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ABSTRACT The rapid development of Internet of Things (IoT) technology and the widespread deployment
of various sensors around the world have produced a large number of data streams. Thus, current computing
systems face the challenge of quickly receiving and managing these large-scale streaming data. This study
builds an efficient distributed database based on Greenplum (GP) and focuses on solving the problem
of the low efficiency of structured data queries for observed ecological data collected from fragile areas
in Northwest China’s desert oasis. First, a distributed database is designed and deployed at the physical
storage structure level. A database table structure is then established based on the characteristics of the
streaming data. On this basis, the data storage strategy is optimized at the data table level. Additionally, the
query efficiency of the distributed database is compared with the query efficiency of traditional standalone
databases. The results show that the distributed database significantly improves the data query efficiency. The
greater the amount of data stored, the better the improvement in efficiency. Finally, based on the optimized
distributed database, we develop a data sharing system for streaming data from ecologically fragile areas
in the desert oasis in Northwest China, which provides a new approach for the efficient sharing of massive
amounts of IoT streaming data for ecological monitoring. Our storage system is still currently working

normally, which is highly important to both data managers and users.

INDEX TERMS Ecological monitoring, IoT, greenplum, performance optimization, data sharing.

I. INTRODUCTION

Ecosystems are important parts of the Earth’s frame-
work and form the core of its most active biosphere.
Since the 1980s, many ecosystem observation and research
networks have been established, including regional moni-
toring networks such as the Global Environmental Monitor-
ing System (GEMS) [1], the Global Terrestrial Observing
System (GTOS) [2], the International Long Term Ecological
Research Network (ILTER) [3], the Global Flux Observation
Network (FLUXNET) [4] and the International Biological
Diversity Observation Network (GEO BON) [5], and national
networks such as the US Long Term Ecological Research
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Network (US-LTER) [6], the United Kingdom Environmen-
tal Change Monitoring Network (ECN) [7] and the Chinese
Ecosystem Research Network (CERN) [8]. All the different
types of ecosystems around the world play important roles in
monitoring and studying regional ecological, environmental
and resource issues.

The rise of the Internet of Things (IoT) [9], [10], [11]
has provided strong technical support for improving the level
of global ecological monitoring. IoT is “‘a global infrastruc-
ture for the information society, enabling advanced services
by interconnecting (physical and virtual) things based on
existing and evolving interoperable information and commu-
nication technologies” [12]. This new technology substan-
tially reduces the cost of environmental monitoring system
deployment and maintenance and effectively improves the
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ecological and economic benefits of ecological environmen-
tal monitoring [13], [14]. However, it also presents a new
challenge for data management: large-scale data are con-
tinuously generated over short timespans. According to a
published report, the total amount of global Earth monitoring
data is increasing exponentially each year, and the Inter-
national Data Corporation (IDC) predicts that global data
might reach approximately 163 ZB by 2025. For example,
for the Heihe river basin, four large-scale comprehensive
observational studies, including the Heihe Basin Field Exper-
iment (HEIFE) [15], Watershed Allied Telemetry Experimen-
tal Research (WATER) [16], a prototype watershed observing
system [17], and Heihe Watershed Allied Telemetry Experi-
mental Research (HiIWATER) [18], have been carried out in
the past 20 years, and nine observation areas and 362 obser-
vation points have been established in the upper, middle and
lower reaches of the Heihe River, including 385 data collec-
tors and 2145 sensors, since 2012. Thus, 10 million observa-
tion records are generated daily (approximately 455 MB/day,
159 GB/year). Except for image and video data used to mon-
itor animals and plants, all other data from environmental
monitoring networks are structured data characterized by
high speed, infinity and uncertainty. These large, continuous,
fast, and time-varying data are called streaming data [19],
[20], [21] and possess big data features (volume, velocity,
variety, value and veracity) [22].

A database can be a powerful tool for providing efficient,
convenient, and safe multi-user storage of and access to mas-
sive amounts of streaming data, but traditional databases such
as MySQL, SQL Server, and Access are online transactional
processing (OLTP) relational databases, which are designed
for insertion, modification or deletion of small numbers of
records in the databases. Therefore, using traditional data
storage methods to manage these streaming data has several
drawbacks:

(1) Storage bottleneck: Streaming data are massive; how-
ever, traditional relational databases generally use one server
to store data and have poor scalability.

(2) Poor query efficiency: The performance of traditional
relational database systems decreases sharply as the data size
increases.

(3) Poor visualization: In the face of such massive data,
traditional relational databases have difficulty achieving rapid
mining and visualization [23].

To overcome the problems above that arise with large-scale
data housed in a single database, we turn to distributed
databases. In this paper, we adopt a geoscience field (IoT
ecological monitoring) as an example to study a new, open
source data management architecture to achieve massive data
sharing and services in the context of earth science big data.
The focus of this study is to solve the problem of the poor
efficiency of structured data queries through optimization on
Greenplum (GP). The main contribution of our work is a data
sharing architecture for ecological monitoring-oriented IoT
streaming data. The system has the following merits:

(1) Optimization strategy
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We introduce GP into the application of ecological mon-
itoring IoT and optimize the query efficiency from the
database physical structure and database table structure
according to the characteristics of ecological monitoring
streaming data. This strategy solves the problem of data
query bottlenecks in the case of a limited number of servers.
Moreover, with the rapid growth of streaming data, our server
and table structure can be dynamically expanded, which does
not affect ongoing operations. Finally, this strategy is general
and can be used for other application scenarios such as hos-
pitals, education, banks, and traffic where massive amounts
of structured data must be shared.

(2) Automatic data parsing and warehousing middleware

We develop an automatic data parsing and warehousing
middleware for multi-source heterogeneous data. This mid-
dleware can automatically collect streaming data from dif-
ferent types of remote wireless sensor network (WSN) [24]
observation instruments and store the data in GP after nor-
malization with no need for any human intervention.

(3) Data-sharing mode

An improved strategy to share data based on cloud disk
is proposed, where the query results are directly generated
into files in the master node of GP. These data can then be
download by users through cloud disk service, which avoids
the problem of a long waiting time.

This paper is organized as follows. Section II discusses
related work. Section III presents the design, deployment
and optimization of a distributed database. Section IV dis-
cusses an application example of a data sharing system for
IoT. Finally, a brief conclusion and prospects are given in
section V.

Il. RELATED WORKS

A. IoT APPLICATIONS

IoT is expected to be a major producer of big data.
A timely analysis of big data acquired from IoT and
other sources to enable highly efficient, reliable and accu-
rate decision making and management of ubiquitous envi-
ronments is an ambitious challenge. To break through
this bottleneck, some approaches and flexible architec-
tures have been developed for time-critical applications.
Stefanic et al. presented a new concept for engineer-
ing complex adaptable cloud systems with time-critical
constraints: the application-infrastructure co-programming
model. They described the architecture, design and imple-
mentation of the system components and how such tools
were applied to three time-critical real-world use cases [25].
Koulouzis et al. presented a microservice-based infrastruc-
ture optimization suite, the Dynamic Real-Time Infrastruc-
ture Planner (DRIP), which was used to construct virtual
infrastructures for research applications on demand. Their
results clearly showed the value of integrated systems such as
DRIP for dynamic optimization of data services in research
support environments and how they might be used for a
number of similar applications involving distributed services
and large, dynamic data sets with further investigation and
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TABLE 1. Comparison of mainstream distributed databases. “—" indicates nonsupport, “e” indicates support.

Database Features GP  Vertica  SybaseIQ  Teradata Aster = Oracle Exadata

Shared-nothing architecture . . . . —
Data are stored by columns . . ) . .
Data are stored by rows . — — . —
Table partition . — . . —

Table index . — . . —
Structured data . . ) . °

Online system expansion . — — — °
Linear performance expansion . . — . —
Open source . — — — _

development [26]. Yang et al. proposed a lightweight dis-
tributed access control system with an efficient keyword
search function to secure the data management in health IoT
in 2019 [27]. Alelaiwi evaluated available IoT databases in an
edge/cloud platform by applying the analytic hierarchy pro-
cess (AHP) and suggested a suitable approach for developing
a database application. They found that FileMaker was the
best choice because it offers the best usability, portability, and
supportability for IoT scenarios [28].

In addition, some researchers have attempted to determine
how to effectively collect sufficient data while not increasing
the amount of redundancy in big data applications. To accom-
plish this task, Liu et al. proposed a matrix-completion-based
sampling points selection joint intelligent unmanned aerial
vehicle (UAV) trajectory optimization (SPS-IUTO) scheme
for data acquisition [29]. Huang et al. proposed a novel
baseline-data-based verifiable trust evaluation (BD-VTE)
scheme to guarantee security at a low cost that has been
used for effective trust evaluation, reasonable incentiviza-
tion and path adjustment. Through the establishment of
this data collection scheme, the cost of data collection
becomes more reasonable, the data collection rate and accu-
racy are further improved, and the security is more effec-
tively guaranteed [30]. Ren er al. proposed a data relay
mule-based collection scheme (DRMCS) to enhance the
data collection rate in a vehicular network for opportunistic
communication [31].

B. DISTRIBUTED DATABASE

A distributed database [32] refers to the fusion of a database
and network, which can effectively address the performance
problems caused by high concurrent user access. In the
context of the current big data era, distributed databases
have gradually replaced centralized databases and have
become the mainstream data analysis system for meet-
ing the needs of large-scale data processing and analysis
[33], [34], [35]. At the same time, the growth of large-scale
data reduces the query efficiency of distributed databases.
Thus, improving query efficiency is a popular research
topic and a challenging problem in the distributed database
field. Li et al. designed a distributed storage system-based
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massively parallel processing (MPP) architecture to solve the
shortcomings of low concurrency and poor scalability and
accelerate the query of the entire project to improve project
performance. They concluded that with its good scalability
and MPP advantage, the system can be used to solve the mass
data storage problem [36]. Yang et al. proposed a novel sys-
tem with distributed secure data management and keyword
search for health IoT. Since patients are usually managed by
diverse medical institutions, the proposed system enables dis-
tributed access control to protected health information (PHI)
among different medical domains [37].

At present, the mainstream distributed databases include
GP (https://greenplum.org/), Vertica (http://www.vertica
china.com/), Sybase 1Q (http://infocenter.sybase.com/help/
index.jsp), Teradata Aster (https://www.tableau.com/) and
Exadata (https://www.oracle.com/index.html). We compare
and summarize the main features of these databases as pre-
sented in Table 1. Considering the cost performance factor
of each database shown in Table 1, we find that GP is a
strong fit to provide a suitable solution to address the poor
data sharing efficiency of streaming data produced by IoT
through its attractive features, such as a shared-nothing archi-
tecture, online system expansion and an open source design.
At present, several theoretical and practical approaches in
the literature propose data processing and query optimization
based on GP.

Waas et al. discussed trends and challenges for data ware-
housing beyond conventional application areas. In particu-
lar, they discussed how a massively parallel system such
as the GP database can be used for MapReduce-like data
processing [38].

Rajput et al. performed a comparative study of two
databases: GP and Oracle Exadata. They focused on the effi-
ciency, complexity and capacity of both databases and pro-
vided insight into their advantages and disadvantages but did
not draw any conclusion regarding the superior database [39].

Antova et al. presented optimization techniques for queries
over partitioned tables as implemented in the GP database.
Through several experiments, they demonstrated that the
resulting query plans distinctly outperform conventional
query plans in a variety of scenarios [40].
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FIGURE 1. The architecture of the ecosystem monitoring loT.

Zou et al. proposed a migration scheme that comprehen-
sively considered user service and the efficiency of migration
in the GP database cluster. They conducted experiments on
the GP database, the results of which showed the effectiveness
of the proposed migration scheme [41].

Raghavan et al. proposed a GP database platform exten-
sion framework (PXF) that supports parallel high-throughput
data access and federated queries across heterogeneous data
sources, enabling users to efficiently query large datasets
from multiple external sources, without requiring those
datasets to be loaded into GP [42].

Patel er al. provided a brief overview of GP for Kuber-
netes’s architecture and discussed its implementation. They
also demonstrated a full lifecycle of managing a cluster from
birth to retirement, including scale-up and self-healing all
with minimal database administrator inputs [43].

Albertini et al. covered the PXF to fetch and transform
images from GP and exploit graphics processing unit (GPU)
cycles to run Apache MADIib deep learning methods [44].

According to existing studies on GP, many optimization
strategies for GP have been proposed by researchers, but
different researchers’ schemes focus on different factors and
can be applied to different application scenarios, such as
banks, hospitals, traffic and social media big data. However,
no GP database application cases in the field of ecological
monitoring IoT are available.

IIl. SYSTEM OVERVIEW

A. THE ARCHITECTURE OF THE ECOSYSTEM
MONITORING IOT

The IoT ecosystem monitoring architecture [45], [46] con-
tains three layers: a perceptual layer, a network layer, and
an application layer. The perceptual layer is responsible for
perceiving and acquiring various ecological monitoring data.
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The network layer is responsible transmitting the acquired
data from the perceptual layer, mainly through a variety of
wireless transmission methods. The application layer lies at
the top level of the information system and includes automatic
data collection and normalization, data storage and man-
agement, data sharing, data analysis, and other application
functions (Fig. 1).

The main goal of this paper is to use an improved dis-
tributed database technology to increase the efficiency of data
retrieval (the green and light blue parts in Fig. 1)

B. GP ARCHITECTURE

GP is a distributed data warehouse based on PostgreSQL that
distributes tasks to multiple node server hosts for transaction
management and processing. In terms of user experience,
GP is similar to traditional databases, but essential differences
exist in its task processing. The GP data warehouse is a
database software system based on MPP and a completely
shared-nothing architecture [47], [48]. GP is composed of
three main parts: a master node, segment nodes, and an
interconnect (Fig. 2). The master node is the entry point to the
GP database system. It accepts client-side connections and
SQL statements and distributes workloads to other database
instances (the segment instances). The segment node is a
standalone PostgreSQL database, and each segment stores
and processes a portion of the data. The GP interconnect is
responsible for communication between the master node and
the segment node.

C. CLUSTER DEPLOYMENT

In this study, we use four high-performance computers to
build a GP distributed database to improve the query effi-
ciency of ecological monitoring IoT data (Fig. 3). The number
of servers can be dynamically expanded based on storage
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TABLE 2. Hardware Configuration.

No. Brand Model CPUcore Thread RAM Disk Purpose
1 DELL  R940 28 56 64GB  600GB 1 master node and 1 standby master node are deployed in this computer
2 DELL  R940 56 112 64GB 9TB 14 segment nodes and 14 standby segment nodes are deployed in this computer
3 DELL R940 56 112 64GB 9TB 14 segment nodes and 14 standby segment nodes are deployed in this computer
4 DELL  R940 56 112 64GB 9TB 14 segment nodes and 14 standby segment nodes are deployed in this computer
(M
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FIGURE 2. GP architecture.

requirements. All the data are stored on three slave comput-
ers based on a random distribution strategy, and these four
computers communicate with each other through the intranet.
In addition, external network service is available through
the host computer. The hardware configuration is shown in
Table 2. The software versions are as follows:

Operating system version: CentOS7.5 (Linux ver-
sion 3.10.0862.14.4.e17.x86_64)

Greenplum version: GP Database 6.0.0alpha.0+dev.7321
.gb7ce9c4

PostgreSQL version: PostgreSQL 9.1 beta 2

We deploy one master node on the host com-
puter and 42 segment nodes on three slave computers
(14 PostgreSQL instances are deployed on each slave com-
puter based on memory impact); that is, when we per-
form an SQL query, our cluster divides the SQL statement
into 42 subtasks performed in different segment instances
(each instance monopolizes a CPU core). Namely, the master
node dispatches parallel query plans to 42 segments, as shown
in Fig. 2. Each segment is responsible for executing local
database operations on its own set of data query plans. Most
database operations such as table scans, joins, aggregations,
and sorts are executed across all segments in parallel. Each
operation is performed on a segment database independent of
the data stored in the other segment databases.

Query plans are read from bottom to top. In this study, four
main steps exist in query plans:

(1) Each segment server is sequentially scanned to access
the rows.

(2) Each segment server is aggregated to produce a count
of the number of rows from that segment.

(3) Count values are gathered to a single location.
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(4) The counts from each segment are aggregated to pro-
duce the final result on the master node.

D. DATABASE TABLE DESIGN

Database design refers to constructing an optimal database
model for a given application environment, establishing a
database and its application system, storing data effectively,
and meeting user information and data processing require-
ments. For the data collected by the IoT ecological moni-
toring system, we must consider the following important
elements and their relationships.

Different projects have different wireless sensor networks.
Each observation network consists of multiple observation
areas, and each observation area can contain multiple obser-
vation stations. Each observation station can be equipped
with multiple data loggers, and each data logger can be con-
nected to multiple sensors. Each sensor can acquire multiple
variables.

As the above requirements show, the database must store
not only basic information about the observation area,
observation station, and data logger and sensor but also
the observed values. According to the specific application
requirements, we design a database table structure. Fig. 4
depicts the relationships between the main tables, and Table 3
describes their fields and uses.

E. OPTIMIZATION STRATEGY
According to the design in the previous section, data can
be distributed to 42 different segment hosts in our MPP
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FIGURE 4. Relationships in the main database table.

TABLE 3. The functions of the main tables.

Table name

Description of data table function

Tbl_project
unit and so on.
Tbl_area

Different experiments belong to different projects, and this table is used to store relevant project information such as name, time,

For ecological monitoring IoT, different electronic devices are installed in different research areas; thus, the information is very

important.This table holds all information about relevant research areas and is associated with the project information.

Tbl_station
Tbl_logger
Tbl_sensor
Tbl_variable
Tbl_valid_time
Tbl_value

An observation station is set up for a sample observation of some item. The user always finds data by station name.

This table is mainly used to save transmission instruments .

A sensor is a device that detects or measures a physical property and records, denotes, or otherwise responds to it.
Environmental variabilities such as temperature, humidity, soil moisture, wind speed and direction data are stored in this table.
The period during which the observation station collected data is recorded in this table.

All the observed data are stored in the table named tbl_value, which is the most important and most frequently used table in the

database.To reduce the scope of data retrieval, when the table is actually created, the table name is added with elements such as

project, observation period, and observation areas. For example, tbl_value_stjc_1-min_Area_1 is used to store all observation

data within Area_1 for a period of 1 min.This study contains 16 such data tables; these take full advantage of observation

periods such as 1 min, 10 min, 30 min and other observation factors, including the four study areas.

Tbl_querylocator

When a user selects a period, an observation area and a project in the shareddata system, the program automatically matches the

observation table (such as tbl_value_x-min_area_1). That is, all the requested data are retrieved from this table

system. Meanwhile, different data (data are divided by period
or area) are stored in different tables. Although these two
strategies substantially improve query efficiency and have
high scalability, the data query efficiency still has bottlenecks
due to the massive amounts of streaming data. To improve this
situation, the query efficiency of the observed data must be
further optimized using partitions [49]-[51] and indexes [52].

Data partitioning is a physical database design technology
whose purpose is to reduce the total amount of data read
and written during execution of a specific SQL operation,
which reduces the response time. The goal of data parti-
tioning is not to generate new data tables but to evenly
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distribute the existing data of the table to different hard disks,
systems, or different server storage mesons. In our system,
the time field is used to perform partitioning on a monthly
basis (Fig. 5). The partition time rangs from 2012/01/01 to
2032/01/01, resulting in 241 partition tables (the 241st parti-
tion is a store for abnormal data) for each data storage table.
When data increase in the future, we can further expand the
partition (by adding a new partition to store data collected
after 2032).

In addition, an observation data table has a highly selective
query in this system, and users often query data based on
the observation station. Therefore, the observation station
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FIGURE 5. Optimization strategy.

one year (5241500, 200 Mb) one month (431900, 17 Mb)

one day (14300, 572 Kb)

one record (1, 42 Bytes)

| T

GP (6) GP (24) GP (42) GP (48) GP (54)

| T T

GP (6) GP (24) GP (42) GP (48) GP (54)

FIGURE 6. Querying performance comparison of GP with different nodes.

data are indexed in this study to improve query performance
(Fig. 5).

F. EXPERIMENT

In this section, we first use a large amount of test data to
determine the optimal number of segment nodes, then analyze
the query process of the distributed database, and finally
validate the query performance of the system.

1) DETERMINING THE OPTIMAL NUMBER OF SEGMENT
NODES

Before formal application, we have to obtain the optimal
number of segment nodes. Therefore, we first create one
billion random time series of sensor data and conduct a
comparative test on the query performance of the distributed
database for five different numbers of nodes (i.e., 6, 24, 42,
48 and 54). As shown in Fig. 6, no matter how much data we
query (one record, one day, one month, or one year), GP with
more nodes has obvious query advantages. This is because
increasing the segment node can make full use of the CPU
and IO ability of each data node. However, when the number
of segment nodes is greater than 42, the change in query
efficiency is minimal (Table 4) because the performance is
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also limited by our four-server configuration. In general, each
node occupies one CPU core and requires 4 GB of memory.
Therefore, we deploy 42 segment nodes for our GP database.

2) ANALYZING THE QUERY PROCESS OF 42 SEGMENT
NODES

We also use the EXPLAIN ANALYZE command to further
analyze the query process of the abovementioned 42 seg-
ments, which shows the advantages of splitting subtasks.
Fig. 7 shows that an SQL command is divided into sev-
eral subcommands and executed in different partitions: when
querying data for one year (select from tbl_vlue_10min_test
where fld_site_id=1 fld_time > “2010-09-01"" and fld_time
< “20110901°*), our SQL statement is divided into 13 sub-
SQL statements (the 13 arrows in Fig. 7 show that the
query process is performed in 13 different partitions). The
first 12 statements read monthly data according to the field
fld_time (the data for each month is stored in a different
partition), the last SQL statement is used to read the data of
the extended partition (it is not executed here, because the
data queried are all distributed in the first 12 partitions). When
the sub-SQL statement queries data in each partition, it is
further divided into 42 query tasks because all the data in the
partition are randomly stored in 42 segment nodes (*‘gather
motion 42:1”” means that the 42 segments send results back
to the master for presentation to the client), and each segment
node queries only the data that meets the conditions locally.
The time required for the 42 segment nodes to query a certain
partition (in this experiment, one partition corresponds to one
month of data) is approximately 0.03-0.05 s (actual time).
In the end, the system automatically merges the results of
the 12 partitions, and the total time consumed is approxi-
mately 2.155 s (total runtime).

3) PERFORMANCE COMPARISON OF THREE DATABASES BY
QUERYING TIME

Under the same configuration and query conditions, the
query time is the most important indicator of database per-
formance. In this subsection, we compare our desired dis-
tributed database with two traditional standalone databases
with regard to the querying time. These three types of
databases have different characteristics, as follows:

PgSQL: a standalone PostgreSQL instance (all data are
stored in one big table called Tbl_value)

PgSQL(optimized): an optimized standalone PostgreSQL
instance (different data are stored in different tables, such
as Tbl_value_20190610, according to the time required;
this database system can create a new table automatically
every day)

GP(42): GP with 42 nodes (all data are randomly assigned
to different tables and 42 segment nodes, which are installed
on four computers)

The comparison results are shown in Table 5. Here,
we count only the time required for the query in the local
database and not the time to query a remotely connected
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FIGURE 7. Query process analysis of GP (42).
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TABLE 4. Comparison of query times for GP with different numbers of nodes (unit: seconds).

Database Abbreviation 5241500 431900 14300 1
One year of data One month of data One day of data One day item

GreenPlum distributed

database (6 nodes) GP (6) 12.29 1.032 0.80 0.56
GreenPlum distributed

database (20 nodes) GP (24) 6.13 0.58 0.39 0.21
GreenPlum distributed

database (42 nodes) GP (42) 2.10 0.24 0.095 0.032
GreenPlum distributed

database (48 nodes) GP (48) 2.13 0.21 0.096 0.032
GreenPlum distributed

database (54 nodes) GP (54) 2.11 0.24 0.094 0.033

database because the query results from different databases
can differ significantly based on network conditions.

As shown in Fig. 8, the GP cluster has substantial advan-
tages in data queries, especially when the query data vol-
ume becomes very large. When querying one year’s data
locally, the query efficiency of GP is approximately 190 times
better than that of the optimized PostgreSQL. Meanwhile,
the efficiency of querying one month’s data is approxi-
mately 249 times higher than executing that same query on
a split-table database. Additionally, optimized databases are
available only when querying small-scale data. For a nonopti-
mized database, querying any data is time consuming, which
is not suitable in the big data environment.

4) PERFORMANCE COMPARISON OF THREE
DATABASES BY THE TPS
The transactions per second (TPS) is also an important indica-
tor of the system performance and is a computer software and
hardware metric that represents the number of transactions
completed in 1 s by an information system.

TPS can be calculated with the following formula:

T-+S=TPS

where

T = Number of transactions

S = Number of seconds

TPS = Transactions per second
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FIGURE 8. Performance comparison of three databases by querying time.

We further compare the performance of GP(42) and
PgSQL (optimized) by calculating the TPS. We use Jmeter
to simulate the real scenario of data query: 32 users simulta-
neously query data for four different periods (different query
conditions correspond to different transactions; a transaction
refers to the process in which a client sends a request to
the server and then the server responds), lasting 30 min.
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TABLE 5. Comparison of query times for three types of databases (unit: seconds).

Database Abbreviation 5241500 431900 14300 1
One year of data One month of data One day of data One day item
PostgreSQL standalone
database (not optimized) PgSQL 471.33 439.65 433.97 391.68
PostgreSQL standalone
database (optimized
by partitioning) PgSQL (optimized) 381.14 59.85 3.50 0.82
GreenPlum distributed
database (42 nodes) GP (42) 2.10 0.24 0.095 0.032
Number of threads (virtual users):32 97°0'0"E 99°0°0"E 101°0°0"E
185.0 - Gra2)
175 4 172.0 mmm PgSQL(optimized)
150 4 o O@D S
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FIGURE 9. Performance comparison of two databases by TPS. z I z
;g— N @ station -;g
© =1
. . . 3 grs OIS0 w0 3
From the analysis results (Fig. 9) GP(42) has higher data i —

reading performance than PgSQL (optimized) in the case of
a similar hardware configuration.

IV. IMPLEMENTATION AND DEMONSTRATION
APPLICATION

A. STUDY AREA

A project called “Innovative development of equipment
and Internet-of-things techniques for ecosystem monitor-
ing and its demonstration” was initiated in 2016 and
included three typical fragile ecosystems as field test-
ing and demonstration sites (a karst rocky desertification
area in Southwest China, a rare and endangered wild ver-
tebrate reserve—the National Park for Amur Tigers—in
Northeast China, and a transition area of desert and oasis
in Northwest China). In these areas, the IoT technique
was introduced to establish a prototype ecosystem moni-
toring system in an isolated environment [53]-[55]. In this
case, 10 million observation records are generated every day
(approximately 455 MB/day, 159 GB/year). Although we
previously implemented a PostgreSQL-based data manage-
ment system to provide users with data services, a single-
machine database management method is insufficient to
meet the requirements of managing massive amounts of
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FIGURE 10. Transfer of ecologically fragile areas in the desert oasis in the
northwest region.

observation data because of the rapidly increasing data
volume.

This study builds a large-scale distributed database based
on the transfer of data from ecologically fragile areas in
the desert oasis in Northwest China. The goal is to achieve
efficient sharing of the collected scientific data. Fig. 10
shows that 11 stations are currently running in desert and
oasis transition areas in Northwest China. Three stations are
located in the upstream region (Nos. 1, 2, 3 and 4 in Table 6),
four stations are located in the midstream region (Nos. 5, 6,
7, and 8 in Table 6), and three stations are located in the
downstream region (Nos. 9, 10, and 11 in Table 6) of the
Heihe river basin. The collected data include flux data (col-
lected by a vortex correlation instrument and a large-aperture
scintillator), meteorological data (collected by an automatic
weather station), vegetation parameters (physical flow meter,
phenology, and the leaf area index), and soil moisture sensor
network data.
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TABLE 6. Hydrometeorological observatory stations (Arou, Daman and Sidaogiao are superstations; the other stations are ordinary stations).

No. Station Landscape Location Longitude Latitude Duration Number
1 Arou Subalpine meadow Upstream 100.46 38.05 Jun 2008—present 38133278
2 Jingyangling Alpine meadow Upstream 101.12 37.84 Aug. 2013—present 14155740
3 Yakou Alpine meadow Upstream 100.24 38.01 Jan. 2014—present 10467189
4 Dashalong Marsh alpine meadow upstream 98.94 38.84 Aug. 2013—present 13928148
5 Zhangye wetland Reed Midstream 100.45 38.98 June 2012-present 18838347
6 Heihe Remote Sensing Grassland Midstream 100.48 38.83 Aug. 2014—present 11407001
7 Daman Maize Midstream 100.37 38.86 May 2012—present 55126323
8 Huazhaizi Kalidium foliatum desert upstream 100.32 38.77 Jun 2012—present 11375716
9 Desert Reaumuria desert Downstream 100.99 42.11 Apr. 2015-present 9651679
10 Sidaogiao Tamarix Downstream 101.14 42.00 July 2013—present 17550417
11 Mixed Forest Populus euphratica and Tamarix ~ Downstream 101.13 41.99 July 2013—present 2419640

{ Tiles J [ Openlayers J

FIGURE 11. Data parsing and warehousing middleware.

B. DATA PARSING AND WAREHOUSING MIDDLEWARE

At present, the IoT acquisition equipment lacks a uni-
fied technical standard, which leads to differences in data
reception, storage, and wireless transmission protocols for
data acquisition instruments of different manufacturers.
In this case, automatic acquisition and automatic storage
of multi-source heterogeneous data are difficult for ecolog-
ical monitoring IoT. To address this issue, we develop a
multi-source heterogeneous data automatic collection and
aggregation middleware. The middleware is composed of
three modules: a data automatic collecting module, data auto-
matic parsing processing module and data automatic storage
module (Fig. 11). These modules have high cohesion and low
coupling and closely cooperate to complete full automatic
processing of the monitoring streaming data.

C. WEB-BASED DATA SHARING PLATFORM

In most data-sharing platforms, long-term sequential data are
typically stored in the form of files, but this method is not con-
ducive to fine-grained querying of data. Therefore, we build a
GP distributed database to store uploaded long-term sequence
data and develop an online data visualization platform
through which users can query and download data quickly
and easily. This system is developed using PHP and libraries,
such as openlayer and mapserver. These modules are installed
on different computers, such as the web server and WebGIS
server (Fig. 12)

The system visualizes the observed data based on the
needs of scientific researchers. The visualization tools use
open source projects such as Highcharts (statistical charts)
and Highstock (time series data display), which are chart
libraries written in pure JavaScript. These tools have good
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FIGURE 13. Operational processes of visualization.

performance and compatibility, adapt to the device size and
provide full support for most current browsers. Using these
two tools, we achieve visualization of the 10-min and one-min
data. A user views the variable graph according to the logical
sequence of the observation station, observation point, data
acquisition instrument, and observation variable (Fig. 13).
Fig. 14 illustrates that different data can be easily browsed
and downloaded through our system according to different
condition parameters.

The optimized distributed database provides good query
efficiency, but if the query results are directly pushed to the
user to download, they are limited by the network band-
width and the user’s browser. For example, approximately 2 s
is required to query five million records from one billion
observed data records, but if those five million records gener-
ate a comma-separated variable (csv) file and then push it to
the browser, the process can be very time-consuming because
five million records consume approximately 200 MB at a
bandwidth speed of 1 MB/s, requiring approximately 200 s
to complete the transfer and thus constituting a poor user
experience. Moreover, sometimes, the user’s browser crashes.

Therefore, based on the amount of query data, we provide
two different methods to view the query results (Fig. 15):
data requested by the user for less than one month can be
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FIGURE 14. Interface of the visualization system.
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FIGURE 15. Interface of visualization system.

pushed directly to the user via HTTP, while for data longer
than one month, we design a background Python program that
compresses the retrieved data and sends a cloud disk address
to the user, and the user can download the data via FTP, which
is quite friendly.

V. CONCLUSION

Using streaming data from ecologically fragile areas in the
desert oasis in Northwest China as an example, this study
focuses on huge amounts of structured data and conducts
data sharing architecture research based on the GP distributed
database, which provides a new idea for massive ecological
monitoring [oT streaming data. First, we optimize the query
efficiency from the database physical structure and database
table structure. We then verify the query efficiency of the
MPP system. Compared with traditional database systems
(Postgresql), our MPP system is easy to deploy and has
better query performance. Moreover,our data sharing system
supports downloads of massive streaming data and eliminates
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the impact of network bandwidth, substantially improving the
efficiency and experience of users. Although this study takes
special ecological monitoring applications as an example, our
data sharing architecture can be applied to other fields where
structured data must to be shared. In addition, all components
of our system are open source; thus, the system is especially
suitable for small and medium-sized enterprises and individ-
uals and will be widely used and strongly promoted.

This study focuses on the sharing architecture of struc-
tured data (streaming data) without considering the storage
of spatial data. In future work, PostGIS will be introduced
into the distributed GP, and some spatial query functions will
be improved to complete the storage and efficient query of
massive remote sensing images.
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