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ABSTRACT 6D target object detection is of great importance to many applications such as robotics,
industrial automation, and unmanned vehicles and is increasingly influencing broad industries including
manufacturing, transportation, and retail industries, to name a few. This paper focuses on detecting the
6D poses of the target objects from the point cloud of a cluttered scene. However, conventional point
cloud-based 6D object detection methods rely on the robustness of key-point detection results that are not
straightforward for humans to understand. The drawback makes conventional point cloud-based methods
require expert knowledge to tune. In this paper, we introduced a 6D target object detection method that uses
segmented object point cloud patches instead of key points to predict object 6D poses and identity. Our main
contributions are an end-to-end data-driven pose correction model that is enhanced with a novel simple yet
efficient basis spanning layer booster. Experiments show that although the proposed model is trained only
using object CAD models, its 6D detection performance matches that of the models using view data. Thus,
the proposedmethod is suitable for 6D detection applications that have object CADmodels instead of labeled
scene data.

INDEX TERMS Deep learning, object 6D detection, point cloud, point cloud segmentation.

I. INTRODUCTION
The 6D target object detection refers to the process of identi-
fying an object and estimating its 6-DOF pose in the scene
of interest. This process is of great importance to many
real-world computer vision applications such as robotics,
industrial automation, and unmanned vehicles. In this paper,
we focus on the problem of 6D target object detection on
cluttered scenes where the object is represented by its shape
or geometry e.g., a point cloud. Figure 1 portrays the steps
involved in this process using a real scene. Unlike the cat-
egory level detection problem that learns to detect unseen
objects using numerous labeled scene data [1], a priori clues
about the target objects are provided in the 6D target object
detection.

Research on 6D target object detection can be roughly clas-
sified into two categories based on the input used for object
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FIGURE 1. 6D detection using geometry models of the target object. The
scene is shown in the image at the upper-right corner. It is noted that the
color on the output result is only added for better visualization. The scene
is represented by the point cloud without the color and texture.

detection: i) view-based methods and ii) geometry-based
methods. The view-based methods take the 2D view of the
scene as the input and generate 6D detection results [2]–[6].
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Thanks to the well-developed deep learning-based object
detection methods, the view-based 6D target object detec-
tion methods such as [5], [6] and the view-geometry fusion
method such as [7] yielded promising results on a public
dataset. Similar to the RGB images, researchers represented
the object geometry with the depth image and achieved satis-
factory results [8].

Instead of using RGB or depth images as the input for
the 6D target object detection problem, we are interested
in solving this problem with the point cloud data directly
for the following reasons: i) the point cloud is a general
representation of geometric information, which can be used to
represent not only regularized 2.5D depth image but also 3D
CAD models and irregular Lidar generated point-cloud data,
and ii) compared to the depth image, the additional dimension
of the point cloud makes it possible to segment the object out
of the background without using complex methods such as
a segmentation network. The permutation invariant property
and sparsity of point clouds make the architectures of the
well-developed image data-based 6D detection methods such
as those in [5], [8] obsolete for the point cloud data. Thus,
detecting object 6D pose from the point cloud data in an
end-to-end fashion is an interesting problem that we have
addressed in this paper.

The conventional point cloud-based 6D detection methods
first detect repeatable key-points, then the geometry informa-
tion around the key-point is encoded into numerical features
using feature descriptors [9], [10]. In this way, the object
can be detected based on the feature matching result. Thus,
the geometry descriptor-based methods greatly rely on the
robustness of the key-point detection results that are not
straightforward for humans to recognize. That is only excep-
tionally trained persons can properly tune a conventional
descriptor-based method.

In this paper, we propose a newmachine learning-enhanced
pipeline for point cloud-based 6D target object detection.
We firstly segment the scene point cloud into patches, and
then the patches are processed by the proposed pose correc-
tion model (PCM) to predict object 6D poses and identify the
object in an end-to-end fashion. In this way, the key-point
detection procedure is substituted by point cloud segmen-
tation. Compared to the key-point detection procedure that
generates hundreds of key-points, the scene segmentation
results are easier to visualize and more understandable for
humans, i.e., the proposed pipeline is easy to set-up. A basis
spanning layer (BSL) booster is proposed to reduce the
regression error of the transformation matrix and accelerate
the convergence of the PCMmodel. Both theoretical analysis
and experiments show that the BSL booster can effectively
improve the performance of the proposed method. Besides,
a practical loss function that can calculate the point cloud
patch pose estimation error parallelly is proposed to train the
PCM more efficiently.

Compared to descriptor-based object detection pipelines,
the experiment results show that the proposed method robust
and adaptive to objects with various geometry features.

Furthermore, experiments on the public dataset show that
the proposed method has comparable performance against
view-based methods trained using labeled real-world data.
The novelties of this paper can be summarized as follows:
• A point cloud patch-based 6D target object detection
pipeline that is easy to set-up for real-world applications.

• A pose correction model that can be trained using 3D
CAD models and applied to the real-world 3D percep-
tion data without the need for finetuning.

• A simple yet efficient basis spanning layer (BSL)
booster that can accelerate the learning process and
improve the pose estimation precision.

• A practical loss function that is suitable for aligning a
point cloud patch to the CAD model.

The paper is organized as follows. Section 2 reviews the
previous work related to 6D detection. Section 3 presents
a detailed description of the proposed model. In Section 4,
the proposed model is verified using benchmarks. Section 5
summarizes the conclusion of this work.

II. RELATED WORKS
In this section, we will review the literature related to the
6D target object detection problems. The methods can be
roughly divided into two categories: view-based methods and
geometry-based methods.

A. VIEW-BASED METHODS
Inspired by the recent development of machine learning tech-
niques, many researchers have proposed view-based target
object detection methods. Estimating the object 6D pose
based on the 2D-3D matching has shown promising results.
Peng et al. proposed a pixel-wise voting method that solves
the object occlusion problem by predicting the key-point
position at every pixel. In this way, the object 6D pose can
be estimated by key-point matching [5]. Park et al. proposed
a novel Pix2Pose model that predicts the depth image of the
object area and then calculates the object pose by the PnP
method based on their implementation [6].

The 6D pose information-encoded global descriptor can be
used to retrieve the object 6D pose efficiently. Wohlhart et al.
applied machine learning to generate a global descrip-
tor containing the pose and category information [11].
Zakharov et al. generated a discriminating descriptor using
a triplet loss so the object can be detected by descriptor
matching [12]. Balntas et al. improved the feature quality
using poses to guide the learning process [13]. Recently,
Sundermeyer et al. proposed a view patch-based object 6D
pose estimation method, they used a domain randomization
autoencoder to extract features invariant to backgrounds, and
the nearest neighborhood method is used to determine object
poses [3]. The view-based methods mentioned above esti-
mate object 6D pose based on the global descriptor match-
ing results. However, estimating the object 6D pose using a
global descriptor has an inevitable error depending on the
discretization resolution of the object pose. In the experi-
ment part, we compared the pose estimation precision of
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the view patch-based method and the proposed point cloud
patch-based method.

End-to-end learning-based methods directly predict 6D
detection results including object position and 3D rigid-body
pose from raw input data [15]. Xiang et al. proposed a CNN
network that has 3 branches including segmentation, transla-
tion predicting, and pose estimation for end-to-end 6D detec-
tion [14]. Rad et al. proposed the BB8 method that regresses
the corner of the bounding box instead of the coordinates
of the corners [4]. Kehl et al. proposed the SSD6D method
that uses a single-shot model to detect objects and estimate
object poses by classification [16]. Tekin et al. proposed a
single-shot end-to-end CNN model for real-time 6D detec-
tion [17].Wu et al. proposed amachine learningmodel to pre-
dict object poses based on instance segmentation masks [18].
The end-to-end learning-based methods yielded promising
results on the 6D target object detection task. In the experi-
ment part, we compared the object detection results against
the end-to-end learning-based methods and the proposed
method showed comparable performance.

B. GEOMETRY-BASED METHODS
Some researchers developed successful geometry-based
methods using a depth image as the input to detect the 6D
pose of the object from the scene. Wang et al. proposed
an iterative dense fusion-based 6D object pose estimation
method that extracts pixel-wise dense feature embedding to
estimate object 6D pose [7]. Park et al. proposed an MTTM
method for object detection, segmentation, and pose estima-
tion. In contrast to other methods that rely on the color and
texture information, the MTTM method uses depth images
as input and estimates the object poses using the nearest
neighborhood matching [8].

Detecting objects and estimating the 6D pose from the
geometry information represented by the point cloud is get-
ting more and more attention. Extracting robust local fea-
tures from the scene and objects is an interesting current
research topic [19]. Recently, Kehl et al. proposed an auto-
encoder-based local feature learningmethod that can improve
the quality of local features [20]. Srivastava et al. proposed
the DeepPoint3Dmodel that learns local features from a point
cloud [21]. Point pair feature (PPF), signatures of histograms
feature (SHOT) are two widely used descriptors for local
feature extraction and 6D target object detection since the
usability. The SHOT descriptor is compact and generalizes
well on different shapes [9]. PPF descriptor-based 6D target
object detection method predicts the 6D pose of the object
by hough voting so the PPF method also does not require
key-point detection procedure [10]. However, using local
features to detect the target objects requires robust key-point
detection results, i.e., once failed in detecting repeatable key-
points, the object can not be detected. In the experiment part,
we compared the proposed method with both PPF and SHOT
descriptors on the challenging shapes that have lots of similar
local features.

In contrast to the local feature-based methods mentioned
above, the proposed method uses the segmented patches
instead of detecting key-points. A similar idea is proposed
by Dube et al. [22]. They use a SegMap feature description
method that firstly segments the scene point cloud and then
convert the point cloud patches into a feature vector. However,
our method is intrinsically different from the method pro-
posed in [22]. The differences include i) the method in [22]
aims to localize the robot in the global map while our method
aims to detect 6D pose of the object from the scene; ii) the
method in [22] generates a rotation-invariant feature vector
from the point cloud patches while our method preserves the
object pose information using the proposed pose correction
model.

III. METHODOLOGY
A. PATCH-BASED 6D DETECTION PIPELINE
We use the patch-based pipeline for 6D target object detec-
tion, shown in Figure 2. Firstly, the scene is segmented by
the point cloud segmentation algorithms that are off-shelf
and can be adjusted to fit the application scenarios. Then,
the proposed pose correction model (PCM) takes the seg-
mented patches as the input and yields the object 6D poses
and identifications.

FIGURE 2. The proposed patch-based 6D detection pipeline.

B. POSE CORRECTION MODEL
Pose correction model (PCM) takes the point cloud of the
object patch as the input and generates an action that can align
the observed object patch with the reference CAD model.
In our configuration, the object patch is represented by the
point cloud. Figure 3 shows the architecture of the PCM and
the color bars in the figure are the learned features. Pose cor-
rection model (PCM) consists of basis spanning (marked in
green), global feature learning (marked in red), affine matrix
learning (marked in blue), and object identification (marked
in brown)modules. In themodel, conv(m, n) is 1d convolution
that maps features or points from an m dimensional space to
an n dimensional space. BatchNorm is the batch normaliza-
tion function. MaxPool function fuses all features generated
from each point by maximum pooling.

The basis spanning layer module (marked in green) in
Figure 3 is not activated by any non-linear function so the
point cloud is up-sampled to 128 dimensions, linearly. The
global feature learning module (marked in red) is designed
to extract a high dimensional global feature vector h that
represents the input point cloud. In the global feature learning
module, the ReLU function is used to activate the features
processed by all of the convolution functions.
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FIGURE 3. The architecture of the network.

The affine matrix learning module (marked in blue) takes
the learned feature h as the input and learns a transformation
matrix a using the fully connected layers, the ReLU layer
is used to activate the feature processed by linear(512, 512)
layers.

The reshape function in the affine matrix learning module
transforms the learned feature vector into a 128×3 dimension
transformation matrix a. In this way, the rotation and trans-
lation parameters of the observed patch are encoded in the
matrix a.
The object identification module takes the global fea-

ture vector h as input and yields the identification result.
The ReLU activation function is used to process the
linear(512, 512) and linear(512, 256) layers, and the Soft-
max function is used to process the linear(256, k) layer.

C. THE BASIS SPANNING LAYER (BSL) BOOSTER
The basis spanning layer (BSL) booster is proposed to
improve the precision of transformation matrix regression
and accelerate the learning process. In this section, the BSL
booster is elaborated in detail and its effectiveness is theo-
retically proven. Eq. 1 describes the process of mapping the
point cloud from a 3D to n-dimensional space through linear
up-sampling by,

q = A · p (1)

where the 3 × 1 vector p is the coordinates of a point in the
3D point cloud P. The n× 3 matrix A can be viewed as a set

of linear transformation applied to the basis of p, shown in
Eq. 2 and Eq. 3.

[y1, y2, y3, . . . , yn] · q = [x1, x2, x3] · p (2)

[x1, x2, x3] = [y1, y2, y3, . . . , yn]

·[a1, a2, .., ai, .., an]T (3)

where [x1, x2, x3] is the original orthogonal basis of the
observed point cloud patch. q is the coordinate of the point
in the spanned n-dimensional space. ai is the row vector of
the matrix A. [y1, y2, y3, . . . , yn] is a set of linearly dependent
basis and can be further clustered into several groups of
linearly independent bases noted as [yi, yj, yk ]. In this way,
we augment the original point cloud by transforming P to
several different linear spaces.

The advantages of the BSL booster are twofold,
• In the training process, it is easier for the model to fit
the data since the solutions of the pose are not unique
for the linearly dependent basis. As a result, the rate of
convergence will increase significantly because of the
BSL booster.

• The precision of the pose estimation can be improved
since the input point cloud data is augmented with a
learn-able linearly transformation matrix.

Experiments are conducted to demonstrate the role of the
BSL booster and its advantages. The results show that the
rate of convergence and pose estimation precision are both
improved, considerably.
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FIGURE 4. Generating the point cloud via rendering the CAD model. The
pose of the object is adjusted with the following operations: rotating
φ1 degree around the z-axis, rotating θ degree around the y-axis and
rotating φ2 degree around the z-axis.

D. THE MODEL TRAINING METHOD
The point cloud used for model training is generated by
rendering the CAD model of the target object. The process
is shown in Figure 4. First, the pose of the model is adjusted
by z-y-z rotation so the ground-truth value of the target object
6D pose is known. Second, a depth image is rendered from
the CAD model using the z-buff algorithm. In this way,
the self-occlusion of the target object is taken into account.
Third, the point cloud is generated based on the known
parameters of the virtual 3D camera. Besides, to distinguish
the background and the objects, we randomly sample point
cloud patches from the data of the cluttered scene to generate
the background patches.

FIGURE 5. Calculating the distance loss using the Mc and Mr .

Inspired by the successful and widely applied Iterative
Closest Point (ICP) method and the advantage of the point
cloud data, i.e., the Euclidean information is explicitly
recorded, we use the alignment error of two point clouds
as the loss function of our optimization process. However,
finding the closest point of two point clouds is computation-
ally intensive and inefficient for the modern deep learning
architecture. Here, we propose a practical strategy to address
this problem. As shown in Figure 5, instead of aligning the

observed patch Po to the reference CAD model Mr , we first
translate the CADmodel to the ground truth pose of Po. Then
the vertices of the CAD model are multiplied by a transfor-
mation matrix generated by the pose correction model. In this
way, the loss function can be calculated efficiently because
the vertices ofMc and Mr are automatically paired.

The input and output data of the proposed Pose Correction
Model (PCM) are point cloud data, and the average Euclidean
distance (calculated by Eq. 4) between points is used to rep-
resent the discrepancy between the actual and the reference
point clouds. Although Eq. 4 has the same form as L2 loss
function, Eq. 4 is the representation of error as it calculates
the Euclidean distance between the corresponding points of
two point clouds. The constraint function can be noted as,

lp =
1
M

∑
M

|mr − mc|2 (4)

In Eq. 4,mr andmc are vertices ofMr andMc, respectively.
With the loss function construction using Eq. 4, PCM learns
to align the CADmodel in estimated pose (Mc) with the CAD
model in the defined reference coordinate (Mr ). As a result,
PCM can align Po to Mr .

The configuration of model training is listed as below:
batch size 64, SGDM optimizer, learning rate 0.005, momen-
tum 0.9.The object is identified using the output of the Soft-
max function of the object identification module. The output
function predicts k values as the confidence of k−1 different
objects and the background. Cross Entropy Loss li is used to
train the identification module. In this way, the loss function
for model training can be noted as,

l = (1− λ) · lp + λ · li (5)

In Eq. 5, a dynamic parameter λ is introduced to adjust the
ratio of the pose correction constraint and the identification
constraint. For the object patches, λ is set as 0.5 and for the
background patches, λ is set as 1.0.

IV. EXPERIMENTS
Experiments on CAD models and the real-world dataset are
conducted to validate the proposed method. The object iden-
tification and pose estimation experiment on CAD models
aims to prove that the proposed pose correction model (PCM)
has a competitive performance against both descriptor- and
view-based methods on 6D pose estimation of objects that
have a large number of similar local features. The 6D detec-
tion experiment on the real-world dataset aims to prove
that the proposed method, trained only using CAD models,
is comparable with the method that uses labeled real-world
data for 6D detection. The advantages and drawbacks of
the proposed method are discussed in this section. It must
be emphasized that the consideration of the performance of
the proposed method is on top of its main advantage of a
6D detection method that detects objects based on geometry
data.
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TABLE 1. The object identification and pose estimation recall rates with ADD metric.

A. THE OBJECT IDENTIFICATION AND POSE ESTIMATION
EXPERIMENTS ON CAD MODELS
The proposed method is compared with the descriptor-based
and view-based methods, such as point pair feature
(PPF) [10], signatures of histograms feature (SHOT) [9], and
view-based method [3] in terms of pose estimation precision
and object identification accuracy. The data for comparison
are CAD models that have similar local features (Figure 6)
including a bed, a chair, a desk, a bookshelf, a dresser, and
a monitor. These CAD models have several similar local
geometry features, which makes it difficult for conventional
3D descriptors to extract geometry information efficiently.

FIGURE 6. CAD models with similar local features.

The CAD models sequentially rotate about z, y, and z axes
to generate the training point cloud. The ranges of the rotation
angles are 0◦ to 360◦ about the z axis, 180◦ about the y
axis and another 360◦ about the z axis, all with an interval
of 9◦. For the testing data, the ranges of the rotation angles
are 4.5◦ to 355.5◦ with an interval of 9◦, 175.5◦ and 355.5◦,
respectively, with an interval of 9◦. In this way, the minimum
pose difference between the training and testing data is 4.5◦.
The point pair feature-based (PPF) [10] method built a PPF

between every two points of the object patch point cloud. For
the PPFmethod, the clustering threshold was 10◦ for the rota-
tion and 10% of the object diameter for the translation. For
the SHOT method [9], the key-points were generated using
the 3D Harris key-point. The descriptor radius was 5% of the
object diameter. The matching process was accelerated by the
K-nearest-neighborhood searching method. The view-based
method was trained using rendered depth images and the
configuration of training was similar to [3]. The experiment
uses the ADD metric (km = 0.05), i.e., the object is correctly
recognized and aligned with the standard model when the
average alignment error is less than 5% of the corresponding

object diameter. For the view-based method [3], we use the
ADD metric (km = 0.1) because the object pose estimation
precision of the view-based method [3] depends on the res-
olution of pose discretization of the training data while the
proposed method uses the global feature to estimate continu-
ous object poses.

The object identification and pose estimation perfor-
mances of the methods is shown in Table 1. The results show
that the average recall rate of the proposed method is 97.1%
and it is around 30% higher than the recall rates of PPF
and SHOTmethods. The proposed method shows advantages
against the descriptor-based method because the proposed
method learned global features from the training data and the
feature extraction ability generalized well to unseen poses.
Besides, the average running time for the proposed method
is 94 milliseconds while PPF and SHOT methods took more
than 2 seconds. The state-of-the-art view-based method [3]
showed a competitive recall rate (95.7%) in the experiment,
which is 1.4% lower compared to the proposed method.
However, the proposed method is evaluated under the criteria
of the ADD metric (km = 0.05), i.e., the proposed method is
tested under a more restrictive standard. More interestingly,
comparing the standard deviations in the last row of the
table, it is conceivable that the proposed method has a more
consistent recall and maybe more reliable for various object
classes.

B. THE 6D DETECTION EXPERIMENTS ON LINEMOD
DATASET
The proposed method is compared to the state-of-the-art
view-based methods including the BB8 [4], DenseFusion [7]
and the methods introduced in [17] and [3] on the public
LINEMOD dataset. The LINEMOD dataset has thirteen dif-
ferent objects. For each object, the CAD model is provided,
more than 1000 RGB-D images of cluttered scenes captured
from different angles are provided. The 6D pose of the objects
is labeled. Figure 7 visualizes eight frames of images from
the LINEMOD dataset. Besides the CAD model experiments
in Section IV. A., the LINEMOD dataset is collected using
the RGB-D sensor. These objects are highly self-occluded
and have been subjected to severe noise. Detecting object
6D poses from the LINEMOD dataset needs to deal with
the influence of sensor noise and target object segmentation
error. In this way, the robustness of the methods can be
tested. The detection results are generated by the proposed
method and denoted by green shading. The proposed method
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FIGURE 7. 6D detection result of the proposed method on LINEMOD dataset.

is tested in terms of 6D detection accuracy and computational
efficiency.

Unlike the other state-of-the-art 6D detectionmethods such
as [3] that train a deep learning detection model to extract the
cropped image of the object from the scene, we used a con-
ventional hand-crafted segmentation approach to process the
scene. In the 6D detection experiment, the scene is segmented
into point cloud patches using a smooth normal plane extrac-
tion and color-enhanced euclidean clustering. The clustering
algorithm is carefully tuned for different objects to achieve a
satisfying performance.

In the experiment on the LINEMOD dataset, we train the
model using the synthetic data. All data in the LINEMOD
dataset is used as the test dataset to test the proposed method.
Thirteen different object classes are used for testing i.e., sim-
ilar to [3]. The CAD models sequentially rotate about z, y,
and z axes to generate the training point cloud. The ranges
of the rotation angles are 0◦ to 360◦ about the z axis, 180◦

about the y axis and another 360◦ about the z axis, all with
an interval of 9◦. The CAD models in different poses are
converted into depth image using Blender. Then, the point
cloud for training is generated from the depth image. The
configuration of model training is described in Section 2.
The model was trained for 300 epochs and the training time
is around 23 hours with the Nvidia RTX 2070 GPU. All
of the labeled data in the LINEMOD dataset is used for
testing.

1) THE ACCURACY OF THE PROPOSED 6D DETECTION
METHOD
The comparison of performances of object identification and
pose estimation is shown in Table 2. The criterion is ADD
(km = 0.1) as in [3]. The results of BB8 [4], Tekin et al. [17],
Sundermeyer et al. [3] and DenseFusion [7] are taken from
the original papers. Shown in Table 2, the average recall

rate of 6D object detection on the LINEMOD dataset of the
proposed method is 66.8%.

Although the performance of the proposed method is infe-
rior to the state-of-the-art RGB-D-based method such as the
DenseFusion method [7], our method is comparable with
the view-based methods such as [3], [4], [17] that are pro-
posed before 2018. The main reason for the inferior per-
formance can be summarized as i) the loss of color and
texture-information makes object pose estimation a challeng-
ing task, ii) the geometry of the object segmented from the
real-world scene is not the same as the provided CAD model
because of the error of intrinsic parameters of the Kinect
sensor, and iii) the real-world noise and segmentation error
affects the pose estimation and object identification results.
The further analysis of the influence of the sensor noise and
segmentation error is discussed in Section V.

It is worthmentioning that the proposedmethod takes point
cloud data as input while the most well-established methods
generally focus on 6D detection from RGB or RGB-D data.
Detecting target objects from the point cloud remains an
open problem for researchers to achieve better performance
in terms of detection accuracy and pose estimation precision.
With more attention and contributions from the researchers,
the point cloud-based 6D target object detection performance
can be further improved and be more competitive in compar-
ison to the methods using RGB-D data.

2) THE EFFICIENCY OF THE PROPOSED 6D DETECTION
METHOD
We downloaded and ran the official implementation of the
method proposed in [3] using a computer with a 4 core CPU,
12GBmemory, and anNvidia RTX 2070GPU. The proposed
method runs slightly slower (34 ms) compared to [3]. The
main reason is that the proposed method spends more time on
patch segmentation since the patch segmentation algorithm
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TABLE 2. The object identification and pose estimation recall rates on LINEMOD dataset.

TABLE 3. The object identification and pose estimation recall rates with
ADD metric.

runs on one core of the CPU. The method proposed in [3]
used a GPU-accelerated machine-learning model to crop the
object. Although a machine learning-based object cropping
step is parallelable and faster, the proposed clustering-based
patch segmentationmethod is fully unsupervised. It is reason-
able to believe that the proposed method could be accelerated
by training a machine learning model with labeled data to
generate object patches similar to [3]. The inference time is
shown in Table 3.

In summary, our experiments show that the average 6D
detection recall rate of the proposed method is 66.8% so the
PCM has a competitive performance on 6D detection in terms
of accuracy and efficiency against the view-based methods
such as BB8 [4], Tekin et al. [17] and Sundermeyer et al. [3].
The object identification accuracy and pose estimation preci-
sion PCMaremore than 30%higher than the descriptor-based
methods such as PPF [10] and SHOT [9] according to
our implementation. Although the performance of the pro-
posed method is inferior to the state-of-the-art RGB-D-based
method such as the DenseFusion method [7], it is worth to
mention that the proposed method takes object point cloud as
the input and Detection object from the point cloud is still an
open problem, i.e., the performance of the point cloud-based
6D detection pipeline will be improved in the future.

C. THE EFFECTIVENESS OF THE BASIS SPANNING
LAYER (BSL) BOOSTER
The experiments are conducted to quantify the impact and
effectiveness of the proposed basis spanning layer (BSL)
booster on the rate of convergence and pose estimation preci-
sion. In the experiments, we used the CAD models provided

in the LINEMOD dataset to generate the training and testing
data. The CAD models sequentially rotate about z, y, and z
axes to generate the training point cloud. The ranges of the
rotation angles are 0◦ to 360◦ about the z axis, 180◦ about the
y axis and another 360◦ about the z axis, all with an interval
of 9◦. For the testing data, the ranges of the rotation angles
are 4.5◦ to 355.5◦ with an interval of 9◦, 175.5◦ and 355.5◦,
respectively, with an interval of 9◦. The model is trained for
30 epochs using the configuration described in Section III.D.
The training process is illustrated in Figure 8.

FIGURE 8. The training process of model with different BSL dimensions.

In Figure 8, w/o Span denotes the pose correction model
without the BSL booster enhancement, i.e., the heteroge-
neous coordinates of the points are multiplied by a 3 × 4
matrix. D is the dimension of the BSL i.e., the dimension of
the up-sampling. As shown in Figure 8, the training loss is
around 0.7 at the 30th epoch for the model enhanced with the
BSL booster while the training loss is greater than 2.0 for the
model without the proposed BSL booster enhancement. It is
clear that the BSL booster can significantly improve the rate
of convergence.
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TABLE 4. Comparison of model performance on the synthetic dataset and segmented real-world data.

FIGURE 9. The pose estimation error of the model with different BSL
dimensions.

Furthermore, we tested the effectiveness of the BSL
booster on the pose estimation precision. In the experiments,
the model is trained for thirty epochs, and then the trained
model is evaluated on the test dataset. The pose estimation
error is calculated as the average distance between the point
cloud and the corresponding points on the reference CAD
model. A comparison between the pose estimation results
with and without the BSL booster shown in Figure 9 demon-
strates the improved pose estimation precision because of
the proposed BSL booster. The results of the experiment
show that the proposed BSL booster can significantly reduce
the pose estimation error (from around 2.2 units to less
than 1 unit). Furthermore, the deviation of the pose estima-
tion error is also reduced as the BSL dimension increases.
We attribute the reduction in deviation to the augmentation
of the input data.

The results of the experiment show that the proposed basis
spanning layer (BSL) booster can significantly reduce the
pose estimation error (from around 2.2 units to less than
1 unit). Furthermore, the deviation of the pose estimation
error is also reduced with the increase of the BSL dimension.
We attribute the reduction in deviation to the augmentation of
the input data.

D. DISCUSSION
1) PATCH SEGMENTATION
The proposed method uses segmented object patches as input
so that the effect of the segmentation algorithm influences
the final result of 6D detection. In this section, an experiment
based on a synthetic LINEMOD point cloud is conducted
to quantitatively analyze the effect of the segmentation

algorithm. In the experiment, the CAD models of the ape,
cam, cat, duck, drill, glue, and phone are selected from the
LINEMOD dataset. A testing set is generated by rotating
each object around z, y, and z axes. The ranges of the
rotation angles are 0◦ to 360◦, 90◦ and 360◦, respectively.
The rotation angle around each axis is uniformly sampled and
the sampling times are 16, 4, 16, respectively. 1024 uniformly
sampled poses are generated for each object, and a synthetic
LINEMOD dataset with 7168 point cloud patches is gener-
ated by rendering LINEMOD objects into a point cloud.

The pose correction model (PCM), trained with the same
configuration described in Section 4.2, is used to recognize
the object and estimate its 6D pose in the synthetic dataset.
The selected objects have less concave surfaces so that the
sensor noise has less influence compared to other objects.
In this way, the PCM is mainly affected by the object seg-
mentation performance. Thus, comparing object identifica-
tion and 6D pose estimation performance on the synthetic
LINEMOD dataset and real-world data is sufficient to evalu-
ate the influence of patch segmentation. The ADD (km = 0.1)
criterion is used for this comparison (Table 4).

The result shows that the average recall rate of the pro-
posed method is 98.0% when using the synthetic data as the
input. However, the average recall rate is 71.1% when using
segmented data. The main reason is that the smooth nor-
mal segmentation occasionally ignores small objects, espe-
cially where the normal estimation radius is set too large.
On the other hand, over-segmentation can happen for rela-
tively large objects such as the drill. Because the handle of
the drill is sometimes partially self-occluded by the body
part, the depth sensor cannot capture a continuous geometry
shape and the Euclidean clustering fails in this case. In this
way, an improved segmentation method can elevate the per-
formance of the proposed patch-based method.

2) SENSOR NOISE
The sensor noise leads to the difference between the training
data and the real application scenarios. The effect of the sen-
sor noise is alleviated when the model uses labeled real-world
data to train. It is necessary to analyze the effect of sensor
noise by experiments. The objects including the bench vise,
egg box, hole puncher, and iron are selected as the testing
objects. The common feature of these selected objects is that
they all have complex concave surfaces.

A synthetic dataset composed of the above objects is gen-
erated in the same way as the patch segmentation experiment.
Furthermore, the object patches in the real-world data are
segmented out using the ground truth poses so the influence
of segmentation is omitted. The result is shown in Table 5.
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TABLE 5. Comparison of model performance on the synthetic dataset and corresponding real-world data.

The model performance is evaluated using the object identi-
fication recall rates, and the criterion is ADD (km = 0.1).
The results show that the sensor noise results in approxi-

mately 20% loss of recall rates for the selected objects. The
main reason is that the complex non-convex structures are
hard to be scanned for actual sensors with a fixed resolution.
Specifically, the bench vise has a metal part which is highly
sensitive to the sensor noise.

3) LIMITATIONS
The experiments show that the proposed method has a com-
petitive performance for 6D target object detection, but it
suffers from the following limitations. First, the patch seg-
mentation influences the 6D target object detection by under-
or over-segmentation of the scene. Because the proposed
method assumes that the a priori information about the scene
is unknown and cannot be synthesized, an unsupervised algo-
rithm is used to generate patches. However, it is reasonable to
infer that supervised machine learning-based scene segmen-
tation can improve the 6D detection performance. Second,
the sensor noise is not negligible when the object has concave
surfaces or complex local details such as holes or slots. The
proposed method is less competitive for objects with such
features, e.g., objects in the T-Less dataset [23]. One of the
possible solutions is to substitute the geometry feature learn-
ing module of PCM with image feature extraction models.
In this way, image features such as edges and corners can be
helpful for 6D detection.

V. CONCLUSION
In this work, we presented a point cloud patch-based pipeline
for the 6D target object detection problem. A pose correction
model (PCM) that is enhanced with a simple yet efficient
basis spanning layer (BSL) booster is proposed to predict the
6D pose and identity of the segmented point cloud patches in
an end-to-end fashion. Experiments on synthetic data show
that the average 6D detection recall rate of the proposed
method is 97.1%, which is approximately 30% higher than
that of the widely used local feature descriptor-basedmethods
including SHOT and PPF. Besides, experiments on the pub-
lic LINEMOD dataset show that the 6D detection accuracy
is 66.8%, i.e., the performance of the proposed method is
comparable to the end-to-end trained view-based methods
which are enhanced by deep learning. To sum up, the pro-
posed method has the potential for real-world 6D detection
applications where only the point cloud data of an object is
available.
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