing. The complicated
transfer path indicates that the detected bearing signal is
severely attenuated during the transfer. Therefore, the fault
signals of #1 intershaft bearing are similar to those in the
actual dual-rotor equipment. Besides, the rotating speeds of
the #1 intershaft bearing’s inner and outer races are different
and can vary frequently, which means the operating condition
of #1 intershaft bearing in this test rig is similar to that in
actual dual-rotor equipment.

Each fault type contains six kinds of working speeds, i.e.
A1 = 600/0 rpm; A2 = 1500/900 rpm; B1 = 900/0 rpm; B2
= 1200/300 rpm; C1 = 1200/0 rpm; C2 = 1800/600 rpm,
as shown in Table 2. 1 speed is the difference of running
speed between inner rotor and outer rotor. The vibration sig-
nals are acquired by an acceleration sensor, LMS SCADAS
data acquisition system [33], and collected from #2 bear-
ing housing with a sampling frequency of 20480 Hz. Both
the source domain and the target domain contain four fault
types, and the original waveform of each sample contains
10240 data points. Due to the limited space, Figure 6 shows
the signal waveforms of #1 bearing in condition A1 under
four fault conditions. From the waveform, the amplitude of
the vibration signal under the four bearing states is almost
the same, and the fault vibration signal has no obvious shock.

The scenario settings of all experiments are trained on the
labeled data under multiple conditions (source domain) and a
few labeled data under the other condition (target domain)
to diagnose the unlabeled test data under target domain.
Based on the working characteristic of intershaft bearings, six
different transfer tests are carried out on the dataset collected
in the dual-rotor test rig (DRTR dataset), and the detailed
description of transfer tests is illustrated in Table 3. In each

TABLE 2. Description of DRTR dataset.

TABLE 3. Details of six transfer tests.

TABLE 4. Parameters and optimization results of PSO.

TABLE 5. Parameters of ANN.

transfer test, the part before the arrow represents all source
domains, and that after the arrow refers to the target domain.
Each transfer test includes five source datasets, but the sample
size of each source dataset is only 20, and the sample size of
target dataset is 100.

2) PARAMETERS SETTING OF FET-NN
The detailed parameters for each experiment are set as fol-
lows. During the feature extraction, the optimal k in MI can
be achieved by PSO (Particle Swarm Optimization) with the
train samples of source domain [X2], where the main param-
eters’ setting is presented in Table 4. The optimized k-value
will be used for feature selection of both source domain and
target domain samples. In the fault recognition processing,
the parameter setting of ANN is shown in Table 5, with which
the initial ANN classifier model can be established, and then
the training samples are used to train classifier by iteration.
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FIGURE 7. t-SNE visualization of features by CNN-based FSL. (a) A1. (b)
A2. (c) B1. (d) B2. (e) C1. (f) C2.

FIGURE 8. t-SNE visualization of features by FE without AMI. (a) A1.
(b) A2. (c) B1. (d) B2. (e) C1. (f) C2.

3) FEATURE EXTRACTION EFFECT ANALYSIS
To show the superiority of the developed FE with AMI,
the contrast methods of CNN-based feature self-learning
(FSL) and FE without AMI are conducted respectively.
Because of the weak vibration of the intershaft bearing, AR
and MED are adopted to enhancing the signal features before
using CNN-based FSL.We utilize the t-distributed stochastic
neighbor embedding (t-SNE) technique to map the high-
dimensional features into a 2-D space [34]. The results are
shown in Figures 7-9.

In Figure 7, it is shown that the distribution of features
obtained by FSL based on data are of poor divisibility and
clustering even if the feature enhancement is performed by
AR and MED before FSL. Compared with Figure 7, the fea-
tures distribution under B2 and C2 conditions in Figure 8 is
significantly improved. This confirms that the CNN-based
FSL cannot excavate essential features for extremely weak
fault features only from the vibration waveforms of intershaft
bearings. It may achieve preferable results by combining
frequency characteristics of signals. Figure 9 presents the
features extracted by AMI. Compared to Figure 8, it can be

FIGURE 9. t-SNE visualization of features by AMI-based FE. (a) A1. (b) A2.
(c) B1. (d) B2. (e) C1. (f) C2.

TABLE 6. The DB values obtained by three methods.

seen that AMI addresses the dilemma that the fault features
of outer race and ball cannot be distinguished under specific
working conditions, i.e., A1, A2, B1 and C1.

Davies-Bouldin (DB) index is utilized for quantifying the
feature extraction effect of the above three method. Because
DB calculates the value of the distance between the samples
in any two categories relative to the distance between the
clustering centers of the two types, so it can evaluate well the
clustering and dispersion of the extracted features [35]. DB is
defined as follows.

DB =
1
k

k∑
i=1

max
j6=i

(
Ci + Cj∥∥wi − wj∥∥2

)
(8)

where k denotes the number of feature classes, w is the
clustering center of a class of features, and C denotes the
clustering center. The smaller the DB value, the smaller the
intra class distance and the larger the inter class distance,
which means the better feature extraction results. Table 6 lists
the DB values of CNN-based FSL, FE without AMI and
AMI-based FE. Obviously, the AMI-based FE method has
an overwhelming advantage, which can well distinguish the
features that make first twomethods invalid. Therefore, AMI-
based FE can effectively extract weak fault features of inter-
shaft bearings, and lay a foundation for the realization of
feature space transfer under different working conditions.

4) THE SUPERIORITY OF THE KMST-BASED FEATURE
TRANSFER (FT)
According to Section II, the proposed KMST-based FT is
a semi-supervised feature transfer approach, which needs a
small number of target domain samples. Compared to training
NN classifier directly with these few samples, called Direct-
training, theKMST-based FT can achieve better performance.
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FIGURE 10. The trend of recognition accuracy with the number of labeled
samples in target domain.

To validate this, we investigate the influence of the number
of training samples in the target domain on the recognition
accuracy of the above two methods respectively. The num-
ber of labeled training samples makes great influence on
the recognition accuracy of the ANN classifier obtained by
Direct-training. The performance of KMST does not depend
on the number, because no matter what the number is, each
class of samples must have a cluster center.

Figure 10 reports the results. From Figure 10, it is obvious
that the accuracy of KMST-based FT is higher than that of
Direct-training, and its RMSE is always lower than that of
Direct-training at same number of samples in all six transfer
tests. It is particularly noteworthy that the diagnosis based on
Direct-training is evidently affected by the number of labeled
samples in target domain. When there are only two labeled
samples, the recognition effect of Direct-training is much
poorer than KMST-based FT, and the recognition accuracy
rate merely arrives at 60%. With the increasing numbers of
labeled samples, the accuracy of Direct-training is signifi-
cantly improved, but the convergence rate of which is lower
than that of KMST-based FT. The latter is almost convergent
when only four labeled samples are used. The above analysis
confirms the advantage and necessity of the proposed KMST-
based FT for sample feature transfer under variable working
conditions.

FIGURE 11. Recognition results of various methods. (a) Accuracy rate.
(b) RMSE.

B. COMPARISON RESULTS
To verify the effectiveness of the scheme FET-NN, it is com-
pared with the baseline approach and several successful fault
diagnosis methods with transfer learning on the six transfer
tests.

a. Base-NN: The NN classifier without feature transfer is
generated. That is, the classifier is trained directly by the
training samples from several source domains. Base-NN is
designed to illustrate the improvement of transfer learning
methods for fault diagnosis task where the samples of source
domain and target domain aren’t drawn from same probabil-
ity distribution.

b. TCA-NN: TCA is a classical feature transfer method
with MMD-regularized subspace learning [24]; then these
transferred features are used to train the NN classifier.

c. Coral-NN: Coral is utilized to align their second-order
statistics by linear transformation of sample features in source
domain and target domain [27]; then, feature transfer is real-
ized.

d. DANN: Deep adversarial training of neural network
learns representation features that are predictive for the data
samples in the source domain [26]; then it achieves fault
identification.

The recognition accuracies and root mean square errors
(RMSEs) are shown in Figure 11, where abscissa labels A1
∼ C2 represent the working conditions corresponding to
the target domain respectively. The average accuracies and
RMSEs of the five methods are shown in Table 7. It can
be seen that the proposed FET-NN outperforms all of the
methods for comparison on six transfer tests. Specifically,
through the comparison results, the following observation is
obtained:

(1) Even though quite a few labeled training samples are
provided by the five source domains, the Base-NN still can’t
obtain reliable recognition accuracy. The phenomenon is
reasonable because the training data from multiple source
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TABLE 7. The average recognition accuracies.

domains are greatly different with the test data from target
domain. This requires the transfer across working condition
to improve the adverse situation.

(2) The performance of TCA-NN is much worse than that
of Base-NN, and the recognition accuracy is generally less
than 40%. This is because TCA adapts all source domain
data at once, but the data distribution among different source
domains is significantly distinct. It can be concluded that
TCA is not suitable for the transfer work from multiple
domains to one domain.

(3) Compared with TCA-NN, Coral-NN achieves better
recognition accuracy because it aligns the samples of each
source domain respectively. However, though the highest
accuracy rate reaches 97%, it only maintains about 70% rate
in other several transfer tests, which does not show strong
robustness.

(4) DANN achieves stable recognition accuracy in all
transfer tests, but the accuracy rate is only about 75%. This
may be due to the fact that deep learning model is difficult to
excavate excellent features from time waveforms, which will
directly affect the subsequent transfer process.

(5) Thanks to the AMI-based FE and KMST-based FT,
the average accuracies of FET-NN have been significantly
enhanced, and it achieves the highest recognition accuracies
and maintains excellent robustness in six transfer tests. This
validates that FET transfers the training samples of multiple
source domains to the target domain more effectively than
TCA, Coral and DANN. Therefore, we conclude that FET-
NN has very good potential for solving the classification
performance drop-out problem caused by variable working
conditions in the fault recognition field of intershaft bearings.

In order to illustrate the transferability of the features from
FET and explain why FET works well, we also follow the
t-SNE technique to visualize high-dimensional features of
the aforementioned methods in a two-dimensional map. The
transfer test A1, A2, B1, B2, C1→C2 is taken as an example
to analyze the domain discrepancy effect. The visualization
results are shown in Figure 12. Figure 12(a) plots features
without transfer learning where the sample features of the
each source domain are scattered in the 2-D space because
of the discrepancy of feature distribution between variable
working conditions. Figure 12(b)-(c) plots the features trans-
ferred by TCA and Coral respectively. It is evident that the
distributions of transferred features in the latter map are
closer than the former. This shows that Coral performs better
than TCA in feature transfer of multi-source domains. Fig-
ure 12(d) plots the features obtained by DANN. It can be
seen that since FSL cannot extract distinguishable features,
the subsequent feature transfer will not obtain ideal results.

FIGURE 12. t-SNE visualization of features. (a) Baseline; (b) TCA; (c)
Coral; (d) DANN; (e) FET.

Additionally, the features extracted and transferred by FET
from multiple source domains can be well adapted to the
distribution of target domain features. This is why the ANN
classifier built with features obtained by FET can achieve
high diagnostic accuracy even in the case of variable working
conditions and weak fault features.

C. CASE2: SUPPLEMENTARY VERIFICATION BASED ON
CWRU DATASET
In real-world application, ordinary rolling bearing is more
widely used than intershaft bearing. Therefore, it is helpful
to broaden the application scope of the proposed method by
the validity verification of this method is also applicable to
ordinary bearings. In this section, CWRU dataset is selected
to the application of FET-NN to further illustrate that the
proposed FET-NNhas the potential to be borrowed to the fault
diagnosis of rolling bearing in rotating machinery.

CWRU dataset contains the raw vibration data of roller
element bearings obtained from fault simulation test rig of
CWRU shown in Figure 13. The test rig is mainly composed
of a driving motor, a 2 hp motor for loading, a torque sensor,
a power meter, accelerometers, and an electronic control unit
[36]. The test bearing are located in the drive end of motor
shaft. They are subjected to electric sparking, and inner race
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FIGURE 13. Bearing test rig of Case Western Reserve University [33].

TABLE 8. Description of CWRU dataset.

TABLE 9. Details of eight transfer tests.

faults (IF), outer race faults (OF) and ball faults (BF) of
different sizes (0.021 inch and 0.007 inch) are processed.
In this experiment, the vibration signals are collected by the
accelerometers at a sampling frequency of 48 kHz.

CWRU dataset includes the following fault types: normal
(NO), inner race fault (IF), outer race fault (OF), ball fault
(BF) of 0.021 inch, and inner race fault (IF), outer race
fault (OF), ball fault (BF) of 0.007 inch. Vibration data from
each types are collected from four kind of working condi-
tions, i.e., 0 hp/1797 rpm, 1 hp/1772 rpm, 2 hp/1750 rpm,
3 hp/1730 rpm. It is evident that theworking condition param-
eters of the bearing test rig of CWRU are different from that
of the dual-rotor vibration test rig, and rotating speed and load
need to be considered. Each fault type of the source domain
and the target domain contains 100 samples. The details of
CWRU dataset are shown in Table 8.

For the purpose of verifying the effectiveness of FET-NN,
the compared methods, i.e., Base-NN, TCA-NN, Coral-NN,
DANN, are also conducted. The parameter setting of the

FIGURE 14. Recognition results for the across working condition transfer
tasks with same fault levels.

FIGURE 15. Recognition results for the across working condition transfer
tasks with different fault levels.

method is the same as that of Tables 4 and 5. We consider the
difference of difficulty in fault samples collection between
general rotating machinery and dual-rotor equipment (more
difficult for dual-rotor machinery), so eight sets of transfer
tests are designed in this case, which include not only the
transfer across working conditions but also the transfer across
fault degrees. The detailed description of transfer tests is
illustrated in Table 9. Each transfer test includes three source
datasets, and the sample number of each source dataset is only
40, and the sample number of target dataset is 100.

The classified results of the proposed approach and the
comparedmethods are presented in Figures 14 and 15. In Fig-
ure 14, the bearing vibration with the same fault degree is
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collected in the source domain and the target domain, and
the bearing fault degrees in the source domain and target
domain are different in Figure 15. From these results, it is
observed that TCA-NN is extremely inferior to other four
methods. The accuracy rate of TCA-NN is as low as 4%,
and its performance is even worse than Base-NN. This proves
again that TCA is not suitable for transfer tasks frommultiple
source domains. When applied to the diagnosis task across
working conditions, the effect of Base-NN, Coral-NN and
DANN is better than that in the diagnosis task across working
conditions and fault degrees at once. This is because there
are more differences in features distribution betweenmultiple
source domains and the target domain. For example, Coral-
NN and DANN reach 100% recognition accuracy in Fig-
ure 14, while in Figure 15 it can only achieve 85%, indicating
that their tolerance for the distribution difference of data
features is poorer than that of FET-NN.

From Figures 14-15, we can note that FET-NN achieves
favorable recognition accuracies consistently and performs
better than other methods obviously in all transfer tests. Not
only the recognition accuracy rates are 100%, the highest
RMSE value is only 0.06 that is far lower than the RMSE
of other methods. It is worth mentioning that FET-NN can
be applied to the intelligent fault diagnosis across operating
conditions and fault levels at once, such as 0.021 inch and
0.007 inch here, which is rarely considered in other litera-
tures. In short, FET-NN can solve the worse effect problem
caused by insufficient training samples due to data distri-
bution difference, whether the divergences originates from
variable working conditions or fault development.

IV. CONCLUSION
In this paper, an intelligent fault diagnosis scheme for inter-
shaft bearings under variable working conditions has been
proposed. It consists of feature extraction (FE) based onAMI,
feature transfer (FT) based on KMST, and fault diagnosis
(FD) based on ANN.

(1) Assisted by the AMI-based FE, feature enhancement,
multi-domain feature extraction and feature optimization are
carried out respectively. Compared with CNN based FSL and
FE without AMI, this method is more suitable for bearing
weak fault feature extraction and has higher and adaptability
under variable working conditions.

(2) As a semi-supervised transfer approach, KMST-based
FT is proposed to solve the problem of insufficient labeled
samples in one certain source domain. The visualization
results show that it is more competent for the feature transfer
task from multiple source domains than the results from the
other compared methods.

(3) The ANN based FD is used to train ANN recognition
model by using the labeled features transferred frommultiple
source domains to target domain, and then carry out fault
diagnosis on the testing data of target domain. The diagno-
sis results demonstrate that the proposed scheme has better
potential for solving the diagnosis worse accuracy problem
caused by weak fault feature and shortage of labeled samples

in one certain working condition for the intelligent fault
diagnosis of intershaft bearing.

V. DISCUSSION
The proposed scheme can diagnose the weak fault of inter-
shaft bearings under variable working conditions and can be
applied in gas turbine or other dual-rotor equipment using
intershaft bearings. The AMI-based FE in this scheme can
extract robust fault features from the vibration signals mixed
with strong disturbing vibration and noise. This key point
contributes to the subsequent feature transfer and fault recog-
nition. Meanwhile, the proposed KMST-based FT solves the
dilemma of poor performance caused by inadequate labeled
samples under variable operating conditions.

When the proposed scheme is implemented in the actual
engineering equipment, it can expand the application of the
following aspects: (1) the AMI-based FE method has strong
robustness and adaptability for the application object. It can
not only be applied to intershaft bearings, but also for the
weak fault feature extraction of usual rolling bearings. How-
ever, if the bearing fault is prominent, the de-noising process
based on AR or MED may be counterproductive and can be
removed appropriately. (2) The KMST-based FT can achieve
the sharing of labeled sample features under variable work-
ing conditions. It is also suitable for usual rolling bearings.
Except the transfer between different working conditions,
it can be used for the transfer across fault degree. In the
next work, we will also make study on the transfer between
different equipment.

However, the implementation of KMST-based FT needs to
meet a critical precondition that the sample features extracted
from various working conditions have great dispersion and
clustering. That is, a few labeled samples in target domain
can represent the clustering centers of all samples in target
domain, and the labeled samples transferred from source
domain to target domain can also replace a few samples in
target domain for training to improve the accuracy of fault
diagnosis. In this article, the AMI-based FE has provided this
precondition for feature transfer obviously.

REFERENCES
[1] Z. Jiang, M. Hu, K. Feng, and H. Wang, ‘‘A SVDD and K-means based

early warning method for dual-rotor equipment under time-varying oper-
ating conditions,’’ Shock Vib., vol. 2018, no. 937, pp. 1–14, 2018.

[2] Y. Lei, B. Yang, X. Jiang, F. Jia, N. Li, and A. K. Nandi, ‘‘Applications
of machine learning to machine fault diagnosis: A review and roadmap,’’
Mech. Syst. Signal Process., vol. 138, Apr. 2020, Art. no. 106587.

[3] R. Liu, B. Yang, E. Zio, and X. Chen, ‘‘Artificial intelligence for fault
diagnosis of rotating machinery: A review,’’ Mech. Syst. Signal Process.,
vol. 108, pp. 33–47, Aug. 2018.

[4] Z. Jiang, M. Hu, K. Feng, Y. He, ‘‘Weak fault feature extraction scheme
for intershaft bearings based on linear prediction and order tracking in
the rotation speed difference domain,’’ Applied Sciences, vol. 7, no. 9,
pp. 2076–3417, 2017.

[5] W. Sun, R. Zhao, R. Yan, S. Shao, and X. Chen, ‘‘Convolutional discrim-
inative feature learning for induction motor fault diagnosis,’’ IEEE Trans.
Ind. Informat., vol. 13, no. 3, pp. 1350–1359, Jun. 2017.

[6] H. Wang, S. Li, L. Song, and L. Cui, ‘‘A novel convolutional neural net-
work based fault recognition method via image fusion of multi-vibration-
signals,’’ Comput. Ind., vol. 105, pp. 182–190, Feb. 2019.

203068 VOLUME 8, 2020



Y. He et al.: Intelligent Fault Diagnosis Scheme Using Transferred Samples

[7] P. Tamilselvan and P. Wang, ‘‘Failure diagnosis using deep belief learn-
ing based health state classification,’’ Rel. Eng. Syst. Saf., vol. 115,
pp. 124–135, 2013.

[8] S. Haidong, J. Hongkai, L. Xingqiu, and W. Shuaipeng, ‘‘Intelligent fault
diagnosis of rolling bearing using deep wavelet auto-encoder with extreme
learning machine,’’ Knowl.-Based Syst., vol. 140, pp. 1–14, Jan. 2018.

[9] R. B. Randall and J. Antoni, ‘‘Rolling element bearing diagnostics—A
tutorial,’’Mech. Syst. & Signal Process., vol. 25, no. 2, pp. 485–520, 2011.

[10] H. Endo and R. Randall, ‘‘Enhancement of autoregressive model based
gear tooth fault detection technique by the use of minimum entropy decon-
volution filter,’’ Mech. Syst. Signal Process., vol. 21, no. 2, pp. 906–919,
Feb. 2007.

[11] D. Abboud, M. Elbadaoui, W. A. Smith, and R. B. Randall, ‘‘Advanced
bearing diagnostics: A comparative study of two powerful approaches,’’
Mech. Syst. Signal Process., vol. 114, pp. 604–627, Jan. 2019.

[12] G. L. McDonald and Q. Zhao, ‘‘Multipoint optimal minimum entropy
deconvolution and convolution fix: Application to vibration fault detec-
tion,’’Mech. Syst. Signal Process., vol. 82, pp. 461–477, Jan. 2017.

[13] Y. Lei, M. J. Zuo, Z. He, and Y. Zi, ‘‘A multidimensional hybrid intelli-
gent method for gear fault diagnosis,’’ Expert Syst. Appl., vol. 37, no. 2,
pp. 1419–1430, Mar. 2010.

[14] X. L. Zhang, W. Chen, B. J. Wang, and X. F. Chen, ‘‘Intelligent fault diag-
nosis of rotating machinery using support vector machine with ant colony
algorithm for synchronous feature selection and parameter optimization,’’
Neurocomputing, vol. 167, pp. 260–279, Nov. 2015.

[15] Y. Lei, Z. He, Y. Zi, and Q. Hu, ‘‘Fault diagnosis of rotating machinery
based on multiple ANFIS combination with gas,’’ Mech. Syst. Signal
Process., vol. 21, no. 5, pp. 2280–2294, Jul. 2007.

[16] H. C. Peng, F. H. Long, and C. Ding, ‘‘Feature selection based on
mutual information: Criteria of max-dependency, max-relevance, and
min-redundancy,’’ IEEE Trans. Pattern Anal. Mach. Intell., vol. 27,
pp. 1226–1238, 2005.

[17] A. Unler, A. Murat, and R. B. Chinnam, ‘‘mr2PSO: A maximum relevance
minimum redundancy feature selection method based on swarm intelli-
gence for support vectormachine classification,’’ Inf. Syst., vol. 181, no. 20,
pp. 4625–4641, 2011.

[18] V. Bolón-Canedo, N. Sánchez-Maroño, and A. Alonso-Betanzos,
‘‘A review of feature selection methods on synthetic data,’’ Knowl. Inf.
Syst., vol. 34, no. 3, pp. 483–519, 2013.

[19] I. Guyon and A. Elisseeff, ‘‘An introduction to variable and feature selec-
tion,’’ J. Mach. Learn. Res., vol. 3, no. 6, pp. 1157–1182, Jan. 2003.

[20] R. Liu, B. Yang, X. Zhang, S. Wang, and X. Chen, ‘‘Time-frequency
atoms-driven support vector machine method for bearings incipient fault
diagnosis,’’Mech. Syst. Signal Process., vol. 75, pp. 345–370, Jun. 2016.

[21] F. Chen, B. Tang, T. Song, and L. Li, ‘‘Multi-fault diagnosis study on roller
bearing based on multi-kernel support vector machine with chaotic particle
swarm optimization,’’Measurement, vol. 47, no. 1, pp. 576–590, 2014.

[22] D. He, R. Li, and J. Zhu, ‘‘Plastic bearing fault diagnosis based on a two-
step data mining approach,’’ IEEE Trans. Ind. Electron., vol. 60, no. 8,
pp. 3429–3440, Aug. 2013.

[23] M. Amar, I. Gondal, and C.Wilson, ‘‘Vibration spectrum imaging: A novel
bearing fault classification approach,’’ IEEE Trans. Ind. Electron., vol. 62,
no. 1, pp. 494–502, Jan. 2015.

[24] S. J. Pan, I. W. Tsang, J. T. Kwok, and Q. Yang, ‘‘Domain adaptation via
transfer component analysis,’’ IEEE Trans. Neural Netw., vol. 22, no. 2,
pp. 199–210, Feb. 2011.

[25] M. Long, J. Wang, G. Ding, J. Sun, and P. S. Yu, ‘‘Transfer feature learning
with joint distribution adaptation,’’ in Proc. IEEE Int. Conf. Comput. Vis.,
Dec. 2013, pp. 2200–2207.

[26] M. Long, Y. Cao, J. Wang, and M. I. Jordan, ‘‘Learning transferable
features with deep adaptation networks,’’ in Proc. 32nd Int. Conf. Mach.
Learn., vol. 37, 2015, pp. 97–105.

[27] B. Sun, J. Feng, and K. Saenko, ‘‘Return of frustratingly easy domain
adaptation,’’ in Proc. 13th AAAI Conf. Artif. Intell., 2015, pp. 1–8.

[28] Y. Ganin, E. Ustinova, H. Ajakan, P. Germain, H. Larochelle, F. Laviolette,
M. Marchand, and V. Lempitsky, ‘‘Domain-adversarial training of neural
networks,’’ J. Mach. Learn. Res., vol. 17, no. 1, pp. 1–35, 2016.

[29] Z. Tong, W. Li, B. Zhang, F. Jiang, and G. B. Zhou, ‘‘Bearing fault
diagnosis under variable working conditions based on domain adaptation
using feature transfer learning,’’ IEEE Access, vol. 6, pp. 76187–76197,
2018.

[30] L. Guo, Y. Lei, S. Xing, T. Yan, and N. Li, ‘‘Deep convolutional trans-
fer learning network: A new method for intelligent fault diagnosis of
machines with unlabeled data,’’ IEEE Trans. Ind. Electron., vol. 66, no. 9,
pp. 7316–7325, Sep. 2018.

[31] X. Li, W. Zhang, Q. Ding, and X. Li, ‘‘Diagnosing rotating machines with
weakly supervised data using deep transfer learning,’’ IEEE Trans. Ind.
Informat., vol. 16, no. 3, pp. 1688–1697, Jul. 2020.

[32] M. Capó, A. Pérez, and J. A. Lozano, ‘‘An efficient K-means clustering
algorithm for massive data,’’ Data Mining Knowl. Discovery, vol. 34,
pp. 776–811, Jan. 2020.

[33] Siemens, LMS SCADAS [EB/OL]. Accessed: Jul. 15, 2017. [Online]. Avail-
able: https://www.plm.automation.siemens.com/zh/products/lms/testing/
scadas/lab.shtml

[34] L. van derMaaten andG.Hinton, ‘‘Visualizing data using t-SNE,’’ J.Mach.
Learn. Res., vol. 9, no. 2605, pp. 2579–2605, Nov. 2008.

[35] S. K. Pal, S. K. Meher, and S. Dutta, ‘‘Class-dependent rough-fuzzy
granular space, dispersion index and classification,’’ Pattern Recognit.,
vol. 45, no. 7, pp. 2690–2707, 2012.

[36] Case Western Reserve University Bearings Vibration Dataset.
Accessed: Oct. 2015. [Online]. Available: http://csegroups.case.edu/
bearingdatacenter/home

YA HE is currently pursuing the Ph.D. degree
in power engineering and thermophysics with the
School of Mechatronic Engineering, Beijing Uni-
versity of Chemical Technology, Beijing, China.
Her current research interests include condition
monitoring and fault diagnosis of aircraft rotor
systems.

MINGHUI HU received the Ph.D. degree from
the Beijing University of Chemical Technology,
Beijing, China, in 2018. He is currently a Lec-
turer with the School of Mechatronic Engineer-
ing, Beijing University of Chemical Technology.
His research interests include condition monitor-
ing and fault diagnosis of aircraft engine.

KUN FENG received the Ph.D. degree from the
Beijing University of Chemical Technology, Bei-
jing, China, in 2013. He is currently an Associate
Professor with the School of Mechatronic Engi-
neering, Beijing University of Chemical Technol-
ogy. His current research interests include fault
diagnosis, machine learning, and remaining useful
life prediction of rotating machinery.

ZHINONG JIANG received the Ph.D. degree in
chemical process machinery from the Beijing Uni-
versity of Chemical Technology, Beijing, China,
in 2010. He is currently a Professor in power
engineering and thermophysics with the Beijing
University of Chemical Technology. His research
interests include condition monitoring and fault
diagnosis of high-end mechanical equipment.

VOLUME 8, 2020 203069


