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ABSTRACT Segmentation of bony structures in CT scans is a crucial step in knee arthroplasty based on
personalized surgical instruments (PSI). As a matter of fact, the success of the surgery depends on the
quality of the matching between the patient-specific resection jigs, manufactured exploiting the patient
bony surfaces attained by segmentation, and true patient surfaces. Severe pathological conditions as chronic
osteoarthritis, deteriorating the cartilages, narrowing the intra-articular spaces and leading to bone impinge-
ment, complicate the segmentation making the recognition of bony boundaries sub-optimal for traditional
semi-automated methods and often extremely difficult even for expert radiologists. Deep convolutional
neural networks (CNNs) have been investigated in the last years towards automatic labeling of diagnostic
images, especially harnessing the encoding-decoding U-Net architecture. In this article, we implemented
deep CNNs to encompass the concurrent segmentation of the distal femur and the proximal tibia in CT
images and evaluate how segmentation uncertainty may impact on the surgical planning. A retrospective set
of 200 knee CT scans of patients was used to train the network and test the segmentation performances. Tests
on a subset of 20 scans provided median dice, sensitivity and positive predictive value indices greater than
96% for both shapes, with median 3D reconstruction error in the range of 0.5mm. Median 3D errors on both
PSI femoral and tibial contact areas and surgical cut alignments were less than 2mm and 2◦, respectively,
which can be considered clinically acceptable. These results substantiate that deep CNN architectures can
disclose the opportunity of segmenting bone shapes in CT scans for PSI-based surgical planning with
promising accuracy. However, we observed that segmentation scores alone cannot be taken as representative
of the 3D errors at the contact areas of the PSI. Therefore when comparing segmentation algorithms of
PSI-based surgical planning the 3D errors should be explicitly analyzed.

INDEX TERMS 3D U-net, bone segmentation, CT images, deep learning, knee arthroplasty, osteoarthritis,
personalized surgical instruments.

I. INTRODUCTION
Computed tomographic (CT) and magnetic resonance (MR)
imaging are competing techniques to perform surgical plan-
ning in knee arthroplasty by means of personalized sur-
gical instruments (PSI) and customized implants [1]–[5].
The three-dimensional (3D) geometry of patient bones,
obtained through image segmentation and surface reconstruc-
tion, is crucial to identify clinical landmarks, establish the
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optimal femoral and tibial resections, decide the implant size,
optimize the implant location in the different planes towards
the recovery of knee joint mechanics. According to the preop-
erative plan, patient-specific cutting jigs are designed, man-
ufactured and used during the surgery to accurately drive the
bone resection avoiding invasive intra-medullar instruments
[6]–[8]. In this clinical pipeline, image segmentation plays a
fundamental role as it influences the reconstruction accuracy
of digital bone surfaces, the matching of the personalized
instrument to the true bone geometry and ultimately the
resection alignment, leaving therefore the overall surgical
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performance particularly susceptible to segmentation uncer-
tainty [9]–[12]. Sub-millimetre correspondence between
patient surface and jig footprint has been claimed as
geometrical target for successful PSI-based knee surgery
[13], [14]. Due to such demanding requirement, bone seg-
mentation is manually performed by expert orthopaedic radi-
ologists using clinical image management and visualization
tools. Nonetheless, due to large variations in bone shape
and size among individuals, the process is very time con-
suming, labor intensive and usually the results are subjected
to significant inter-operator variability [15]–[17]. Segmen-
tation is further complicated by the effects of pathological
disorders affecting cartilages and bone surfaces, whose mor-
phology can significantly differ from physiological condi-
tions. For instance, osteoarthritis or post traumatic sequelae,
deteriorating the cartilages and narrowing the intra-articular
spaces, makes the cortical profiles jagged, thus complicat-
ing the delineation of bony boundaries and often requir-
ing at least one additional quality cross-check performed
by a different expert radiologist. As soon as the severity
increases to the chronic condition, bone impingement occurs
causing the interface between adjacent bones to become
almost indistinguishable. In addition, the formation of osteo-
phytes, especially in case of long-term impingement, makes
the bony profiles extremely irregular and the delineation
of surface boundaries difficult even for expert radiologists
[18]–[20]. Not only the quality of the manual segmenta-
tion of lower limb bones is prone to such complexity but
also traditional semi-automated algorithms, based on gray
histograms, edge detection, region growing and statistical
shape models were proven sub-optimal requiring extensive
manual post-processing [21]–[24]. As a consequence, due to
the limited speed and weak robustness of bone segmenta-
tion on CT scans, such techniques have had limited spread
hitherto in PSI-based surgical planning for knee arthroplasty.
More recently, bone segmentation of 2D images and 3D
scans has been addressed as a pixel-wise classification prob-
lem by leveraging multi-layer convolutional neural networks
(CNNs), trained by supervised deep learning (DL) algo-
rithms [25]–[27]. This interest has been motivated by several
successes achieved by such methodology to solve complex
problems such as text translation, natural voice generation,
lip reading, road sign recognition, image synthesis and game
challenges [28]. With respect to traditional machine learning
approaches, DL demonstrated superior ability to discover
from the original data the fundamental features that deter-
mine the success of the specific task. The translation of this
principle to image segmentation is that representative features
(e.g. lines, boundaries, contours, 2D/3D geometries) can be
learned by the DL multi-layer network directly from raw
images and the corresponding labeled images, without requir-
ing pre-processing or any a-priori assumption about the com-
plexity of the shape to be segmented [29], [30]. Driven by the
segmentation task, DL exploits, layer by layer in the network,
data encoding with spatial down-sampling to synthesize sig-
nificant shape characteristics, and then data decoding with

spatial up-sampling to build full-resolution segmentation.
The ability to learn the complexity of the image structure may
be extended to the bone case in a wide spectrum of variability
seen in a huge number of different pathological conditions.
A variant of this encoding-decoding network is represented
by the so called U-Net that has been recently proposed in the
field of biomedical image segmentation [31]. Both 2D and
3D U-Net models have been investigated for segmentation
of hand bones in X-ray images [32], mandibular bones in
cranio-facial CT [33], femur in CT scans [30] and major
skeletal bones in whole-body CT scans [34]. All such papers
focused mainly on binary segmentation of bones against
the image background, used low resolution data, disregarded
the effects of large bone deformations and osteophytes on
the segmentation quality. Overall the impact of segmentation
errors the surgical planning was underestimated. In order to
address such challenges, in this work we proposed to investi-
gate CNN networks based on 2D and 3D U-Net architectures
for the automatic semantic segmentation of the distal femur
and proximal tibia. Segmentation quality was evaluated to
verify whether such methods may be adopted with reliability
to reconstruct anatomical surfaces used in surgical planning
for PSI-based knee arthroplasty. Specifically, we performed
the segmentation of a dataset of 200 knee CT scans, acquired
on pathological patients, affected by severe osteoarthritis,
who underwent total knee replacement using PSI technique.
We quantified the effects of segmentation errors on contact
points and resection plane directions against the reference
planning based on manual segmentation performed by expert
radiologists. Main contributions in this article, both from
technical and clinical points of view, can be herewith out-
lined: 1) extensive comparison between 2D and 3D U-net
architectures to demonstrate the better performance of the
3D framework; 2) specific comparison of the 3D U-net with
traditional algorithms, based on semi-automatic region grow-
ing, to evaluate the ability to segment femur and tibia affected
by wide morphological deformations and local spurs formed
by osteophytes; 3) morphological matching quality of the
PSI with reconstructed shapes, measured on the true contact
areas, is accurate enough to ensure rotational alignment in
agreement with the surgical planning performed by expert
surgeons.

II. MATERIALS AND METHODS
A. PATIENT DATA AND PREPROCESSING
Axial CT scans of the knee, over a set of 200 patients
(128 males and 72 females - 91 left against 109 right
knees), acquired for planning purposes and provided in
anonymized form by Medacta International SA (Castel San
Pietro, Switzerland), were retrospectively available for this
study [35], [36]. The patients, aged 67±10 years, reported
localized knee pain, associated to osteoarthritis, and mechan-
ical knee instability. Diagnostic imaging confirmed differ-
ent degrees of cartilage defects, femoral osteophytes and
shape abnormalities mainly at the condylar regions of the
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FIGURE 1. Axial slices taken from 4 patients imaging the distal femur.
Deformations and osteophytes have been encircled.

distal femur and at the tibial plateau (Fig.1). CT scans
were acquired with different imaging equipment, mostly at
512×512 pixels and 600 slices on average, with variable pixel
size, ranging from 0.3mm to 0.4mm, and axial slicing, rang-
ing from 0.3mm to 1.0mm, though. Along with the CT scans,
the dataset encompassed distal femur and proximal tibia
segmentation masks and the corresponding reconstructed
surfaces. Expert radiological operators manually performed
the image segmentation of the osseous portion of the bones
using Mimics software (Materialize, Belgium). For increas-
ing reliability, each dataset was segmented by one operator
and revised later on by another one. Because of the imaging
equipment and acquisition protocol variability, no common
segmentation protocol was adopted and no data about seg-
mentation uncertainty was available. As a function of the
particular centering of the knee joint in the CT scan, the distal
femur was segmented up to 2-4 cm away from frontal notch
of the trochlear region along the femur shaft. Concurrently,
the length of the tibia segmented shaft was variable across
the patient set in a range of about 2-3 cm. Along with the
bone morphology, the dataset included the corresponding
planning surfaces. Planning data were available on planning
surfaces as PSI contact points and contact areas, along with
planar sections indicating the planned cuts. An example of
the planning surfaces for one of the subjects included in the
dataset is depicted in Fig.2. All the patients underwent knee
replacement surgery between 2014 and 2016 using PSI tech-
nique exploiting the 3D surfaces reconstructed by the avail-
able segmentation. As originating from different scanning

FIGURE 2. (Left panel) Femoral and tibial PSI of MyKnee system (courtesy
of Medacta International Spa) with highlighted (light blue) contact points.
(Right panel) Planning surfaces for patient 185 in the frontal view with
contact points, areas and section planes.

equipment, the CT volumetric datasets underwent prepro-
cessing to make the pixel intensity distribution consistent and
to arrange spatial dimensions to cope with network input.
First, pixels belonging to filling background and air were
automatically identified in the images, according to infor-
mation gathered from Dicom header, and the correspond-
ing intensity values put both to zero. The remaining image
pixels underwent intensity normalization taking into account
of different intensity scale encoding (e.g. Hounsfield units,
12-bit raw pixels). Then, each scan was cropped in the axial
direction to remove the slices where segmentation was not
available.

B. U-NET ARCHITECTURE
The segmentation net adopted in this work took its roots
from the convolutional U-Net in the 2D and 3D versions.
In our implementation, 2D version of the U-Net was con-
figured to process in input one CT axial slice and provide
in output the femur and tibia segmented structures in a
discrete-value image. Likewise, 3D version was configured
to process in input one CT axial volume of the knee and
provide in output the femur and tibia segmented structures
in a 3D discrete-value volume. The U-Net mainly consists
of a feed-forward architecture, which performs input encod-
ing by means of convolutional layers, into a compressed
multi-map feature representation, and then data decoding
by means of deconvolutional layers. The decoding process
exploits multi-scale feature fusion by concatenating the out-
put of the encoding layer to the corresponding deconvolu-
tional layer (cfr. Fig.3 for 3D architecture). According to
the number of labels the output is configured by means
of a multi-dimensional Softmax layer. In both 2D and 3D
models, we envisioned each sub-module of the encoding path
composed by two following convolutional layers, each one
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FIGURE 3. Schematic of one symmetric encoder/decoder structure, linked by a bottle-neck stage, of the U-Net. Convolutional (light red), Relu
(orange), pooling (red), un-pooling (blue) and concatenating layers (light green) can be recognized in the picture. The encoding path includes
three stages, with each stage embedding 2 sequential convolutions and one max pooling. In the first stage, the two convolutional layers
features 8 feature maps each. The decoder stage, being symmetric to the encoder one, includes three up-sampling stages. Exactly 351435 free
parameters ought to be trained for this model. By convenience this U-Net architecture was named as 8-16-32-64-32-16-8.

featuring linear activation, linked to batch normalization layer
and followed by a ReLU layer (light red rectangle), and a
final max pooling operator (red rectangle), ensuring a spatial
compression by a factor of 2. The batch normalization layer
shifted and scaled the activation distribution of the convolu-
tional layer at each batch, by adjusting both the mean and
the standard deviation of the layer activation map to optimal
values during training. The bottleneck part embedded two
following convolutional operators. In the decoding path, each
layer featured first the up-sampling operator (blue rectangle
in Fig.3), implemented by a transposed convolution with
ReLU activation, whose output was then concatenated (blue
arrow in Fig.3) with the corresponding output of the encoding
path (light red rectangle), followed by two convolutional
operators. Assuming 8 feature maps in the first stage of the
encoding path and doubling the number every new stage,
by convenience the resulting U-Net architecture was named
as 8-16-32-64-32-16-8. The Softmax output layer was a 4D
tensor featuring the volume size, the first three dimensions,
and the label (background, femur, tibia) as the fourth one.

C. LOSS FUNCTIONS FOR TRAINING
The 2D (3D) network training was based on the correspon-
dence between the dataset of CT images/volumes and the
equal-sized dataset of 2D (3D) annotated masks. In our
specific problem, one pixel/voxel in the annotated mask
will feature alternatively background, femur or tibia labels.
Considering the 3D case, the goal of training in the segmen-
tation network is to maximize the probability of voxel mem-
bership to the corresponding label inside the volume, this
attained by minimizing a proper loss function. Traditionally,
for volume segmentation the voxel-wise cross-entropy loss is

adopted, which aims at maximizing each estimated posterior
probability that voxels belong to a specific class given the cor-
responding expected probability [37], [38]. As cross-entropy
does not discriminate among labels, the background, which
is predominant in CT images with respect to bony voxels,
may easily bias the network training. Alternatively to cross-
entropy, Dice similarity index and the Jaccard coefficient
harness the overlap of voxels belonging to the same class
between label and CT volumes [39] but the conventional
formulation does not address multi-label segmentation. This
issue is usually overcome by assigning a weight, proportional
to the number of voxels belonging to the specific class,
to each label contribution in such a way that the different
frequencies of voxel for each class can be compensated and
the overall loss function re-balanced. Assuming a multi-class
labeling across C classes and N voxels, the loss function
based on Dice can be written as:

D(y, ŷ) = 1−
C∑
i

ki(
2

∑N yi · ŷi∑N yi · yi +
∑N ŷi · ŷi

) (1)

where yi and ŷi are respectively the true and predicted seg-
mented volumes for the label i whose scalar product is com-
puted over N voxels. The scalar value ki is a coefficient
weighting the contribution of each label to the loss function
and it can be computed as:

ki =
1

C − 1
(1−

Pi
N
) (2)

where Pi and N are the number of voxels belonging to class i
and the overall number of voxels in the volume, respectively.
Similarly, the loss function based on Jaccard coefficient can
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be written as:

J (y, ŷ) = 1−
C∑
i

ki(

∑N yi · ŷi∑N yi +
∑N ŷi +

∑N yi · ŷi
) (3)

For weighted cross-entropy, the loss function can be written
as:

CE(y, ŷ) =
C∑
i

ki(−ŷi · log(yi)

+(1− ŷi) · log(1− yi)) (4)

As far as the weights are concerned, usually they are com-
puted on the overall training dataset but this is sub-optimal in
a mini-batch paradigm, where the batch size is a fraction of
the entire set. We detailed below in the next section how we
addressed this issue.

D. NETWORK IMPLEMENTATION AND TRAINING
STRATEGY
Implementationwas performed leveraging on Tensorflow and
Keras libraries in the Python environment. The code was
run using the Colaboratory platform by Google Research
(Google Colab, colab.research.google.com) equipped with
4-core CPU, 25GB RAM and with NVIDIAr Teslar
T4 GPU support, with 8GB RAM. For the training, out of the
overall 200 samples, sorted alphabetically by family name,
the first 160 samples, were used to train the U-Net model,
namely by computing the neural weights, the next 20 samples
to validate the training by checking the error for convergence.
The remaining 20 samples were later used to test the seg-
mentation performance. The training was based on Adam
optimizer with a customized adaptive learning rate, starting
from an initial value of 0.0003, which was updated according
to the topology of the error metrics on the validation set.
A heuristic threshold of 0.95 on the error metrics (see eq. 4) of
femur and tibia was set to trigger the reduction of the learning
rate by a factor of 2. The metrics used to evaluate the training
performance on the validation set was the Intersection Over
Union (IoU), computed as:

IoUi =
TPi

TPi + FNi + FPi
(5)

where TPi,FNi, andFPi are the true positives, false negatives,
and false positives, respectively, for class i. If the computed
average error metrics remained stable (lower than 5%) for
10 consecutive epochs, the training was considered com-
pleted and the network was stored for later analysis. In order
to prevent early convergence, a predefined number of epochs,
set to 100, was allowed. A batch strategy in the training
was selected, with a batch size in agreement with memory
constraints. In order to ensure data mixing in the batches, data
reshuffling was implemented in each epoch of the training.
This required to compute at run-time for the specific batch
the weights ki (see eq. 1). In order to cope with the com-
putational limits of the Colab environment that prevented to
process original size data Dx, Dy, Dz, two main strategies

were put in practice ensuring a reasonable trade-off among
data size, network complexity and available graphics process-
ing unit (GPU) memory. The first approach implied spatial
sub-sampling while the second one required the implementa-
tion of an efficient data loading inmemory. Sub-samplingwas
performed by generating four datasets, featuring increasing
resolutions (Table 1), which also allowed to study the sensi-
tivity of the network to spatial resolution.

TABLE 1. Datasets with different dimensions (number of pixels and
slices). The corresponding voxel size (mm) are average values across the
sub-sampled dataset.

Efficient data loading in memory was implemented by
data-generator strategy allowing to load only the batch of
data required at run-time during each epoch of the optimiza-
tion. The last relevant feature of the implementation was the
adoption of a 5 dimensional tensor representation of data to
embed the batch dimension, the volume size, and the label.
As an example, considering a batch size of 4, a volume of
160 × 160×128 and the three labels, namely background,
femur and tibia, the size of the 5-dimension tensor will be
4 × 160×160 × 128×3. This will be therefore the data size
used in the loss function computation during the training
stage.

E. SEGMENTATION ASSESSMENT
In order to test the segmentation quality and the recon-
struction accuracy across different dataset spatial resolutions
and network architectures, the last 20 samples, out of the
200 ones, which were not included in the training set were
considered. Dice index (D), sensitivity (Se) and positive pre-
dictive value (PPV ) for each segmented bone were computed
and compared. According to (eq. 1), the Dice index for class
bone i can be written as:

Di =
2TPi

(2TPi + FPi + FNi)
(6)

Sensitivity measures the portion of bone voxels in the labeled
volume being correctly identified as bone voxels by the auto-
matic segmentation and can be computed as:

Sei =
TPi

(TPi + FNi)
(7)

Positive predictive value, also known as precision,
is expressed by the proportion of correctly identified bone
voxels that are true positive results and can be computed as:

PPVi =
TPi

(TPi + FPi)
(8)

In addition to the above metrics, the computed labeled masks
were reconstructed in 3D to obtain the corresponding sur-
faces Ŝ. Prior to reconstruction, the masks underwent image
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processing to remove undue voxel spots by means of the
opening morphological operator. The reconstruction accu-
racy, against the reference surface S, was measured by root
mean squared dR distances. Due to the relatively small sample
size, non-parametric statistical significance tests were used
to compare results across different conditions. Statistically
significant effects were assessed at p < 0.01.

F. CLINICAL EVALUATION
The quality of femoral and tibial segmentation was eval-
uated in terms of clinical impact on the surgical planning
in the total knee replacement based on MyKnee technology
(Medacta International Spa, Castel San Pietro, Switzerland).
Practically, the reconstructed surfaces of the test set were
matched to the corresponding planning surfaces (cfr. Fig.2).
For each bone, the matching was quantified in terms of
distance errors at the contact areas of the PSI with the sur-
face and angular alignment errors of the distal femoral and
proximal tibial cutting planes, representing the surgical resec-
tions. On each planning surface, contact areas were sampled
by picking either three or four technical landmarks each,
at the vertices of the areas (see supplementary materials),
using Amira software suite (Thermo Fisher Scientific Inc.,
Waltham, MA USA). For each landmark, the correspond-
ing point on the reconstructed surface was determined by
minimal distance. The contact area matching was computed
by averaging the four distance errors. On the distal femur,
two contact areas in the frontal part and two contact areas
in the distal part were taken into account. On the proximal
tibia, three contact areas were deemed, namely on medial and
lateral tibial plateau region and one on the frontal region close
to the tibial tuberosity. In order to define the femur distal
resection plane, four landmarks were picked in correspon-
dence of the planned resection sulcus, two frontally and two
posteriorly. The resection plane of the tibial plateau was iden-
tified by four landmarks picked on frontal, lateral, medial and
posterior aspects, in correspondence of the planned resection
sulcus, respectively (cfr. Fig.2). Again, the minimal distance
was used to determine the corresponding points on the femur
and tibia reconstructed surface. For each bone, the normal
direction of the plane fit to the four points was computed in
the planning and reconstructed surfaces and the in-between
angular deviation was projected on both frontal and sagittal
anatomical planes, obtaining two clinically relevant measures
[1], [12], [40].

III. EXPERIMENTAL TEST AND RESULTS
A. U-NET SETUP
1) 2D AND 3D COMPARISON
The first analysis carried out on the U-Net was designed to
compare the performance achieved by the network, in its
3D implementation, to the results obtained with different
implementations of a 2D U-Net on the same data. The used
U-Net architecture included three main processing blocks
for both encoding and decoding paths with the following

feature map configuration (8−16 − 32 − 64 − 32−16−8)
(Fig.3). All the convolutional and deconvolutional kernels
had 3×3×3 and 2×2×2 size, respectively, leading to exactly
351435 free parameters. As far as 2D U-Net architecture was
considered, three, four, five, and six processing layers in both
the encoding and decoding paths were taken into account. For
all the different 2D architectures, the number of feature maps
in the first layer was equal to 8, while the number of features
maps in the bottleneck were equal to 64, 128, 256, and 512,
respectively. The number of parameters of the 4 2D architec-
ture ranged from 121 thousands (three processing layers) up
to 1,948,795 (6 processing layers). In order to compare the
performance of the 2D and 3D networks using the same met-
rics, the images produced as outputs by the 2D U-Net were
ordered and combined together to produce a single volume
for each patient belonging to the test set. After completing
this procedure, Dice, sensitivity, and precision values were
computed on the volumes as explained in Section II-E. This
analysis was carried out on dataset D1, therefore the images
used in the 2DU-Net had a resolution of 128×128 pixels, and
the respective three dimensional volume used in the 3DU-Net
had a resolution 128×128×128 pixels. Dice, sensitivity, and
precision results, computed on the test set for both femur
and tibia, were sensibly better for the 3D U-Net that those
obtained for all the 2D U-Net versions, as shown Fig.4. This
analysis reported that the 3D implementation outperformed
the 2DU-Net, even with a higher number of processing layers
in the encoding and decoding paths. A statistically significant
difference (p < 0.01) was found when comparing the Dice
values for both femur and tibia computed on test set using
the 3D U-Net and the four different implementations of the
2D U-Net.

FIGURE 4. Boxplots of dice, sensitivity, and precision values obtained on
the dataset D1 using the described 3D U-Net, and four different
implementations of a 2D U-Net with an increasing number of processing
layers (2D-3: 3 processing layers, 2D-4: four processing layers, . . . ).
FD: Femur Dice; TD: Tibia Dice; FS: Femur Sensitivity; TS: Tibia Sensitivity;
FP: Femur PPV; TP: Tibia PPV.

2) LOSS FUNCTION TEST
The second analysis aimed at testing the training dependency
on the three different loss functions, namely Dice, Jaccard
and cross-entropy indexes. The chosen U-Net architecture
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was identical to that one of the previous test. Dataset D1,
composed of volumes with dimensions 128× 128× 128 was
used. For all the three loss functions, the median values of
Dice, Se and PPV distributions, across the 20 test patients,
ranged from 0.96 to 0.98 with no statistical difference
(p > 0.1). Dice index was therefore chosen as loss function
for all subsequent experiments.

3) ABLATION TEST
The third analysis aimed at evaluating the dependency of the
segmentation quality on number of convolutional layers of
the U-Net. This was tested by means of an ablation test, using
again dataset D1. The convolutional layers were inserted or
removed symmetrically in the encoding and decoding paths
maintaining the bottleneck layer. Four (8−16 − 32 − 64 −
128− 64− 32−16−8), three (8−16− 32− 64− 32−16−8)
and two (8−16− 32−16−8) layers were taken into account.
The results carried out on the network are reported in Table 2.
Four, three, and two convolutional layers were taken into
account for this analysis, using as input to the network dataset
D1. This analysis reported that changing the number of con-
volutional layers produced very small changes in the Dice
metric for both femur and tibia, with an overall range in
the interval 0.96-0.98. No statistically significant difference
(p > 0.01) was found when comparing the Dice values
for both femur and tibia using the three different number of
convolutional layers.

TABLE 2. Results of the ablation test performed on the network using
dataset D1 and a different number of convolutional layers.

4) DEPENDENCY ON FEATURE MAP SIZE AND NUMBER
In the fourth test, dataset D2, composed of volumes with
dimensions 160× 160× 128, was considered to analyze the
variability of the segmentation performance as a function of
the feature map size and number in the convolutional layers.
The architecture 8−16−32−64−32−16−8 for the network
was taken into account again, whereas the 3D filter size of
the convolutional kernels was made variable across three
different values: 3×3×3, 4×4×4 and 5×5×5. Boxplot charts
of dice, sensitivity and positive predictive values obtained
with the different filter sizes were summarized in Fig.5. The
analysis showed that the change in the filter size elicited
very small effects with an overall range of sensitivity in the
interval 0.94-0.99 for both femur and tibia, and of positive
predictive value in the interval 0.93-0.99. After testing the
effects of filter size, two networks with two different feature
map configurations, namely 8-16-32-64-32-16-8 and 12-24-
48-96-48-24-12, were compared. Results attained with the

FIGURE 5. Boxplots of dice, sensitivity and positive predictive values
obtained on the test set using dataset D2 with three different filter sizes.
Boxplots in blue refer to the femur class, while boxplots in red refer to
the tibial class. FD: Femur Dice; TD: Tibia Dice; FS: Femur Sensitivity;
TS: Tibia Sensitivity; FP: Femur PPV; TP: Tibia PPV.

two different feature maps configurations were similar, with
little to none difference between them. No statistically signif-
icant difference (p > 0.01) was found when comparing dice,
sensitivity and positive predictive values computed using the
two different feature map configurations.

B. QUALITATIVE ANALYSIS FOR THE 3D U-NET
A qualitative analysis of the segmented scans was performed
using the 3D U-Net (loss function: dice, configuration:
8-16-32-64-32-16-8, convolutional filter size: 3 × 3 × 3,
deconvolutional filter size: 2× 2× 2 size) trained on dataset
D2 (Table 1). The segmentation was effective in accurately
labeling the distal femur and proximal tibia, excluding at the
same time the other bones such as the patella and the fibula,
as shown in Fig.6. Interestingly, the trained network was able
to properly separate adjacent tibial and femoral surfaces also
in presence of very narrow spaces in between. Bony spurs
on the ridge of the trochlear region of the femur and on
the tibial plateau boundary were also correctly segmented.
Interestingly, condylar osteophytes, both in medial and lateral
side, were again correctly segmented excluding contiguous
tissues (Fig.7). In order to verify in which of the two paths of
the U-Net, and at what level, the removal of non-target tissues
occurred, we visually analyzed the activation maps layer by
layer in the encoder and in the decoder, corresponding to
the volumes input. As expected, the training specialized the
encoding path as edge and boundary detector at decreasing
spatial scale when increasing the path depth, while the decod-
ing path was tailored to remove background and discrimi-
nate between target and non-target bones during progressive
image up-sampling. In Fig.8, the visualization of the activa-
tion maps in the net trained on dataset D2, corresponding to
the 78th slice of the volume scan #185 can be appreciated.
One image in the first column represents the image output
of one feature map of the 8 available (for sake of clarity only
5 of themwere depicted) in the first convolutional layer in the
encoding path. One image in the second column represents
the image output of one feature map of the 16 available (for
sake of clarity only 6 of them were depicted) in the second
convolutional layer in the encoding path. One image in the

196400 VOLUME 8, 2020



D. Marzorati et al.: Deep 3D Convolutional Networks to Segment Bones Affected by Severe Osteoarthritis in CT Scans

FIGURE 6. (Upper panels) Frontal and sagittal views of the segmented CT
scan of patient #185. (lower panels) Frontal and axial views of the
segmented CT scan of patient #196. In both frontal views, in
correspondence of the narrow space between tibia (yellow) and femur
(dark red), correct segmentation can be appreciated. As it can be noticed
as well in the axial view of patient #196, one spur on the medial ridge of
the trochlear region and one osteophyte on internal surface of the medial
condyle are both properly segmented.

third column represents the image output of one feature map
of the 32 available (for sake of clarity only 9 of them were
depicted) in the third convolutional layer in the encoding
path. One image in the fourth column represents the image
output of one feature map of the 64 available (for sake of
clarity only 17 of them were depicted) in the bottleneck
convolutional layer. One image in the fifth layer represents
the image output of one feature map of the 32 available in
the first convolutional layer in the decoding path. One image
in the sixth layer represents the image output of one feature
map of the 16 available in the second convolutional layer in
the decoding path. One image in the seventh layer represents
the image output of one feature map of the 8 available in the
third convolutional layer in the decoding path. The output of
the last column will be the input of the Softmax classifier (see
supplementary multimedia).

C. QUANTITATIVE ANALYSIS FOR THE 3D U-NET
1) SEGMENTATION ERRORS
The four datasets (Table 1) with different resolution setups
were used to train the earlier U-Net architecture. Fig.9 shows
the boxplot charts of Dice index distributions obtained on
femur and tibia across the test set. In all datasets, D, Se and
PPV median values were all greater than 0.96 for both femur
and tibia segmentation (Table 3). First and third quartile of
sensitivity values across the four datasets laid within the
range 0.97-0.99. PPV median values for the femur ranged
from a minimum of 0.96, on dataset D2, to a maximum

FIGURE 7. Three axial views of the segmented femur (transparent dark
red) of the patient #197. From the corresponding reference surface, it can
be noticed the relevant deformation of the trochlear ridge anteriorly, with
the corresponding segmentation that follows correctly the osseous
profile.

FIGURE 8. Simplified graphical representation of the processing of the
78th slice, out of 128, in the U-Net (8-16-32-64-32-16-8) for the patient
#185 trained on dataset D2.

of 0.98, on both datasets D3 andD4. PPVmedian for the tibia,
instead, were of 0.96 on dataset D2 and 0.97 on the remaining
datasets. Kruskal-Wallis test was used to assess the statistical
difference between femur and tibia classes in all the three
measures for each dataset. Sensitivity values between femur
and tibia were statistically different, at 1% of significance,
for dataset D1 and D3. Positive predictive values of femur
and tibia class were statistically different only for dataset D3
(p < 0.01).
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TABLE 3. Summary of dice (D), sensitivity (Se) and precision (PPV) indexes obtained with the four datasets. Data shown are median (first quartile-third
quartile) values.

FIGURE 9. Boxplots of Dice values obtained on the test set with the four
different datasets. Boxplots in blue refer to the femur class, while
boxplots in red refer to the tibial class. FD: Femur Dice; TD: Tibia Dice.

FIGURE 10. Boxplots of RMS errors (mm) obtained on the test set with the
three different datasets. Boxplots in blue refer to the femur class, while
boxplots in red refer to the tibial class. FR: Femur RMSE; TR: Tibia RMSE.

2) THREE-DIMENSIONAL RECONSTRUCTION ERRORS
For the models trained with the four datasets, the root mean
square distance (RMS) were computed. The median values
of distance distributions ranged between 0.5 and 1mm, with
a maximum error lower than 1.5mm (Fig.10). It is noteworthy
that in dataset D4 the values computed for the femur and
tibia classes were very akin and close to 0.5mm. Furthermore,
for dataset D4 the maximum IQR was lower than 0.15mm.
As it was expected, a general decreasing trend for the 3D
reconstruction errors was obtained as the spatial resolution
increases, thus suggesting that augmenting the spatial res-
olution by approaching the original voxel size could still
improve the reconstruction quality even up to the CT planning
scans. Kruskal-Wallis test was used to assess the statistical
difference in RMS distances between femur and tibia classes,
and Conover post-hoc analysis with Holm correction was
carried out to compare the results across the datasets. Differ-
ences statistically significant were found (p < 0.005) when

comparing dataset D1 with datasets D3 and D4, while no
differences were found (p > 0.1) between dataset D3 and
dataset D4.

3) COMPARISON WITH SURGICAL PLANNING OBTAINED BY
MANUAL SEGMENTATION
The computed errors at contact areas located on the frontal
femur and tibial plateau locations were quite similar (range:
1-2mm) across the four training datasets, as it can be appre-
ciated in Fig.11. The contact area error at condylar loca-
tions distally was conversely lower than 1mm, in all the
four setups. These findings were not surprising as the distal
condylar surfaces feature less local complexity than frontal
and medio-lateral areas. As a matter of fact, pathological
deformations tend to flatten the distal areas while condylar
ridges both frontally and laterally usually undergo wider
deformations. These deformation effects make the segmen-
tation more challenging, here confirmed by greater errors.
The median angular deviation of the direction of the femoral
distal resection plane, projected on both frontal and sagittal
anatomical planes, was close to 0◦ with IQR in the range of 1◦

in all the four setups (Fig.12). While no statistical difference
was found between the angular values of frontal and sagittal
planes (p > 0.33), a slightly greater IQR was attained for the
sagittal plane. The direction of tibial plateau resection plane
deviated from the corresponding planning direction less than
1.5◦ and no statistical difference was detected (p > 0.07)

FIGURE 11. Distance error distributions (mm) computed at the contact
areas for the four training setups. Blue and red boxplot charts refer to the
femur and tibia, respectively. FCM: Femur Frontal Contact Medial;
FCL: Femur Frontal Contact Lateral; DCM: Femur Distal Contact Medial;
DCL: Femur Distal Contact Lateral; PCM Tibia Plataeu Contact Medial;
PCL Tibia Plateau Contact Lateral.
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FIGURE 12. Boxplot charts of angular error (◦) values obtained on the
test set using the different datasets. Boxplots in blue refer to the femur
class, while boxplots in red refer to the tibial class. DCF: Femur Distal Cut
Frontal; DCS: Femur Distal Cut Sagittal; PCF: Tibia Plateau Cut Frontal;
PCS: Tibia Plateau Cut Sagittal. For the frontal plane, values greater and
less than 0◦ indicate medial and lateral side, respectively. For the sagittal
plane, values greater and less than 0◦ indicate anterior and posterior
side, respectively.

between the angular values of frontal and sagittal planes.
Again, the alignment in the sagittal plane was more uncertain
than that in the frontal plane.

4) 3D U-NET AGAINST REGION GROWING ALGORITHM
The segmentation performance of the 3D U-Net, trained
using dataset D4, was compared with the ‘‘Fast GrowCut’’
implementation of the region growing algorithm [41], avail-
able into 3D Slicer (www.slicer.org). The test set of the
dataset D4 was imported into 3D Slicer to semi-automatically
perform the segmentation. Segmented images and recon-
structed surfaces (femur and tibia) were considered to com-
pute DICE and 3D RMSE, with respect to the original
reference segmentation and 3D surfaces. The DICE results,
reported in Table 4, demonstrated a better performance of the
U-Net, for both tibia and femur, supported by a significant
statistical difference (p < 0.01). Similarly, 3D RMSE results
were in favour of the U-Net with a significant statistical
difference (p < 0.01).

TABLE 4. Comparison between 3D U-Net, trained on dataset D4, and
region growing algorithm in terms of median (first quartile-third quartile)
Dice values and 3D RMS errors (mm), computed on the test set.

IV. DISCUSSION
A. MAIN FINDINGS
Many recent research articles extensively described the use
of U-Net for medical image segmentation and the majority
confirmed the superiority of the 3D architecture, with respect
to the traditional 2D, for the processing of 3D scans. It was

indeed shown that 3D convolution allows for the directly
modeling of the spatial connectivity of the target anatomical
regions during training [25], [42]–[44]. The results of the first
analysis performed in this work supported such previous find-
ings (cfr. Fig.4). Using 3D U-Net, the binary segmentation of
bones in CT andMRI images was demonstrated feasible with
high accuracy [29], [30] while the feasibility of multi-region
labeling in a semantic segmentation approach and the role of
pathological deformations of bones were not systematically
addressed in the literature. Effects of segmentation quality
on image-based surgical planning had not been tested so far.
In order to deal with such challenges, in the present paper
we adopted the 3D U-Net paradigm to address the semantic
segmentation of CT images of the knee to extract concur-
rently femur and tibia regions, affected by severe patholog-
ical conditions, and evaluate how segmentation errors might
have impacted on PSI-based surgical planning. While retro-
spective, the extensive dataset of 200 samples allowed for
evaluating the extrapolation properties of the training. The
obtained results on the test set confirmed that both femur and
tibia regions were successfully segmented with high accuracy
featuring both PPV and sensitivity greater than 96%. Such
quality was corroborated by analyzing the 3D reconstruction
errors with the median value in the range of 1mm. The high
quality of the 3D matching between the reconstructed sur-
faces and the contact areas of the virtual resection guides, rep-
resented by the planning surfaces, was proved by a maximum
median error lower than 2mm. Likewise, very low angular
deviations (2◦) of the resection planes further supported the
achieved segmentation quality and the overall implemented
methodology.

B. COMPARISON WITH THE LITERATURE
Binary segmentation of bones in CT andMRI images exploit-
ing neural networks and DL was already demonstrated as
feasible. Segmentation of spine in CT scans using a deep
CNN provided sensitivity of 97% and 3D surface distance
error of 7.4mm [27]. However, the study was performed on
a small dataset of 32 patients that reduced the span of the
results. Accuracy of about 97% for femur segmentation in CT
images was recently reported [30]. While including a dataset
of 150 patients, the work focused only of the one single
bone and performed the study using only a low resolution
version of the original dataset with an inter-slice resolution
(3mm) smaller than twice as many the resolution used in
this work. This can raise some doubts about the quality
of the 3D reconstruction attainable on the basis of such a
segmentation. Bone segmentation in dual energy CT scans by
means of U-Net architecture, applied to 15 patients, featured
Dice index of about 96%. [45]. However, the study performed
binary segmentation only and used a very low volume resolu-
tion. The U-Net architecture was used in bone segmentation
in 53 low-quality low-dosewhole-bodyCT scans leading dice
score of 95% [34]. However, the generalization of the results
was reduced as the dataset was acquired with a unique scan-
ner. In our work, we used conversely volumes acquired with
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four different scanners, namely Philips, Canon Medical Sys-
tems, GE Medical Systems and Toshiba. CNNs were applied
to segment the skull in 20 CT scans for treatment planning
applications achieving 92% of sensitivity and surface recon-
struction errors in the range of 1.5mm [46]. A specific study
exploiting a lightweight U-Net for hand bone segmentation
in X-ray images reported 94% of sensitivity [32]. The results
of the present work basically agreed also with such results,
even obtained on different bones. 2D U-Net was applied to
multi-label segmentation of 12 different structures in knee
joint by processing 20 MRI scans achieving a mean Dice
index for femur and tibia of about 90% [26], again in agree-
ment with our results. Overall, we can assert that the achieved
results are basically in line with the present literature, arguing
also that their scope can be regarded to a wider clinically
extent because of the heterogeneity of pathological severity
into the dataset and the proof of the results quality into the
PSI-based surgical planning application.

C. TECHNICAL CHALLENGES
It is well known that 3D CNNs are computationally more
demanding than 2D CNNs and can lead to higher overfitting
due to the increased number of trainable weights. In this
article, we tackled the first issue by down-sampling the
original data into four different dataset sizes that allowed us
to study the potential sensitivity of the segmentation to pixel
size and inter-slice distance using non-isotropic voxels. From
Dice, sensitivity, and positive predictive values, we concluded
that the segmentation performance of the corresponding four
trained networks was very similar. Conversely but expected,
the analysis of the 3D accuracy demonstrated that the errors
on the reconstructed surfaces were decreasing with the
increase of voxel resolution. In order to address the second
issue, we leveraged the validation error to drive the training
stop to successfully overcome potential overfitting. This led
to get very similar IoU metrics in the training and validation
datasets. As far as dataset extent is concerned, no data aug-
mentation was necessary. Usually such an approach, imple-
mented by rotation and translation of the original samples,
is suggested to increase the sample size and enhance the spa-
tial variability of the target regions in the images. However,
in this work we deemed the available samples sufficient
to constrain the training, endorsed by both labeling and
reconstruction results. The spatial invariance achieved by the
network was further proved by the ability of the network
to generalize the true learnt semantic segmentation to the
labeling of both left and right regions into a single 3D scan
(Fig.13). Finally, regarding computational demands, each
epoch during the training of the greater resolution dataset
(D4), took on average about 4minutes and the overall training
took approximately 12h. Completing one fully automatic seg-
mentation with the trained model took about 3s. Conversely,
the region growing algorithm took approximately 45 minutes
to complete a segmentation, requiring accurate initialization
of seeds performed manually.

FIGURE 13. Segmentation using the trained U-Net (dataset D4) on a 3D
scan imagining the two knees of patient #198. As expected, the network
is performing a true semantic segmentation labeling at the same time the
left and right shapes of tibia and femur.

D. CLINICAL CHALLENGES
As described, the matching of the femoral resection compo-
nent of MyKnee PSI mainly depends on the reconstruction
precision of both frontal and distal aspects of the distal femur.
For the tibia, the frontal aspect of the tibial plateau mainly
affects the matching with the tibial resection component.
Nominally, the final coupling tolerance should reflect the
combination of uncertainty in scanning resolution with accu-
racy of image segmentation, surface reconstruction, surface
smoothing, digital representation of the surface in the pro-
duction system and finally precision of manufacture. While
it is not unequivocal to exactly quantify the error chain in
each step, we give a feasible hypothesis of the final matching
error between the PSI and the true patient anatomy. The
scanning resolution, namely the voxel size, which is typically
0.5× 0.5×0.5mm for both planning CT and MRI, is the first
source of uncertainty. When carefully performed, the seg-
mentation quality, which however depends on the image
modality (in the MRI the bone-soft tissue boundary is less
contrasted than that in the CT) and on the operator per-
forming the task, introduces additional errors that, in the
best conditions, are at sub-voxel size scale. It is well known
however that the high quality segmentation process is very
time consuming and prone to errors, especially with severe
clinical conditions, worsening the manual segmentation. The
surface reconstruction quality, which strongly depends on
slicing thickness, and the surface smoothing further increase
the difference between the true and the digital patient bones.
Assuming that the virtual matching in the PSI design is
perfect, no additional errors should be considered at this
stage. Contrary, the prototyping process can decrease fur-
ther the matching accuracy due to the internal representa-
tion of the surface data and the manufacturing precision.
For instance, modern 3D printers ensure a precision of at
least 0.1 mm. In conclusion, it is realistic to assume that,
in the best condition, the uncertainty of the coupling is in
the range of 1 mm. It was reported that such an uncertainty
can induce rotational differences in the coronal and sagittal
planes, between the planned and intra-operative alignment,
in the range of about 2◦ [5], [47]. We showed that it is
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possible to attain a reconstruction accuracy in terms of RMSE
less than 2.0 mm and 1.5 mm, for both tibia and femur,
results that could be further improved by processing datasets
at higher resolution. Such 3D errors led to deviations of the
femoral distal cut direction in the frontal plane less than±1◦,
being akin to alignment errors (±3◦) reported in the recent
literature [13], [17], [48], [49] and recognized in the range of
tolerable surgical errors, demonstrating the clinical potential
of the proposed segmentation approach. However, the slightly
greater deviations in the sagittal plane should be carefully
taken into consideration, as the corresponding mal-alignment
of themechanical axis of the femurmodifies the tibio-femoral
extension gap, which in turn affects the patellofemoral joint
kinematics and ligament balancing [49]. Similarly, the tibial
angular error in the sagittal plane, while being lower than
±2◦, must be carefully evaluated as it may lead to prosthesis
impingement issues in the knee flexion [8], [50].

In general, Dice, sensitivity and PPV are assumed predic-
tive indices of the 3D reconstruction error. However, the seg-
mentation quality on the overall CT scan should be carefully
examined and not immediately considered representative of
local areas of the bony regions, especially those ones cor-
responding to the PSI contacts (Fig.14). As a result, small
variations of the segmentation quality might correspond to
sensible error variation even greater than 1 mm as shown for
the tibial contact areas. In addition, morphological deforma-
tions are heterogeneously distributed across the overall bony
shape (see the difference between distal and frontal contacts

FIGURE 14. Relation between PPV and contact errors (mm) of the PSI for
both femur and tibia (D4 dataset).

in the femur) making in both cases the segmentation quality
alone not enough to ensure accurate matching between the
PSI and the reconstructed surface. In synthesis, improve-
ments in the segmentation in terms of Dice, Se or PPV does
not necessarily mean an improvement of the clinical value
of segmentation. As a final remark, we highlight that the
role of the PSI surgical technique has been topic of many
debates with no general consensus about the accuracy and
reliability for a large-scale surgery [12], [50], [51]. Nonethe-
less, two recent meta-analysis studies, comparing PSI-based
interventions to traditional surgery using invasive instruments
on approximately 5000 patients, reported significant differ-
ences with regards to operative time and blood loss in favor
of PSI [52], [53]. In addition, knee surgery based on PSI
has been very recently reported to improve functional kine-
matics with respect to traditional surgery [8]. In general,
while PSI cannot be regarded as the gold standard in total
knee replacement, advanced osteoarthritis conditions can be
surgically addressed through such a technique, especially in
conditions of bone deformity, which can prevent the use of
intra-medullar bars [54].

V. CONCLUSION
The developed deep convolutional network was trained and
validated to concurrently segment distal femur and proximal
tibia, exhibiting severe pathological deformations, in knee
CT volumes acquired throughout different scanners. Interest-
ingly, within the U-Net paradigm, encoder and decoder were
proved suitable for filtering and semantic reconstruction,
respectively, resembling processing of brain neural pathways,
and the network exhibited reasonable generalization capabil-
ities when exposed to both knees within the same CT volume,
as expected from the convolutional spatial invariance.
Specific results were shown valuable in terms of segmen-
tation, surface reconstruction and surgical planning perfor-
mances, being comparable to results obtainable by means of
expert segmentation. We can argue therefore that fostering
deep CNN in clinical tools may offer the opportunity of
removing the current prohibitive barriers of time and effort
during CT image segmentation, assuring high accuracy and
making PSI-based knee arthroplasty closer at hand.
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